首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The whole-cell biocatalyst displaying Candida antarctica lipase B (CALB) on the yeast cell surface with α-agglutinin as the anchor protein was easy to handle and possessed high stability. The lyophilized CALB-displaying yeasts showed their original hydrolytic activity and were applied to an ester synthesis using ethanol and l-lactic acid as substrates. In water-saturated heptane, CALB-displaying yeasts catalyzed ethyl lactate synthesis. The synthesis efficiency increased depending on temperature and reached approximately 74% at 50°C. The amount of l-ethyl lactate increased gradually. l-Ethyl lactate synthesis stopped at 200 h and restarted after adding of l-lactic acid at 253 h. It indicated that CALB-displaying yeasts retained their synthetic activity under such reaction conditions. In addition, CALB-displaying yeasts were able to recognize l-lactic acid and d-lactic acid as substrates. l-Ethyl lactate was prepared from l-lactic acid and d-ethyl lactate was prepared from d-lactic acid using the same CALB-displaying whole-cell biocatalyst. These findings suggest that CALB-displaying yeasts can supply the enantiomeric lactic esters for preparation of useful and improved biopolymers of lactic acid.  相似文献   

2.
Immobilized Candida rugosa lipase was used for the synthesis of citronellyl laurate from citronellol and lauric acid. Screening of different types of support (Amberlite MB-1 and Celite) for immobilization of lipase and solvent (n-hexane, n-heptane, and iso-octane) and optimization of reaction conditions, such as catalyst loading, effect of substrates molar ratio and temperature, have been studied. The maximum enzyme activity was obtained at 310 K. The immobilized C. rugosa lipase onto Amberlite MB-1 support was found to be the best support with a conversion of 89% of citronellyl laurate ester in iso-octane compared to Celite 545. Deactivation of C. rugosa lipase at 313, 318 and 323 K were observed. Ordered bi bi mechanism with dead end complex of lauric acid was found to fit the initial rate data and the kinetic parameters were obtained by non-linear regression analysis.  相似文献   

3.
Butyl butyrate is an ester present in pineapple flavor, which is very important for the food and beverages industries. In this work, the optimization of the reaction of butyl butyrate synthesis catalyzed by the immobilized lipase Lipozyme TL‐IM was performed. n‐Hexane was selected as the most appropriate solvent. Other reaction parameters such as temperature, substrate molar ratio, biocatalyst content and added water, and their responses measured as yield, were evaluated using a fractional factorial design, followed by a central composite design (CCD) and response surface methodology. In the fractional design 24–1, the four variables were tested and temperature and biocatalyst content were statistically significant and then used for optimization on CCD. The optimal conditions for butyl butyrate synthesis were found to be 48°C; substrate molar ratio 3:1 (butanol:butyric acid); biocatalyst content of 40% of acid mass. Under these conditions, over 90% of yield was obtained in 2 h. Enzyme reuse was tested by washing the biocatalyst with n‐hexane or by direct reuse. The direct reuse produced a rapid decrease on enzyme activity, while washing with n‐hexane allowed reusing the enzyme for five reactions cycles keeping approximately 85% of its activity. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1416–1421, 2013  相似文献   

4.
The novel whole-cell biocatalyst Candida antarctica lipase B displaying-Pichia pastoris (Pp-CALB) is characterized by its low preparation cost and could be an alternative to the commercial immobilized Candida antarctica lipase B (CALB). This study addresses the feasibility of using Pp-CALB in large scale glucose fatty acid esters production. 1,2-O-Isopropylidene-α-d-glucofuranose (IpGlc) was used as the acyl acceptor to overcome the low solubility of glucose in an organic solvent and to avoid the addition of toxic co-solvents. IpGlc significantly improved the Pp-CALB catalyzing esterification efficiency when using long chain fatty acids as the acyl donor. Under the preferred operating conditions (50 °C, 40 g/L molecular sieve dosage and 200 rpm mixing intensity), 60.5% of IpGlc converted to 6-O-myristate-1, 2-O-isopropylidene-α-d-glucofuranose (C14-IpGlc) after a 96-h reaction in a 2-L stirred reactor. In a 5-L pilot scale test, Pp-CALB also showed a similar substrate conversion rate of 55.4% and excellent operational stability. After C14-IpGlc was collected, 70% trifluoroacetic acid was adopted to hydrolyze C14-IpGlc to myristate glucose ester (C14-Glc) with a high yield of 95.3%. In conclusion, Pp-CALB is a powerful biocatalyst available for industrial synthesis, and this study describes an applicable and economical process for the large scale production of myristate glucose ester.  相似文献   

5.
Candida antarctica lipase B (CALB) has been employed as an efficient catalyst in the preparation of many flavor esters. A CALB-displaying yeast whole-cell biocatalyst could be an attractive alternative to commercial immobilized CALB because of its low-cost preparation and high enzymatic activity. We investigated the potential application of CALB-displaying Pichia pastoris cells for the production of flavor esters. The optimal conditions for flavor esters synthesis by this biocatalyst were determined in 50-ml shake flasks. Under optimized conditions, the synthesis of 12 kinds flavor esters were scaled up in a 5-l batch stirred reactor. Among these, the mole conversions of 10 exceeded 95% after reactions for 4h. In addition, this biocatalyst showed good tolerance for high substrates concentration and excellent operational stability. Repeated use of the cells in 10 batches resulted in an activity loss of less than 10%. Thus, CALB-displaying P. pastoris whole cells are robust biocatalysts with potential commercial application in the large-scale production of flavor esters in non-aqueous media.  相似文献   

6.
Enzymic synthesis of fructose esters was studied under reduced pressure. Different acyl donors were tested, and immobilized Candida antarctica lipase was used as biocatalyst. Influences of pressure, nature of the acyl donor, molar ratio sugar/acyl donor were investigated. Pressure had the greatest influence. At 200 mbar, more than 90% of fructose was acylated compared to 50% under atmospheric pressure. This is explained by the evaporation of reaction by-product (methanol or water) that shifted the equilibrium. C. antarctica lipase catalyzed sugar ester synthesis very efficiently using rapeseed oil as acyl donor. Moreover, synthesis performed with an equimolar mixture of both substrates gave promising results. Although the reaction rate was slower than synthesis performed with an excess of fatty acid, fructose monooleate concentration was still high (44 g l−1 instead of 56 g l−1) and the residual acyl donor concentration was very low. Downstream processes for the recovery of pure fructose monooleate were simplified in this case.  相似文献   

7.
The methanolysis of soybean oil to produce a fatty acid methyl ester (ME, i.e., biodiesel fuel) was catalyzed by lipase-producing filamentous fungi immobilized on biomass support particles (BSPs) as a whole-cell biocatalyst in the presence of ionic liquids. We used four types of whole-cell biocatalysts: wild-type Rhizopus oryzae producing triacylglycerol lipase (w-ROL), recombinant Aspergillus oryzae expressing Fusarium heterosporum lipase (r-FHL), Candida antarctica lipase B (r-CALB), and mono- and diacylglycerol lipase from A. oryzae (r-mdlB). w-ROL gave the high yield of fatty acid methyl ester (ME) in ionic liquid [Emim][BF4] or [Bmim][BF4] biphasic systems following a 24 h reaction. While lipases are known to be severely deactivated by an excess amount of methanol (e.g. 1.5 Mequiv. of methanol against oil) in a conventional system, methanolysis successfully proceeded even with a methanol/oil ratio of 4 in the ionic liquid biphasic system, where the ionic liquids would work as a reservoir of methanol to suppress the enzyme deactivation. When only w-ROL was used as a biocatalyst for methanolysis, unreacted mono-glyceride remained due to the 1,3-positional specificity of R. oryzae lipase. High ME conversion was attained by the combined use of two types of whole-cell biocatalysts, w-ROL and r-mdlB. In a stability test, the activity of w-ROL was reduced to one-third of its original value after incubation in [Bmim][BF4] for 72 h. The stability of w-ROL in [Bmim][BF4] was greatly enhanced by cross-linking the biocatalyst with glutaraldehyde. The present study demonstrated that ionic liquids are promising candidates for use as the second solvent in biodiesel fuel production by whole-cell biocatalysts.  相似文献   

8.
Lipase-catalyzed synthesis of fatty acid sugar esters through direct esterification was performed in 2-methyl 2-butanol as solvent. Fructose and saturated fatty acids were used as substrates and the reaction was catalyzed by immobilized Candida antarctica lipase. The effect of the initial fructose/acyl donor molar ratio and the carbon-chain length of the acyl donor as well as their reciprocal interactions on the reaction performance were investigated. For this purpose, an experimental design taking into account variations of the molar ratio (from 1:1 to 1:5) and the carbon-chain length of the fatty acid (from C8 to C18) was employed. Statistical analysis of the data indicated that the two factors as well as their interactions had significant effects on the sugar esters synthesis. The obtained results showed that whatever the molar ratio used, the highest concentration (73 g l−1), fructose and fatty acid conversion yields (100% and 80%, respectively) and initial reaction rate (40 g l−1 h−1) were reached when using the C18 fatty acid as acyl donor. Low molar ratios gave the best fatty acid conversion yields and initial reaction rates, whereas the best total sugar ester concentrations and fructose conversion yields were obtained for high molar ratios.  相似文献   

9.
The influence of water activity and water content was investigated with farnesyl laurate synthesis catalyzed by Lipozyme RM IM. Lipozyme RM IM activity depended strongly on initial water activity value. The best results were achieved for a reaction medium with an initial water activity of 0.11 since it gives the best conversion value of 96.80%. The rate constants obtained in the kinetics study using Ping-Pong-Bi-Bi and Ordered-Bi-Bi mechanisms with dead-end complex inhibition of lauric acid were compared. The corresponding parameters were found to obey the Ordered-Bi-Bi mechanism with dead-end complex inhibition of lauric acid. Kinetic parameters were calculated based on this model as follows: V max = 5.80 mmol l−1 min−1 g enzyme−1, K m,A = 0.70 mmol l−1 g enzyme−1, K m,B = 115.48 mmol l−1 g enzyme−1, K i = 11.25 mmol l−1 g enzyme−1. The optimum conditions for the esterification of farnesol with lauric acid in a continuous packed bed reactor were found as the following: 18.18 cm packed bed height and 0.9 ml/min substrate flow rate. The optimum molar conversion of lauric acid to farnesyl laurate was 98.07±0.82%. The effect of mass transfer in the packed bed reactor has also been studied using two models for cases of reaction limited and mass transfer limited. A very good agreement between the mass transfer limited model and the experimental data obtained indicating that the esterification in a packed bed reactor was mass transfer limited.  相似文献   

10.
Recombinant Pichia pastoris expressing ω-transaminase (TA) was used as a whole-cell biocatalyst to kinetically resolve α-methylbenzylamine (MBA). To overcome product inhibition of ω-TA by acetophenone (deaminated product of α-MBA), the reaction condition of endogenous oxidoreductases, which can catalyze the reduction of acetophenone into non-inhibitory 1-phenylethanol, was optimized. When the whole-cell reaction was carried out using recombintat P. pastoris in 100 mM Tris/HCl buffer (pH 9.0) containing 2.5% glucose and 1% methanol, 100 mM α-MBA was successfully resolved to (R)-α-MBA (> 99% ee) at a conversion of 52.2%.  相似文献   

11.
《Process Biochemistry》2007,42(9):1362-1366
Hexyl laurate, a medium-chain ester carried about fruity flavor, is primarily used in personal care formulations as an important emollient for cosmetic applications. On the basis of the hexyl laurate could be successfully synthesized by lipase within a batch system in our previous report. This study aimed to develop an optimal continuous procedure of lipase-catalyzed hexyl laurate synthesis in a packed-bed bioreactor to investigate the possibility of large-scale production further. The ability of lipase from Rhizomucor miehei (Lipozyme IM-77) to catalyze the direct-esterification of 1-hexanol and lauric acid in n-hexane was investigated. Response surface methodology (RSM) and 3-level-3-factor fractional factorial design were employed to evaluate the effects of synthesis parameters, such as reaction temperature (35–55 °C), mixture flow rate (1.5–4.5 mL/min) and substrate molar ratio 1-hexanol to lauric acid (1:1–1:3) on production rate (μmol/min) of hexyl laurate by direct-esterification. Based on the analysis of ridge max, the optimum synthesis conditions for hexyl laurate were as follows: 45 °C of reaction temperature, substrate molar ratio 1:2 and reaction flow rate 4.5 mL/min. The optimum predicted production rate was 435.6 ± 0.9 μmol/min and the actual value was 437.6 ± 0.4 μmol/min.  相似文献   

12.
利用表面展示南极假丝酵母脂肪酶B(Candida antarctica lipase B,CALB)的毕赤酵母细胞为全细胞催化剂,以葡萄糖为酰基受体,月桂酸为酰基供体,在非水相体系中催化合成糖酯。用硅胶柱层析对产物进行初提,再用制备液相色谱进一步分离纯化,并用高效液相色谱-质谱鉴定纯品性质。对该酶法合成糖脂反应体系进行了优化,其中考察了有机溶剂种类、复合溶剂体系中二甲基亚砜(DMSO)体积百分比、酶量、底物摩尔比、水活度和温度等几个影响酯化反应的因素。结果表明:在5mL反应体系中,以叔戊醇/二甲基亚砜(DMSO30%,V/V)为反应介质,添加初始水活度为0.11的全细胞催化剂0.5g,葡萄糖0.5mmol/L,月桂酸1.0mmol/L,60°C下反应72h后,葡萄糖月桂酸单酯的转化率达到48.7%。  相似文献   

13.
We isolated the lipase B from Candida antarctica CBS 6678 (CALB CBS6678) and successfully constructed CALB-displaying yeast whole-cell biocatalysts using the Flo1p short (FS) anchor system. For the display of CALB on a yeast cell surface, the newly isolated CALB CBS6678 exhibited higher hydrolytic and ester synthesis activities than the well-known CALB, which is registered in GenBank (Z30645). A protease accessibility assay using papain as a protease showed that a large part of CALB, approximately 75%, was localized on an easily accessible part of the yeast cell surface. A comparison of the lipase hydrolytic activities of yeast whole cells displaying only mature CALB (CALB) and those displaying mature CALB with a Pro region (ProCALB) revealed that mature CALB is preferable for yeast cell surface display using the Flo1p anchor system. Lyophilized yeast whole cells displaying CALB were applied to an ester synthesis reaction at 60°C using adipic acid and n-butanol as substrates. The amount of dibutyl adipate (DBA) produced increased with the reaction time until 144 h. This indicated that CALB displayed on the yeast cell surface retained activity under the reaction conditions.  相似文献   

14.
Erythorbyl laurate was continuously synthesized by esterification in a packed‐bed enzyme reactor with immobilized lipase from Candida antarctica. Response surface methodology based on a five‐level three‐factor central composite design was adopted to optimize conditions for the enzymatic esterification. The reaction variables, such as reaction temperature (10–70°C), substrate molar ratio ([lauric acid]/[erythorbic acid], 5–15), and residence time (8–40 min) were evaluated and their optimum conditions were found to be 56.2°C, 14.3, and 24.2 min, respectively. Under the optimum conditions, the molar conversion yield was 83.4%, which was not significantly different (P < 0.05) from the value predicted (84.4%). Especially, continuous water removal by adsorption on an ion‐exchange resin in a packed‐bed enzyme reactor improved operational stability, resulting in prolongation of half‐life (2.02 times longer compared to the control without water‐removal system). Furthermore, in the case of batch‐type reactor, it exhibited significant increase in initial velocity of molar conversion from 1.58% to 2.04%/min. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:882–889, 2013  相似文献   

15.
The enzymatic process presents an advantage of producing specified phospholipids that rarely exist in nature. In this study, we investigated the regiospecific modification of phosphatidylcholine (PC) in the sn-1 position using immobilized Rhizopus oryzae. In a reaction mixture containing egg yolk PC and exogenous lauric acid (LA) in n-hexane, lipase-producing R. oryzae cells immobilized within biomass support particles (BSPs) showed a much higher transesterification activity than lipase powders. To improve the product yield, several parameters including substrate ratio and reaction time were investigated, resulting in the incorporation of 44.2% LA into the product PC after a 48-h reaction. The analysis of the molecular structure showed that a large proportion of exogenous LA (>90%) was incorporated in the sn-1 position of the enzymatically modified PC. Moreover, the BSP-immobilized R. oryzae maintained its activity for more than 12 batch cycles. The presented results, therefore, suggest the applicability of BSP-immobilized R. oryzae as a whole-cell biocatalyst for the regiospecific modification of phospholipids.  相似文献   

16.
从南极假丝酵母(Candida antarctica)基因组克隆得到南极假丝酵母脂肪酶B(Candida antarctica Lipase B, CALB)全基因片段, 利用连接肽celA Linker将CALB与酿酒酵母细胞表面展示蛋白a-凝集素的C端连接融合, 构建表面展示载体pICAS-celAL-CALB, 转化酵母后获得重组酵母菌Saccharomyces cerevisiae pICAS-celAL-CALB。该重组酵母菌经葡萄糖诱导表达及分析, 表明CALB已在酿酒酵母细胞表面成功展示, 水解活力达26.26 u/(g·dry cell)。重组酵母菌经冻干能有效地实现在非水相中全细胞催化己酸和乙醇酯化合成己酸乙酯。反应物己酸与乙醇的摩尔比为1:1.25, 己酸乙酯的产率为98.0%, 具有较好的操作稳定性。  相似文献   

17.
An enantioselective transesterification in non-aqueous organic solvent was developed by utilizing a lipase-displaying yeast whole cell biocatalyst constructed in our previous study. As a model reaction, optical resolution of (RS)-1-phenylethanol, which serves as one of chiral building blocks, was carried out by enantioselective transesterification with vinyl acetate. Recombinant Rhizopus oryzae lipase displayed on the yeast cell surface retained its activity in hexane, heptane, cyclohexane and octane. The effective amount of whole-cell biocatalyst in the reaction mixture was 10 mg/ml solvent. In a reaction mixture incubated for 36 h with molecular sieves 4A, the concentration of (R)-1-phenylethyl acetate reached 39.8 mM (97.3% yield) with high enantiomeric excess (93.3%ee). In contrast, a reaction mixture incubated without molecular sieves 4A produced little (R)- and (S)-1-phenylethyl acetate. The results obtained in this study demonstrate the applicability of the lipase-displaying yeast whole cell biocatalyst to bioconversion processes in non-aqueous organic solvents.  相似文献   

18.
To produce (S)-α-methylbenzylamine (MBA) from acetophenone, recombinant Escherichia coli co-expressing ω-transaminase and acetolactate synthase was used as a whole-cell biocatalyst. The solvent-bridge reaction system increased the yield of the whole-cell reaction by 2.5-fold, and the inhibitory (S)-α-MBA produced in the ω-transaminase reaction solution (pH 8.0) moved into the extraction solution (pH 3.0) via an organic solvent.  相似文献   

19.
Abstract

The enzymatic transesterification of docosahexaenoic acid (DHA) ethyl ester with glycerol was carried out by using several immobilized lipases in a solvent-free system. This reaction involves the initial formation of sn-2 docosahexaenyl monoacylglycerol. This DHA derivative is highly relevant for improving the bioavailability of DHA and it has received increasing interest in the field of nutrition. Three commercial lipases, from Rhizomucor miehei (RML), Alcaligenes sp. (AQ) and Candida antarctica-fraction B (CALB) were immobilized by interfacial adsorption on a commercial hydrophobic support (a methacrylate resin containing octadecyl groups, Sepabeads C-18) and tested for glycerolysis of DHA ethyl ester. In certain cases (e.g. immobilized CALB), the transesterification reaction continues to the formation of triacylglycerol (80%) by using a very high excess of DHA ethyl ester ((115 mmols versus 1.24 mmols of glycerol and high temperatures (50?°C). However, the same biocatalyst working at lower temperatures, 37?°C, synthetizes a 90% of sn-2 monoacylglycerol even in the presence of that a high excess of DHA ethyl ester. Interestingly, immobilized RML derivative synthesizes a 98% of sn-2 monoacylglyceride (2-MG) in 15?min at 37?°C with a 4% of immobilized biocatalyst. These high activity and regioselectivity under very mild reaction conditions are very interesting for the thermal oxidative stability of the omega-3 fatty acid as well as for the thermal stability of the biocatalyst. Using Normal Phase HPLC-ELSD and accurate commercial markers, the formation of the 2-MG was confirmed.  相似文献   

20.
l-Ascorbyl laurate is a fatty acid derivative of l-ascorbic acid which can be widely used as a natural antioxidant in both lipid containing food and cosmetic applications. To avoid any possible harmful effects from chemically synthesized product, the enzymatic synthesis appears to be the best way to satisfy the consumer demand for natural antioxidants. The ability of immobilized lipase from Candida antarctica (Novozym® 435) to catalyze the direct esterification between l-ascorbic acid and lauric acid was investigated. Response surface methodology (RSM) and 5-level-4-factor central composite rotatable design (CCRD) were employed to evaluate the effects of synthesis parameters, such as reaction time (2–10 h), temperature (25–65 °C), enzyme amount (10–50% w/w of l-ascorbic acid), and substrate molar ratio of l-ascorbic acid to lauric acid (1:1–1:5) on percentage molar conversion to l-ascorbyl laurate. Based on the analysis result of ridge max, the optimal enzymatic synthesis conditions were predicted as follows: reaction time 6.7 h, temperature 30.6 °C, enzyme amount 34.5%, substrate molar ratio 1:4.3; and the optimal actual yield was 93.2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号