首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alveolar macrophages (AMs) play a major role in host defense against microbial infections in the lung. To perform this function, these cells must ingest and destroy pathogens, generally in phagosomes, as well as secrete a number of products that signal other immune cells to respond. Recently, we demonstrated that murine alveolar macrophages employ the cystic fibrosis transmembrane conductance regulator (CFTR) Cl channel as a determinant in lysosomal acidification (Di, A., Brown, M. E., Deriy, L. V., Li, C., Szeto, F. L., Chen, Y., Huang, P., Tong, J., Naren, A. P., Bindokas, V., Palfrey, H. C., and Nelson, D. J. (2006) Nat. Cell Biol. 8, 933–944). Lysosomes and phagosomes in murine cftr−/− AMs failed to acidify, and the cells were deficient in bacterial killing compared with wild type controls. Cystic fibrosis is caused by mutations in CFTR and is characterized by chronic lung infections. The information about relationships between the CFTR genotype and the disease phenotype is scarce both on the organismal and cellular level. The most common disease-causing mutation, ΔF508, is found in 70% of patients with cystic fibrosis. The mutant protein fails to fold properly and is targeted for proteosomal degradation. G551D, the second most common mutation, causes loss of function of the protein at the plasma membrane. In this study, we have investigated the impact of CFTR ΔF508 and G551D on a set of core intracellular functions, including organellar acidification, granule secretion, and microbicidal activity in the AM. Utilizing primary AMs from wild type, cftr−/−, as well as mutant mice, we show a tight correlation between CFTR genotype and levels of lysosomal acidification, bacterial killing, and agonist-induced secretory responses, all of which would be expected to contribute to a significant impact on microbial clearance in the lung.  相似文献   

2.
The profound luminal acidification essential for the degradative function of lysosomes requires a counter-ion flux to dissipate an opposing voltage that would prohibit proton accumulation. It has generally been assumed that a parallel anion influx is the main or only counter-ion transport that enables acidification. Indeed, defective anion conductance has been suggested as the mechanism underlying attenuated lysosome acidification in cells deficient in CFTR or ClC-7. To assess the individual contribution of counter-ions to acidification, we devised means of reversibly and separately permeabilizing the plasma and lysosomal membranes to dialyze the cytosol and lysosome lumen in intact cells, while ratiometrically monitoring lysosomal pH. Replacement of cytosolic Cl with impermeant anions did not significantly alter proton pumping, while the presence of permeant cations in the lysosomal lumen supported acidification. Accordingly, the lysosomes were found to acidify to the same pH in both CFTR- and ClC-7–deficient cells. We conclude that cations, in addition to chloride, can support lysosomal acidification and defects in lysosomal anion conductance cannot explain the impaired microbicidal capacity of CF phagocytes.  相似文献   

3.
The cystic fibrosis transmembrane conductance regulator (CFTR), which is aberrant in patients with cystic fibrosis, normally functions both as a chloride channel and as a pleiotropic regulator of other ion transporters. Here we show, by ratiometric imaging with luminally exposed pH-sensitive green fluorescent protein, that CFTR affects the pH of cellubrevin-labeled endosomal organelles resulting in hyperacidification of these compartments in cystic fibrosis lung epithelial cells. The excessive acidification of intracellular organelles was corrected with low concentrations of weak base. Studies with proton ATPase and sodium channel inhibitors showed that the increased acidification was dependent on proton pump activity and sodium transport. These observations implicate sodium efflux in the pH homeostasis of a subset of endocytic organelles and indicate that a dysfunctional CFTR in cystic fibrosis leads to organellar hyperacidification in lung epithelial cells because of a loss of CFTR inhibitory effects on sodium transport. Furthermore, recycling of transferrin receptor was altered in CFTR mutant cells, suggesting a previously unrecognized cellular defect in cystic fibrosis, which may have functional consequences for the receptors on the plasma membrane or within endosomal compartments.  相似文献   

4.
Cystic fibrosis (CF) is caused by the functional expression defect of the CF transmembrane conductance regulator (CFTR) chloride channel at the apical plasma membrane. Impaired bacterial clearance and hyperactive innate immune response are hallmarks of the CF lung disease, yet the existence of and mechanism accounting for the innate immune defect that occurs before infection remain controversial. Inducible expression of either CFTR or the calcium-activated chloride channel TMEM16A attenuated the proinflammatory cytokines interleukin-6 (IL-6), IL-8, and CXCL1/2 in two human respiratory epithelial models under air–liquid but not liquid–liquid interface culture. Expression of wild-type but not the inactive G551D-CFTR indicates that secretion of the chemoattractant IL-8 is inversely proportional to CFTR channel activity in cftr∆F508/∆F508 immortalized and primary human bronchial epithelia. Similarly, direct but not P2Y receptor–mediated activation of TMEM16A attenuates IL-8 secretion in respiratory epithelia. Thus augmented proinflammatory cytokine secretion caused by defective anion transport at the apical membrane may contribute to the excessive and persistent lung inflammation in CF and perhaps in other respiratory diseases associated with documented down-regulation of CFTR (e.g., chronic obstructive pulmonary disease). Direct pharmacological activation of TMEM16A offers a potential therapeutic strategy to reduce the inflammation of CF airway epithelia.  相似文献   

5.
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) that prevent its proper folding and trafficking to the apical membrane of epithelial cells. Absence of cAMP-mediated Cl secretion in CF airways causes poorly hydrated airway surfaces in CF patients, and this condition is exacerbated by excessive Na+ absorption. The mechanistic link between missing CFTR and increased Na+ absorption in airway epithelia has remained elusive, although substantial evidence implicates hyperactivity of the epithelial Na+ channel (ENaC). ENaC is known to be activated by selective endoproteolysis of the extracellular domains of its α- and γ-subunits, and it was recently reported that ENaC and CFTR physically associate in mammalian cells. We confirmed this interaction in oocytes by co-immunoprecipitation and found that ENaC associated with wild-type CFTR was protected from proteolytic cleavage and stimulation of open probability. In contrast, ΔF508 CFTR, the most common mutant protein in CF patients, failed to protect ENaC from proteolytic cleavage and stimulation. In normal airway epithelial cells, ENaC was contained in the anti-CFTR immunoprecipitate. In CF airway epithelial cultures, the proportion of full-length to total α-ENaC protein signal was consistently reduced compared with normal cultures. Our results identify limiting proteolytic cleavage of ENaC as a mechanism by which CFTR down-regulates Na+ absorption.  相似文献   

6.
Human airway cilia contain soluble adenylyl cyclase (sAC) that produces cAMP upon HCO3/CO2 stimulation to increase ciliary beat frequency (CBF). Because apical HCO3 exchange depends on cystic fibrosis transmembrane conductance regulator (CFTR), malfunctioning CFTR might impair sAC-mediated CBF regulation in cells from patients with cystic fibrosis (CF). By Western blot, sAC isoforms are equally expressed in normal and CF airway epithelial cells, but CBF decreased more in CF than normal cells upon increased apical HCO3/CO2 exposure in part because of greater intracellular acidification from unbalanced CO2 influx (estimated by 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) fluorescence). Importantly, ciliated cell-specific cAMP production (estimated by FRET fluorescence ratio changes of tagged cAMP-dependent protein kinase (PKA) subunits expressed under a ciliated cell-specific promoter) in response to increased apical HCO3/CO2 perfusion was higher in normal compared with CF cells. Inhibition of bicarbonate influx via CFTR (CFTRinh172) and inhibition of sAC (KH7) and PKA activation (H89) led to larger CBF declines in normal cells, now comparable with changes seen in CF cells. These inhibitors also reduced FRET changes in normal cells to the level of CF cells with the expected exception of H89, which does not prevent dissociation of the fluorescently tagged PKA subunits. Basolateral permeabilization and subsequent perfusion with HCO3/CO2 rescued CBF and FRET changes in CF cells to the level of normal cells. These results suggest that CBF regulation by sAC-produced cAMP could be impaired in CF, thereby possibly contributing to mucociliary dysfunction in this disease, at least during disease exacerbations when airway acidification is common.  相似文献   

7.

Background

Treatments designed to correct cystic fibrosis transmembrane conductance regulator (CFTR) defects must first be evaluated in preclinical experiments in the mouse model of cystic fibrosis (CF). Mice nasal mucosa mimics the bioelectric defect seen in humans. The use of nasal potential difference (VTE) to assess ionic transport is a powerful test evaluating the restoration of CFTR function. Nasal VTE in CF mice must be well characterized for correct interpretation.

Methods

We performed VTE measurements in large-scale studies of two mouse models of CF—B6;129 cftr knockout and FVB F508del-CFTR—and their respective wild-type (WT) littermates. We assessed the repeatability of the test for cftr knockout mice and defined cutoff points distinguishing between WT and F508del-CFTR mice.

Results

We determined the typical VTE values for CF and WT mice and demonstrated the existence of residual CFTR activity in F508del-CFTR mice. We characterized intra-animal variability in B6;129 mice and defined the cutoff points for F508del-CFTR chloride secretion rescue. Hyperpolarization of more than -2.15 mV after perfusion with a low-concentration Cl- solution was considered to indicate a normal response.

Conclusions

These data will make it possible to interpret changes in nasal VTE in mouse models of CF, in future preclinical studies.  相似文献   

8.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated Cl channel expressed in the apical membrane of fluid-transporting epithelia. The apical membrane density of CFTR channels is determined, in part, by endocytosis and the postendocytic sorting of CFTR for lysosomal degradation or recycling to the plasma membrane. Although previous studies suggested that ubiquitination plays a role in the postendocytic sorting of CFTR, the specific ubiquitin ligases are unknown. c-Cbl is a multifunctional molecule with ubiquitin ligase activity and a protein adaptor function. c-Cbl co-immunoprecipitated with CFTR in primary differentiated human bronchial epithelial cells and in cultured human airway cells. Small interfering RNA-mediated silencing of c-Cbl increased CFTR expression in the plasma membrane by inhibiting CFTR endocytosis and increased CFTR-mediated Cl currents. Silencing c-Cbl did not change the expression of the ubiquitinated fraction of plasma membrane CFTR. Moreover, the c-Cbl mutant with impaired ubiquitin ligase activity (FLAG-70Z-Cbl) did not affect the plasma membrane expression or the endocytosis of CFTR. In contrast, the c-Cbl mutant with the truncated C-terminal region (FLAG-Cbl-480), responsible for protein adaptor function, had a dominant interfering effect on the endocytosis and plasma membrane expression of CFTR. Moreover, CFTR and c-Cbl co-localized and co-immunoprecipitated in early endosomes, and silencing c-Cbl reduced the amount of ubiquitinated CFTR in early endosomes. In summary, our data demonstrate that in human airway epithelial cells, c-Cbl regulates CFTR by two mechanisms: first by acting as an adaptor protein and facilitating CFTR endocytosis by a ubiquitin-independent mechanism, and second by ubiquitinating CFTR in early endosomes and thereby facilitating the lysosomal degradation of CFTR.  相似文献   

9.
Cystic fibrosis is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), which lead to defective Cl- conductance in epithelial cells. While the CFTR gene product has been detected in the plasma membrane, its presence and functional role in the membranes of intracellular compartments remain to be established. The purpose of the present experiments was to functionally localize CFTR in the endosomal membrane and to test the role of the associated Cl- conductance in the regulation of endosomal pH (pH(en)). When using conductive protonophores, the net H+ flux across the endosomal membrane of Chinese hamster ovary (CHO) cells is limited by the movement of counterions. Thus, ionic permeability could be estimated indirectly, from the changes in pH(en) determined fluorimetrically. Measurements in situ and in a cell-free microsomal preparation indicate the presence of a protein kinase A (PKA)-activated anion conductance in endosomes from CHO cells transfected with CFTR, but not in endosomes from wild-type or mock-transfected cells. In endosomes isolated from CFTR-expressing cells, the stimulatory effect of PKA was diminished by a specific peptide inhibitor of PKA, by alkaline phosphatase treatment or by a monoclonal antibody against the second nucleotide binding fold of CFTR. Increasing counterion permeability by phosphorylation of CFTR or by addition of valinomycin failed to alter the rate or extent of endosomal acidification in situ. Our observations indicate that functional CFTR, susceptible to activation by PKA, is present in endosomes of transfected CHO cells. More importantly, the data suggest that factors other than counterion permeability are the major determinants of pH(en).  相似文献   

10.
The aim of this study was to characterize the role of CFTR during Cd2+-induced apoptosis. For this purpose primary cultures and cell lines originated from proximal tubules (PCT) of wild-type cftr+/+ and cftr?/? mice were used. In cftr+/+ cells, the application of Cd2+ (5 μM) stimulated within 8 min an ERK1/2-activated CFTR-like Cl? conductance sensitive to CFTRinh-172. Thereafter Cd2+ induced an apoptotic volume decrease (AVD) within 6 h followed by caspase-3 activation and apoptosis. The early increase in CFTR conductance was followed by the activation of volume-sensitive outwardly rectifying (VSOR) Cl? and TASK2 K+ conductances. By contrast, cftr?/? cells exposed to Cd2+ were unable to develop VSOR currents, caspase-3 activity, and AVD process and underwent necrosis. Moreover in cftr+/+ cells, Cd2+ enhanced reactive oxygen species (ROS) production and induced a 50% decrease in total glutathione content (major ROS scavenger in PCT). ROS generation and glutathione decrease depended on the presence of CFTR, since they did not occur in the presence of CFTRinh-172 or in cftr?/? cells. Additionally, Cd2+ exposure accelerates effluxes of fluorescent glutathione S-conjugate in cftr+/+ cells. Our data suggest that CFTR could modulate ROS levels to ensure apoptosis during Cd2+ exposure by modulating the intracellular content of glutathione.  相似文献   

11.
Cystic fibrosis is the most common inherited lethal disease in Caucasians. It is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), of which the cftr ΔF508 mutation is the most common. ΔF508 macrophages are intrinsically defective in autophagy because of the sequestration of essential autophagy molecules within unprocessed CFTR aggregates. Defective autophagy allows Burkholderia cenocepacia (B. cepacia) to survive and replicate in ΔF508 macrophages. Infection by B. cepacia poses a great risk to cystic fibrosis patients because it causes accelerated lung inflammation and, in some cases, a lethal necrotizing pneumonia. Autophagy is a cell survival mechanism whereby an autophagosome engulfs non-functional organelles and delivers them to the lysosome for degradation. The ubiquitin binding adaptor protein SQSTM1/p62 is required for the delivery of several ubiquitinated cargos to the autophagosome. In WT macrophages, p62 depletion and overexpression lead to increased and decreased bacterial intracellular survival, respectively. In contrast, depletion of p62 in ΔF508 macrophages results in decreased bacterial survival, whereas overexpression of p62 leads to increased B. cepacia intracellular growth. Interestingly, the depletion of p62 from ΔF508 macrophages results in the release of the autophagy molecule beclin1 (BECN1) from the mutant CFTR aggregates and allows its redistribution and recruitment to the B. cepacia vacuole, mediating the acquisition of the autophagy marker LC3 and bacterial clearance via autophagy. These data demonstrate that p62 differentially dictates the fate of B. cepacia infection in WT and ΔF508 macrophages.  相似文献   

12.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl-selective ion channel expressed in fluid-transporting epithelia. Lemur tyrosine kinase 2 (LMTK2) is a transmembrane protein with serine and threonine but not tyrosine kinase activity. Previous work identified CFTR as an in vitro substrate of LMTK2, suggesting a functional link. Here we demonstrate that LMTK2 co-immunoprecipitates with CFTR and phosphorylates CFTR-Ser737 in human airway epithelial cells. LMTK2 knockdown or expression of inactive LMTK2 kinase domain increases cell surface density of CFTR by attenuating its endocytosis in human airway epithelial cells. Moreover, LMTK2 knockdown increases Cl secretion mediated by the wild-type and rescued ΔF508-CFTR. Compared with the wild-type CFTR, the phosphorylation-deficient mutant CFTR-S737A shows increased cell surface density and decreased endocytosis. These results demonstrate a novel mechanism of the phospho-dependent inhibitory effect of CFTR-Ser737 mediated by LMTK2 via endocytosis and inhibition of the cell surface density of CFTR Cl channels. These data indicate that targeting LMTK2 may increase the cell surface density of CFTR Cl channels and improve stability of pharmacologically rescued ΔF508-CFTR in patients with cystic fibrosis.  相似文献   

13.
Cystic fibrosis (CF) is caused by mutations in the gene for CFTR, a cAMP-activated anion channel expressed in apical membranes of wet epithelia. Since CFTR is permeable to HCO3, and may regulate bicarbonate exchangers, it is not surprising evidence of changes in extracellular pH (pHo) have been found in CF. Previously we have shown that tracking pHo can be used to differentiate cells expressing wild-type CFTR from controls in mouse mammary epithelial (C127) and fibroblast (NIH/3T3) cell lines. In this study we characterized forskolin-stimulated extracellular acidification rates in epithelia where chemical correction of mutant ΔF508-CFTR converted an aberrant response in acidification (10%+ increase) to wild-type (25%+ decrease). Thus treatment with corrector (10% glycerol) and the resulting increased expression of ΔF508-CFTR at the surface was detected by microphysiometry as a significant reversal from acidification to alkalization of pHo. These results suggest that CFTR activation as well as correction can be detected by carefully monitoring pHo and support findings in the field that extracellular pH acidification may impact the function of airway surface liquid in CF.  相似文献   

14.
Cystic Fibrosis (CF) is caused by mutations in the gene for CFTR, a cAMP-activated anion channel found in apical membranes of wet epithelia. Since CFTR is permeable to HCO 3 and changes in extracellular fluid composition may contribute to CF lung disease, we investigated possible differences in extracellular pH (pHo) between CFTR-expressing and control cell lines. The Cytosensor™ Microphysiometer was used to study forskolin-stimulated extracellular acidification rates in CFTR-expressing and control mouse mammary epithelial (C127) and fibroblast (NIH/3T3) cell lines. Forskolin, which activates CFTR via raised cAMP, caused decreased extracellular acidification of CFTR-expressing NIH/3T3 and C127 cells by 15–35%. By contrast, forskolin caused increased extracellular acidification of control cells by 10–20%. Ionomycin, which may activate CFTR via PKC, also elicited this decreased extracellular acidification signal only in cells expressing CFTR. In control experiments, dideoxyforskolin had no effect on the acidification rates and osmotic stimuli were shown to equally stimulate all cell lines. These results suggest a role for CFTR in controlling pHo and complement recent evidence that HCO 3 dependent epithelial secretion may be reduced in amount and altered in composition in CF. Received: 20 June 2000/Revised: 13 November 2000  相似文献   

15.
The ubiquitous bacterium Pseudomonas aeruginosa frequently causes hospital-acquired infections. P. aeruginosa also infects the lungs of cystic fibrosis (CF) patients and secretes N-(3-oxo-dodecanoyl)-S-homoserine lactone (3O-C12) to regulate bacterial gene expression critical for P. aeruginosa persistence. In addition to its effects as a quorum-sensing gene regulator in P. aeruginosa, 3O-C12 elicits cross-kingdom effects on host cell signaling leading to both pro- or anti-inflammatory effects. We find that in addition to these slow effects mediated through changes in gene expression, 3O-C12 also rapidly increases Cl and fluid secretion in the cystic fibrosis transmembrane regulator (CFTR)-expressing airway epithelia. 3O-C12 does not stimulate Cl secretion in CF cells, suggesting that lactone activates the CFTR. 3O-C12 also appears to directly activate the inositol trisphosphate receptor and release Ca2+ from the endoplasmic reticulum (ER), lowering [Ca2+] in the ER and thereby activating the Ca2+-sensitive ER signaling protein STIM1. 3O-C12 increases cytosolic [Ca2+] and, strikingly, also cytosolic [cAMP], the known activator of CFTR. Activation of Cl current by 3O-C12 was inhibited by a cAMP antagonist and increased by a phosphodiesterase inhibitor. Finally, a Ca2+ buffer that lowers [Ca2+] in the ER similar to the effect of 3O-C12 also increased cAMP and ICl. The results suggest that 3O-C12 stimulates CFTR-dependent Cl and fluid secretion in airway epithelial cells by activating the inositol trisphosphate receptor, thus lowering [Ca2+] in the ER and activating STIM1 and store-operated cAMP production. In CF airways, where CFTR is absent, the adaptive ability to rapidly flush the bacteria away is compromised because the lactone cannot affect Cl and fluid secretion.  相似文献   

16.

Background

Cystic Fibrosis (CF) is caused by ∼1,900 mutations in the CF transmembrane conductance regulator (CFTR) gene encoding for a cAMP-regulated chloride (Cl) channel expressed in several epithelia. Clinical features are dominated by respiratory symptoms, but there is variable organ involvement thus causing diagnostic dilemmas, especially for non-classic cases.

Methodology/Principal Findings

To further establish measurement of CFTR function as a sensitive and robust biomarker for diagnosis and prognosis of CF, we herein assessed cholinergic and cAMP-CFTR-mediated Cl secretion in 524 freshly excised rectal biopsies from 118 individuals, including patients with confirmed CF clinical diagnosis (n = 51), individuals with clinical CF suspicion (n = 49) and age-matched non-CF controls (n = 18). Conclusive measurements were obtained for 96% of cases. Patients with “Classic CF”, presenting earlier onset of symptoms, pancreatic insufficiency, severe lung disease and low Shwachman-Kulczycki scores were found to lack CFTR-mediated Cl secretion (<5%). Individuals with milder CF disease presented residual CFTR-mediated Cl secretion (10–57%) and non-CF controls show CFTR-mediated Cl secretion ≥30–35% and data evidenced good correlations with various clinical parameters. Finally, comparison of these values with those in “CF suspicion” individuals allowed to confirm CF in 16/49 individuals (33%) and exclude it in 28/49 (57%). Statistical discriminant analyses showed that colonic measurements of CFTR-mediated Cl secretion are the best discriminator among Classic/Non-Classic CF and non-CF groups.

Conclusions/Significance

Determination of CFTR-mediated Cl secretion in rectal biopsies is demonstrated here to be a sensitive, reproducible and robust predictive biomarker for the diagnosis and prognosis of CF. The method also has very high potential for (pre-)clinical trials of CFTR-modulator therapies.  相似文献   

17.
Cystic fibrosis (CF) patients often have reduced mass and strength of skeletal muscles, including the diaphragm, the primary muscle of respiration. Here we show that lack of the CF transmembrane conductance regulator (CFTR) plays an intrinsic role in skeletal muscle atrophy and dysfunction. In normal murine and human skeletal muscle, CFTR is expressed and co-localized with sarcoplasmic reticulum-associated proteins. CFTR–deficient myotubes exhibit augmented levels of intracellular calcium after KCl-induced depolarization, and exposure to an inflammatory milieu induces excessive NF-kB translocation and cytokine/chemokine gene upregulation. To determine the effects of an inflammatory environment in vivo, sustained pulmonary infection with Pseudomonas aeruginosa was produced, and under these conditions diaphragmatic force-generating capacity is selectively reduced in Cftr−/− mice. This is associated with exaggerated pro-inflammatory cytokine expression as well as upregulation of the E3 ubiquitin ligases (MuRF1 and atrogin-1) involved in muscle atrophy. We conclude that an intrinsic alteration of function is linked to the absence of CFTR from skeletal muscle, leading to dysregulated calcium homeostasis, augmented inflammatory/atrophic gene expression signatures, and increased diaphragmatic weakness during pulmonary infection. These findings reveal a previously unrecognized role for CFTR in skeletal muscle function that may have major implications for the pathogenesis of cachexia and respiratory muscle pump failure in CF patients.  相似文献   

18.
Light-induced acidification by the cyanobacterium Anabaena variabilis is biphasic (a fast phase I and slow phase II) and shown to be sodium-dependent with an optimum concentration of 40 to 60 millimolar Na+. Cells grown under low CO2 concentrations at pH 9 (i.e. mainly HCO3 present in the medium) exhibited the slow phase II of proton efflux only, while cells grown under low CO2 concentrations at pH 6.3 (i.e. CO2 and HCO3 present) exhibited both phases. Light-induced proton release of phase I was dependent on inorganic carbon available in the bathing medium with an apparent Km for CO2 of 20 to 70 micromolar. As was concluded from the CO2 dependence of acidification measured at different pH of the bathing medium, bicarbonate inhibited phase-I acidification noncompetetively. Acidification was inhibited by acetazolamide, an inhibitor of carbonic anhydrase. Apparently, acidification of phase I is due to a light-dependent uptake of CO2 being converted to HCO3 by a carbonic anhydrase-like function of the HCO3-transport system (M Volokita, D Zenvirth, A Kaplan, L Reinhold 1984 Plant Physiol 76: 599-602) before or during entering the cell, thus releasing one proton per CO2 converted to HCO3.  相似文献   

19.

Background

The identification of strategies to improve mutant CFTR function remains a key priority in the development of new treatments for cystic fibrosis (CF). Previous studies demonstrated that the K+ channel opener 1-ethyl-2-benzimidazolone (1-EBIO) potentiates CFTR-mediated Cl secretion in cultured cells and mouse colon. However, the effects of 1-EBIO on wild-type and mutant CFTR function in native human colonic tissues remain unknown.

Methods

We studied the effects of 1-EBIO on CFTR-mediated Cl secretion in rectal biopsies from 47 CF patients carrying a wide spectrum of CFTR mutations and 57 age-matched controls. Rectal tissues were mounted in perfused micro-Ussing chambers and the effects of 1-EBIO were compared in control tissues, CF tissues expressing residual CFTR function and CF tissues with no detectable Cl secretion.

Results

Studies in control tissues demonstrate that 1-EBIO activated CFTR-mediated Cl secretion in the absence of cAMP-mediated stimulation and potentiated cAMP-induced Cl secretion by 39.2±6.7% (P<0.001) via activation of basolateral Ca2+-activated and clotrimazole-sensitive KCNN4 K+ channels. In CF specimens, 1-EBIO potentiated cAMP-induced Cl secretion in tissues with residual CFTR function by 44.4±11.5% (P<0.001), but had no effect on tissues lacking CFTR-mediated Clconductance.

Conclusions

We conclude that 1-EBIO potentiates Clsecretion in native CF tissues expressing CFTR mutants with residual Cl channel function by activation of basolateral KCNN4 K+ channels that increase the driving force for luminal Cl exit. This mechanism may augment effects of CFTR correctors and potentiators that increase the number and/or activity of mutant CFTR channels at the cell surface and suggests KCNN4 as a therapeutic target for CF.  相似文献   

20.
Cystic fibrosis (CF) is a common and deadly inherited disease, caused by mutations in the CFTR gene that encodes a cAMP-activated chloride channel. One outstanding manifestation of the disease is the persistent bacterial infection and inflammation in the lung, which claims over 90% of CF mortality. It has been debated whether neutrophil-mediated phagocytic innate immunity has any intrinsic defect that contributes to the host lung defense failure. Here we compared phagosomal CFTR targeting, hypochlorous acid (HOCl) production, and microbial killing of the neutrophils from myeloid Cftr-inactivated (Myeloid-Cftr−/−) mice and the non-inactivated control (Cftrfl10) mice. We found that the mutant CFTR that lacked Exon-10 failed to target to the neutrophil phagosomes. This dysfunction resulted in impaired intraphagosomal HOCl production and neutrophil microbial killing. In vivo lung infection with a lethal dose of Pseudomonas aeruginosa caused significantly higher mortality in the myeloid CF mice than in the controls. The myeloid-Cftr−/− lungs were deficient in bacterial clearance, and had sustained neutrophilic inflammation and stalled transition from early to late immunity. These manifestations recapitulated the symptoms of human CF lungs. The data altogether suggest that myeloid CFTR expression is critical to normal host lung defense. CFTR dysfunction in neutrophils compromises the phagocytic innate immunity, which may predispose CF lungs to infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号