首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of the accessory molecule ICAM-1 in activation of subpopulations of human T cells was examined using the bacterial superantigen staphylococcal enterotoxin A (SEA) as a MHC class II and TCR-dependent polyclonal T cell activator. Human T cells responded with different sensitivity to SEA when presented on mouse accessory cells expressing a human transfected MHC class II gene product. Mouse L cells cotransfected with both MHC class II (DR2A or DR7) and ICAM-1-stimulated T cells at 100-fold lower concentrations of SEA as compared to the single transfected cells. mAb reacting with the CD11a, CD18, or ICAM-1 molecules efficiently inhibited T cell activation with the cotransfected HLA-DR2A/ICAM-1 cell but did not influence T cell activation with the HLA-DR2A single transfected cell. Analysis of the ICAM-1 requirement on CD4+ memory (CD4+45RO+) and naive (CD4+45RA+) T cells revealed that CD4+45RA+ naive Th cells were hyporesponsive to SEA-induced activation with the HLA-DR2A single transfectant. However, cotransfection of ICAM-1 enabled these cells to respond to low doses of SEA implicating that they are more dependent on accessory molecules than the CD4+45RO+ cells. rICAM-1 immobilized on a plastic surface, was able to strongly costimulate SEA-induced T cell activation with the HLA-DR2A single transfectant, suggesting that costimulatory signals mediated to the T cells through LFA-1 can be delivered physically separated from the TCR signal. CD4+45RO+ memory and CD4+45RA+ naive Th cells apparently differ in their capacities to be activated by SEA bound to HLA-DR. Although the TCR molecule densities are similar in these two subsets, costimulation with ICAM-1 is required for activation of the CD4+45RA+, but not the CD4+45RO+ T cell subset at 1 to 10,000 ng/ml concentrations of SEA. This observation indicates different activation thresholds of naive and memory Th cells when triggering the TCR over a wide dose interval of superantigen.  相似文献   

2.
The present study was designed to examine the potential involvement of calcium ions as second messengers in the mediation of the staphylococcal enterotoxin A (SEA)/MHC class II-induced activation of human monocytes. Treatment of monocytes with a monomeric form of SEA failed to induce detectable changes in the level of intracellular calcium in either monocytes or THP-1 cells. However, cross-linking of SEA with biotin-avidin induced a rapid and transient increase in calcium levels in monocytes and in INF-gamma-treated THP-1 cells. This artificial cross-linking system was reproduced by natural physiologic ligands expressed on the surface of T lymphocytes. Delayed, transient, and concentration (cell as well as toxin)-dependent increases in the cytoplasmic level of free calcium in SEA-treated monocytes were observed upon the addition of autologous resting T cells or purified CD4+ cells, but not of CD8+ cells, B cells, or neutrophils. Antibodies against MHC class II Ag, TCR/CD3, and CD4 molecules inhibited the SEA-dependent interaction between monocytes and T cells as indicated by significant decreases in the rise of calcium levels observed in monocytes. Anti-CD8 and anti-class I antibodies did not affect the interaction between the monocytes and the T cells and failed to alter the calcium response. Taken together, these results suggest that the SEA-induced, T cell-dependent calcium mobilization in monocytes requires physical interactions between SEA-MHC class II, TCR/CD3, and CD4 molecules. The ability to mediate a T cell-dependent calcium increase in monocytes was shared by several enterotoxins including staphylococcal enterotoxin B and toxic shock syndrome toxin-1. The characteristics of the SEA-mediated calcium mobilization in monocytes strongly support the hypothesis that this response is an integral part of the signal transducing machinery linked to MHC class II molecules.  相似文献   

3.
The binding of bacterial superantigens (SAgs) is profoundly affected by the nature of the MHC class II-associated antigenic peptide. It was proposed that this limitation in the density of SAgs displayed at the surface of APCs is important for efficient TCR serial triggering as well as for preventing apoptosis of the responding T lymphocytes. Here, we have addressed quantitatively the size of this SAg-receptive pool of HLA-DR molecules that are available to bind and present staphylococcal enterotoxin A (SEA) at the surface of B lymphocytes. Our binding curves, depletion experiments, and quantitative immunoprecipitations show that about half the HLA-DR class II molecules on B cells are refractory to SEA binding. Yet, as compared with typical nominal Ags, an unusually high amount of class II-SAg complexes can be presented to T cells. This characteristic appears to be necessary for SAg-induced T cell apoptosis. When <0.3% of the total cell surface MHC class II molecules are occupied by SEA, T cells undergo a normal sequence of early activation events. However, presentation of a ligand density beyond this threshold results in T cell activation that is readily aborted by apoptosis but only after a few cell divisions. Thus, we confirm the existence of MHC class II subsets that are structurally unable to present SEA and provide a quantitative framework to account for the ability of bacterial SAgs to induce peripheral activation vs tolerance in the host.  相似文献   

4.
Streptococcal superantigen (SSA) is a 28,000 Mr toxin originally isolated from a pathogenic strain of Streptococcus pyogenes that has 60% sequence identity with staphylococcal enterotoxin B (SEB). SSA and SEB, however, do not compete for binding on the surfaces of cells expressing MHC class II molecules. This behavior had been ascribed to SSA and SEB binding to distinct sites on, or different subsets of, HLA-DR molecules. Here we demonstrate that SSA binds predominantly to HLA-DQ, rather than to HLA-DR molecules, and present the crystal structure of SSA at 1.85 A resolution. These data provide a structural basis for interpreting the interaction of SSA with HLA-DQ molecules as well as a foundation for understanding bacterial superantigen affinities for distinct MHC isotypes.  相似文献   

5.
Staphylococcal enterotoxin H (SEH) has been described as a superantigen by sequence homology with the SEA subfamily and briefly characterized for its in vivo activity. In this study, we demonstrate that SEH is a potent T cell mitogen and inducer of T cell cytotoxicity that possesses unique MHC class II-binding properties. The apparent affinity of SEH for MHC class II molecules is the highest affinity ever measured for a staphylococcal enterotoxin (Bmax1/2 approximately 0.5 nM for MHC class II expressed on Raji cells). An excess of SEA or SEAF47A, which has reduced binding to the MHC class II alpha-chain, is able to compete for binding of SEH to MHC class II, indicating an overlap in the binding sites at the MHC class II beta-chain. The binding of SEH to MHC class II is like SEA, SED, and SEE dependent on the presence of zinc ions. However, SEH, in contrast to SEA, binds to the alanine-substituted DR1 molecule, betaH81A, believed to have impaired zinc-bridging capacity. Furthermore, alanine substitution of residues D167, D203, and D208 in SEH decreases the affinity for MHC class II as well as its in vitro potency. Together, this indicates an MHC class II binding site on SEH with a different topology as compared with SEA. These unique binding properties will be beneficial for SEH to overcome MHC class II isotype variability and polymorphism as well as to allow an effective presentation on APCs also at low MHC class II surface expression.  相似文献   

6.
Staphylococcal toxins bind to different sites on HLA-DR   总被引:5,自引:0,他引:5  
Staphylococcal enterotoxins (SE) and toxic shock syndrome toxin 1 (TSST-1) bind to MHC class II molecules and the toxin-class II complexes induce proliferation of T cells bearing specific V beta sequences. We have previously reported that these toxins display varying binding affinities for HLA-DR1. We now investigated whether these differences simply reflected differences in binding affinity for a single class II binding site or, at least in part, the engagement of different binding sites on the HLA-DR complex. Through competitive binding studies we show that SEB and TSST-1, which are not closely related by their amino acid sequences, bind to two different sites on HLA-DR. Both of these sites are also occupied by staphylococcal enterotoxin A (SEA), enterotoxin D (SED), and enterotoxin E (SEE) which exhibit more than 70% amino acid sequence homology. SEB and TSST-1 failed to inhibit SEA binding to HLA-DR. These studies suggest that there may be three distinct, although perhaps overlapping, binding sites on HLA-DR for these toxins. Further, although SED and SEE are similar to SEA in structure, and appear to bind the same sites on HLA-DR as SEA, they displayed significantly lower binding affinities. T cell proliferative responses to SED required a higher concentration of the toxin than SEA, probably reflecting its lower binding affinity. SEE, however, elicited T cell responses at very low concentrations, similar to SEA, despite its much lower binding affinity. Therefore, although the affinities of these toxins to MHC class II molecules appear to significantly influence the T cell responses, the effective recognition of the toxin-class II complex by the TCR may also contribute to such responses.  相似文献   

7.
The bacterial superantigen staphylococcal enterotoxin A (SEA) is an extremely potent activator of T lymphocytes when presented on MHC class II antigens. In order to induce T lymphocytes to reject a tumor, we substituted the specificity of SEA for MHC class II molecules with specificity for tumor cells by combining SEA with a MAb recognizing colon carcinomas. Chemical conjugates or recombinant fusion proteins of the MAb C215 and SEA retained excellent antigen binding properties whereas the binding to MHC class II was markedly reduced. The hybrid proteins directed SEA responsive T cells to tumors with specificity determined by the specificity of the MAb. Significant tumor cell killing was obtained at picomolar concentrations of the hybrid proteins and was the result of direct cell mediated by cytotoxicity as well as production of tumoricidal cytokines by T cells. Targeting of superantigens represents a novel approach to specific immunomodulation and deserves further study as a potential therapy for malignant disease.  相似文献   

8.
Binding of staphylococcal enterotoxin A (SEA) to MHC class II encoded proteins is a prerequisite for its subsequent activation of a large fraction of T lymphocytes through interaction with variable segments of the TCR-beta chain. We cloned SEA in Escherichia coli and produced four recombinant fragments covering both the N- and C-terminal regions. These fragments were used to analyze the interaction between SEA and the human MHC class II products. A C-terminal fragment of SEA, representing amino acids 107-233 bound to HLA-DR and HLA-DP but did not activate T cells. The three other fragments (amino acids 1-125, 1-179 and 126-233) neither bound to MHC class II Ag nor activated T cells. SEA apparently bind to HLA-DR and HLA-DP through its C-terminal part, whereas T cell activation is dependent on additional parts of the protein.  相似文献   

9.
Monoclonal antibodies have a potential for cancer therapy that may be further improved by linking them to effector molecules such as superantigens. Tumor targeting of a superantigen leads to a powerful T cell attack against the tumour tissue. Encouraging results have been observed preclinically and in patients using the superantigen staphylococcal enterotoxin A, SEA. To further improve the concept, we have reduced the reactivity to antibodies against superantigens, which is found in all individuals. Using epitope mapping, antibody binding sites in SEA and SEE were found around their MHC class II binding sites. These epitopes were removed genetically and a large number of synthetic superantigens were produced in an iterative engineering procedure. Properties such as decreased binding to anti-SEA as well as higher selectivity to induce killing of tumour cells compared to MHC class II expressing cells, were sequentially improved. The lysine residues 79, 81, 83 and 84 are all part of major antigenic epitopes, Gln204, Lys74, Asp75 and Asn78 are important for optimal killing of tumour cells while Asp45 affects binding to MHC class II. The production properties were optimised by further engineering and a novel synthetic superantigen, SEA/E-120, was designed. It is recognised by approximately 15% of human anti-SEA antibodies and have more potent tumour cell killing properties than SEA. SEA/E-120 is likely to have a low toxicity due to its reduced capacity to mediate killing of MHC class II expressing cells. It is produced as a Fab fusion protein at approximately 35 mg/l in Escherichia coli.  相似文献   

10.
The three-dimensional structure of a bacterial superantigen, Staphylococcus aureus enterotoxin H (SEH), bound to human major histocompatibility complex (MHC) class II (HLA-DR1) has been determined by X-ray crystallography to 2.6 A resolution (1HXY). The superantigen binds on top of HLA-DR1 in a completely different way from earlier co-crystallized superantigens from S.aureus. SEH interacts with high affinity through a zinc ion with the beta1 chain of HLA-DR1 and also with the peptide presented by HLA-DR1. The structure suggests that all superantigens interacting with MHC class II in a zinc-dependent manner present the superantigen in a common way. This suggests a new model for ternary complex formation with the T-cell receptor (TCR), in which a contact between the TCR and the MHC class II is unlikely.  相似文献   

11.
Summary Activation of lymphocytes by interleukin-2 (IL-2) induces lymphokine-activated killer (LAK) cells that show promising effects on tumour growth in clinical trials. We examined the effect of the superantigen staphylococcal enterotoxin A (SEA) on anti-tumour activity of freshly prepared human lymphocytes. Picomolar amounts of SEA rapidly induced cytotoxic activity against K562 and Raji cells as well as some natural-killer(NK)-resistant tumour cell lines. Cytotoxic activity was not dependent on target cell expression of either major histocompatibility complex (MHC) class I or II antigens as shown using mutated cell lines. Cell-sorting experiments showed that the activity was expressed by NK (CD5CD56+) as well as T (CD5+) cells, although the former contained the majority of cytotoxic activity. NK cells could not be directly activated by SEA. In contrast, SEA activated purified T cells to the same extent as in bulk cultures. It is suggested that SEA activation of NK cells is secondary to that brought about by lymphokines produced by T cells. Activation of LAK cells with SEA was comparable in magnitude as well as target cell spectrum to that of IL-2. In addition to the LAK-like cytotoxic activity induced by SEA, a superimposed cytotoxicity towards target cells expressing MHC class II antigens coated with SEA was observed. This staphylococcal-enterotoxin-dependent cell-mediated cytotoxicity (SDCC) was exclusively mediated by T cells. It is well established that MHC class II antigens function as receptors for staphylococcal enterotoxins on mammalian cells and that the complex between MHC class II antigen and — SEA apparently functions as a target structure for activated T cells with target cell lysis as a consequence. Activation of T lymphocytes with IL-2 also resulted in the capability to mediate SDCC. Staphylococcal enterotoxins represent a novel way of inducing anti-tumour activity in human lymphocytes, which could be of value in therapeutic applications.  相似文献   

12.
Ligands binding to Toll-like receptor (TLR), interleukin 1 receptor (IL-1R), or IFN-γR1 are known to trigger MyD88-mediated signaling, which activates pro-inflammatory cytokine responses. Recently we reported that staphylococcal enterotoxins (SEA or SEB), which bind to MHC class II molecules on APCs and cross link T cell receptors, activate MyD88- mediated pro-inflammatory cytokine responses. We also reported that MyD88(-/-) mice were resistant to SE- induced toxic shock and had reduced levels of serum cytokines. In this study, we investigated whether MHC class II- SE interaction by itself is sufficient to activate MyD88 in MHC class II(+) cells and induce downstream pro-inflammatory signaling and production of cytokines such as TNF-α and IL-1β. Here we report that human monocytes treated with SEA, SEB, or anti-MHC class II monoclonal antibodies up regulated MyD88 expression, induced activation of NF-kB, and increased expression of IL-1R1 accessory protein, TNF-α and IL-1β. MyD88 immunoprecipitated from cell extracts after SEB stimulation showed a greater proportion of MyD88 phosphorylation compared to unstimulated cells indicating that MyD88 was a component of intracellular signaling. MyD88 downstream proteins such as IRAK4 and TRAF6 were also up regulated in monocytes after SEB stimulation. In addition to monocytes, primary B cells up regulated MyD88 in response to SEA or SEB stimulation. Importantly, in contrast to primary B cells, MHC class II deficient T2 cells had no change of MyD88 after SEA or SEB stimulation, whereas MHC class II-independent activation of MyD88 was elicited by CpG or LPS. Collectively, these results demonstrate that MHC class II utilizes a MyD88-mediated signaling mechanism when in contact with ligands such as SEs to induce pro-inflammatory cytokines.  相似文献   

13.
Although the biological properties of staphylococcal enterotoxin A (SEA) have been well characterized, structural insights into the interaction between SEA and major histocompatibilty complex (MHC) class II have only been obtained by modeling. Here, the crystal structure of the D227A variant of SEA in complex with human MHC class II has been determined by X-ray crystallography. SEA(D227A) exclusively binds with its N-terminal domain to the alpha chain of HLA-DR1. The ability of one SEA molecule to crosslink two MHC molecules was modeled. It shows that this SEA molecule cannot interact with the T cell receptor (TCR) while a second SEA molecule interacts with MHC. Because of its relatively low toxicity, the D227A variant of SEA is used in tumor therapy.  相似文献   

14.
Staphylococcus enterotoxins and toxic shock syndrome toxin 1 are members of a family of exoproteins that are produced by staphylococci and bind specifically to MHC class II molecules. Upon binding to MHC class II molecules, these exoproteins are potent stimulators of T cell proliferation via interaction with specific TCR V-beta segments of both CD4+ and CD8+ T cells. These exoproteins also directly stimulate monocytes to secrete IL-1 and TNF-alpha. Furthermore, these exoproteins have a profound inhibitory effect on Ig production by PBMC. We examined the effects of Staphylococcus enterotoxin A (SEA) on proliferation and Ig production of highly purified human B cells. Our results demonstrated that the binding of SEA to MHC class II molecules on B cells does not alter their ability to proliferate in response to Staphylococcus aureus Cowan strain I (SAC) or to produce Ig in response to SAC plus rIL-2. In contrast, the anti-DR mAb L243 inhibited both B cell proliferation and Ig production. Unable to determine a direct effect of SEA on B cell function, we investigated whether the capacity of SEA to inhibit SAC-induced Ig production by PBMC was T cell-dependent. Our results demonstrated that in the presence of T cells, under appropriate conditions, SEA can either function as a nominal Ag for stimulation of B cell proliferation and Ig production or induce T cell-mediated suppression of Ig production. SEA-induced Ig production required T cell help, which was dependent on pretreatment of the T cells with irradiation or mitomycin C; Ig production was not induced by SEA in the absence of T cells or in the presence of untreated T cells. Furthermore, SEA inhibited Ig production in SAC-stimulated cultures of autologous B cells and untreated T cells; pretreatment of the T cells with irradiation or mitomycin C abrogated SEA-induced inhibition of Ig production. Thus, T cell suppression of SAC-induced Ig production was dependent on T cell proliferation. Similar results were observed with both SEA and toxic shock syndrome toxin 1.  相似文献   

15.
16.
Bacterial enterotoxin superantigens bind directly to HLA class II molecules (HLA-DR) expressed on both APC and activated human T cells, and simultaneously bind to certain V beta chains of the TCR. In this report, we compared early T cell signaling events in human alloantigen-stimulated T cells when activated by HLA-DR ligation through antibody cross-linking or by direct enterotoxin superantigen binding. Both types of stimuli induced tyrosine phosphorylation of phosphatidylinositol-specific phospholipase C gamma 1 (PLC gamma 1) and an increase in intracellular calcium concentration; however, superantigen-induced signaling was stronger than class II ligation alone. Antibody-mediated ligation of HLA-DR with CD3 resulted in augmented PLC gamma 1 activation and increased calcium mobilization, consistent with a mechanism of superantigen activity through a combination of class II and CD3/Ti signals. In addition, down-modulation of CD3 receptors with antibody demonstrated that superantigen-induced signaling events were CD3-dependent. Superantigen signaling was also class II-dependent, in that resting T cells were not responsive to direct enterotoxin stimulation. To address how early signal transducing activity correlated with T cell responsiveness, alloantigen-primed T cells were activated with immobilized class II-specific mAb or soluble superantigen. Both HLA-DR mAb-stimulated T cells and enterotoxin-treated T cells proliferated strongly in response to co-stimulation by a combination of CD28 receptor engagement and PMA addition. In addition, superantigen-induced growth was induced by CD28 receptor ligation with antibody or the B7 counter-receptor expressed on Chinese hamster ovary cells. Taken together, these results indicate that class II molecules expressed on activated T cells are directly coupled to the PLC gamma 1 signal transduction pathway, and that coligation of HLA-DR with CD3 augments T cell signaling comparable to that induced by enterotoxin superantigen. Thus, we suggest that superantigen-induced early signaling responses in activated T cells may be due in part to class II transmembrane signals induced when HLA-DR and V beta are ligated in cis.  相似文献   

17.
The function of MHC class II HLA-DR molecules expressed on a human B lymphoid progenitor cell line FL8.2.4.4 (abbreviated as FL4.4) was examined. FL4.4 cells expressed HLA-DR molecules and stimulation of the DR molecules by anti-DR mAb or by superantigen TSST-1 induced strong augmentation of homocytic aggregation and protein tyrosine phosphorylation in FL4.4 cells. Induced homocytic aggregation in FL4.4 consists both of LFA-1/ICAM-1-dependent and -independent pathways as revealed by mAb blocking experiments. Metabolic inhibitors, NaN3 and cytochalasin B, blocked the induced homocytic aggregation of FL4.4. Early mature Daudi B cell lines also showed a similar type of homocytic aggregation by stimulation with anti-DR mAb. Daudi cells are more sensitive to protein kinase inhibitors herbimycin A and H7 than FL4.4 cells in their blocking of induced homocytic aggregation, while W7 showed stronger inhibitory effects on FL4.4 cells than on Daudi cells. Western blotting analysis revealed that the stimulation of DR molecules induced protein tyrosine phosphorylation of 100-kDa, 90-kDa, 60-kDa and 55-kDa proteins in FL4.4 cells, while, in Daudi cells 110-kDa, 100-kDa and 80-kDa proteins were phosphorylated. These results suggest that different signaling pathways through class II molecules are employed depending on the maturational stage of B-cell differentiation.  相似文献   

18.
Eosinophils in tissues are often present in intimate contact with T cells in allergic and parasitic diseases. Resting eosinophils do not express MHC class II proteins or costimulatory B7 molecules and fail to induce proliferation of T cells to Ags. IL-5 and GM-CSF induce MHC class II and B7 expression on eosinophils and have been reported in some studies to induce eosinophils to present Ag to T cells. The cytokine IL-3, like IL-5 and GM-CSF, is a survival and activating factor for eosinophils and the IL-3 receptor shares with the IL-5 and GM-CSF receptors a common signal transducing beta-chain. IL-3-treated eosinophils expressed HLA-DR and B7.2, but not B7.1 on their surface and supported T cell proliferation in response to the superantigen toxic shock syndrome toxin 1, as well as the proliferation of HLA-DR-restricted tetanus toxoid (TT) and influenza hemagglutinin-specific T cell clones to antigenic peptides. This was inhibited by anti-B7.2 mAb. In contrast, IL-3-treated eosinophils were unable to present native TT Ag to either resting or TT-specific cloned T cells. In parallel experiments, eosinophils treated with IL-5 or GM-CSF were also found to present superantigen and antigenic peptides, but not native Ag, to T cells. These results suggest that eosinophils are deficient in Ag processing and that this deficiency is not overcome by cytokines that signal via the beta-chain. Nevertheless, our findings suggest that eosinophils activated by IL-3 may contribute to T cell activation in allergic and parasitic diseases by presenting superantigens and peptides to T cells.  相似文献   

19.
Ia antigen is a receptor for the superantigen staphylococcal enterotoxin A (SEA). Peptides I-A beta b(30-60), I-A beta b(50-70), I-A beta b(65-85), and I-A beta b(80-100) of the MHC class II antigen beta chain on mouse (H-2b) accessory cells were synthesized. Only I-A beta b(65-85) inhibited SEA binding to the mouse B-cell lymphoma line, A20 (H-2d) and the human Burkitt's lymphoma line, Raji (HLA-DR). The I-A beta b(65-85) sequence is a predicted alpha-helix along the hypothetical antigen binding cleft of the Ia molecule. I-A beta b(65-85) also directly and specifically bound both the intact SEA molecule and its Ia binding site, represented by the peptide SEA(1-45). The results suggest that I-A beta b region (65-85) is a necessary site for Ia molecular interaction with the superantigen SEA. Further, the data suggest that the same helical region of other Ia antigens binds SEA irrespective of haplotype and species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号