共查询到20条相似文献,搜索用时 15 毫秒
1.
Species richness and endemism of plant and bird communities along two gradients of elevation, humidity and land use in the Bolivian Andes 总被引:4,自引:1,他引:4
Michael Kessler§ Sebastian K. Herzog† Jon Fjeldså‡ Kerstin Bach 《Diversity & distributions》2001,7(1-2):61-77
Abstract. We studied the patterns of species richness and range–size rarity (as a measure of endemism) of two plant groups (Pteridophyta, Bromeliaceae) and birds along two gradients of elevation, humidity and human land use in a forested Andean valley. Both transects covered the transition from an arid valley bottom through a cloud forest zone to relictual high-elevation Polylepis forest, but transects differed in overall precipitation. Plants were surveyed in 88 plots of 400 m2 each, while birds were detected primarily through visual observations and tape recordings over areas of 0.3–1.5 km2 . Global range sizes of all species were mapped on 1°-grids and range-size rarity was calculated as the mean inverse range size of all species recorded in elevational steps of 200 m. Patterns of species richness and range–size rarity were mainly unrelated between and within study groups. Monotonic increases and decreases and hump-shaped patterns were observed for species richness as well as range–size rarity. Several of these patterns can be interpreted in the light of the ecological requirements of each taxonomic group, e.g. dependence of fern species richness on humidity or of bird richness on habitat complexity. Species richness of ferns and birds peaked at higher elevations along the less rainy transect, possibly as a result of higher levels of solar radiation and ecosystem productivity. Patterns of species richness and endemism of the study groups are causally unrelated and cannot be used to predict those of other groups at the spatial scale of this study. Human impact was highest in areas of mostly low to intermediate species richness, but was often high in zones of high endemism. 相似文献
2.
Moe Bakhtiari Ludovico Formenti Veronica Caggìa Gaëtan Glauser Sergio Rasmann 《Ecology and evolution》2019,9(7):3740-3755
Along ecological gradients, phenotypic differentiation can arise through natural selection on trait diversity and magnitude, and environment‐driven plastic changes. The magnitude of ecotypic differentiation versus phenotypic plasticity can vary depending on the traits under study. Using reciprocal transplant‐common gardens along steep elevation gradients, we evaluated patterns of ecotypic differentiation and phenotypic plasticity of several growth and defense‐related traits for two coexisting but unrelated plant species, Cardamine pratensis and Plantago major. For both species, we observed ecotypic differentiation accompanied by plasticity in growth‐related traits. Plants grew faster and produced more biomass when placed at low elevation. In contrast, we observed fixed ecotypic differentiation for defense and resistance traits. Generally, low‐elevation ecotypes produced higher chemical defenses regardless of the growing elevation. Yet, some plasticity was observed for specific compounds, such as indole glucosinolates. The results of this study may suggest that ecotypic differentiation in defense traits is maintained by costs of chemical defense production, while plasticity in growth traits is regulated by temperature‐driven growth response maximization. 相似文献
3.
Salvador J. Peris 《Studies on Neotropical Fauna and Environment》2013,48(3):135-141
The populations of birds (diurnal birds of prey excluded) were studied on both east and west oriented slopes in the Sierra de Aconquija, Tucumán province, northwestern Argentina. The transect method of bird observation was combined with strip surveys. The study period was mid November till early March, during which time most of the Andean bird species are breeding. The eastern slope has frequent fog, whereas the western one is sunny with scarcely rain. Species occurrence and abundance were recorded which in part depend on the altitude. Probable further reasons for these patterns of local distribution are discussed. 相似文献
4.
- 1 Relationships between body mass and latitude, and body mass and elevation are examined in the assemblage of Andean passerine birds.
- 2 Across species, body mass is positively correlated with the mid‐point of the species elevational distribution, but there is no significant relationship between body mass and latitudinal range mid‐point.
- 3 When the assemblage is separated into Andean endemic and non‐endemic species, the former group shows a significant positive relationship between body mass and elevation, and the latter a significant positive relationship between body mass and latitude (‘Bergmann’s rule’). Andean endemic species exhibit Bergmann’s rule once elevation is controlled for using multiple regression.
- 4 These relationships are not a consequence of the phylogenetic non‐independence of species. All the effects shown are very weak, with latitude and elevation explaining only a few per cent of the variation in body mass. Relationships are strongest when phylogenetically controlled analyses are performed just within genera.
- 5 The implications of these results for the mechanistic understanding of Bergmann’s rule are discussed.
5.
Tiina Särkinen R. Toby Pennington Matt Lavin Marcelo F. Simon Colin E. Hughes 《Journal of Biogeography》2012,39(5):884-900
Aim The tropical Andes are a world biodiversity hotspot. With diverse biomes and dramatic, geologically recent mountain uplift, they offer a system to study the relative contributions of geological and biome history to species richness. There are preliminary indications that historical species assembly in the Andes has been influenced by physiographical heterogeneity and that distinct biomes have evolved in relative isolation despite physical proximity. Here we test this ‘Andean biotic separation hypothesis’ by focusing on the low‐elevation, seasonally dry tropical forest (SDTF) biome to determine whether patterns of plant diversification within the SDTF differ from those in mid‐ and high‐elevation biomes. Location Tropical Andes, South America. Methods Densely sampled time‐calibrated phylogenies for five legume genera (Amicia, Coursetia, Cyathostegia, Mimosa and Poissonia) containing species endemic to the Andean SDTF biome were used to investigate divergence times and levels of geographical structure. Geographical structure was measured using isolation‐by‐distance methods. Meta‐analysis of time‐calibrated phylogenies of Andean plant groups was used to compare the pattern and tempo of endemic species diversification between the major Andean biomes. Results Long‐term persistence of SDTF in the Andes is suggested by old stem ages (5–27 Ma) of endemic genera/clades within genera, and deep divergences coupled with strong geographical structure among and within species. Comparison of species diversification patterns among different biomes shows that the relatively old, geographically confined pattern of species diversification in SDTF contrasts with the high‐elevation grasslands that show rapid and recent radiations driven by ecological opportunities. Main conclusions The SDTF biome has a long history in the Andes. We suggest that the diverse SDTF flora has been assembled gradually over the past c. 19 Ma from lineages exhibiting strong phylogenetic niche conservatism. These patterns suggest that Andean SDTFs have formed stable and strongly isolated ‘islands’ despite the upheavals of Andean uplift. Indeed, the Andean SDTFs may represent some of the most isolated and evolutionarily persistent continental plant communities, similar in many respects to floras of remote oceanic islands. 相似文献
6.
Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes 总被引:13,自引:0,他引:13
I analyzed the distribution of Acanthaceae, Araceae, Bromeliaceae, Cactaceae, Melastomataceae, and Pteridophyta in 62 vegetation plots of 400 m2 along an elevational transect between 500 m and 2450 m, and at a nearby lowland site in western Santa Cruz department, Bolivia. These groups were selected because they are physiognomically distinctive, have high species numbers, are comparatively easy to identify, adequately reflect overall floristic relationships, include a wide range of life forms, and are small. The transect was located in the Tucumano-Boliviano biogeographic zone and included drought-deciduous (<850–1000 m), mixed evergreen (850–1000 m to 1800 m), and evergreen Podocarpus-dominated (>1800 m) forests. Elevational patterns of species richness were group-specific and probably related to the ecophysiological properties of each group. Species richness in Pteridophyta and Melastomataceae was correlated with moss cover (i.e., humidity), with elevation (i.e., temperatures) in Acanthaceae and epiphytic Bromeliaceae, with potential evapotranspiration (i.e., ecosystem productivity) in Araceae, and with light availability at ground level in terrestrial Bromeliaceae and Cactaceae. Community endemism generally increased with elevation, but showed a maximum at 1700 m for terrestrial Pteridophyta, and a nonsignificant decline for epiphytic Bromeliaceae and Cactaceae. Endemism was higher for terrestrial than for epiphytic taxa, and was lower among Pteridophyta compared to all other groups, reflecting different dispersal ability among taxonomic and ecological groups. Elevational zonation, tested against a null-model of random distribution of elevational limits, revealed a significant accumulation of upper and lower elevational range boundaries at 900–1050 m and at 1500–1850 m, corresponding to the elevational limits of the main physiognomic vegetation types. 相似文献
7.
David S. Woodruff 《Journal of Biogeography》2003,30(4):551-567
Aim The aim of this review is to contribute to our understanding of the origination of the Sundaic and Indochinese biotas in Southeast Asia. Numerous unsolved problems surround the origination of the differences between these biotas and the determinants of the breadth and current position of the transition between them. Location Literature reviews show that phytogeographical and zoogeographical transitions between the Sundaic and Indochinese subregions lie on the Thai–Malay peninsula just north of the Isthmus of Kra. A second, more widely recognized botanical transition lies 500 km further south at the Kangar–Pattani line near the Thai–Malay border. Results The phytogeographical transition involves 575 genera of plants, and a change from wet seasonal evergreen dipterocarp rain forest to moist mixed deciduous forest. The zoogeographical transition is best characterized for forest birds, and more than half the species present in this region have species boundaries north of the Isthmus of Kra, at 11–13° N latitude. Although the phytogeographical transition is climate‐related today, and the avifaunal transition is viewed as being associated with the vegetation change, there is no obvious present day geological, physiographical or environmental feature to account for the origination of the provincial biotas. Similarly, known Neogene palaeoenvironmental changes on the tectonically stable peninsula, including those associated with periods of lower sea levels and the emergence of Sundaland, fail to account for either the origination of the provincial differences or the current position of the transition. Main conclusions Contrary to earlier palaeogeographical reconstructions, it is suggested that Neogene marine transgressions flooded the peninsula in two areas and created circumstances leading to the biogeographical patterns of the present day. The Vail global eustatic curve, supported by the oxygen isotope record, indicates that sea levels were c. 100 m above the present‐day level during the early/middle Miocene (24–13 Ma) and again during the early Pliocene (5.5–4.5 Ma). Present topography suggests such high sea stands would have created 30–100‐km wide seaways north and south of the Nakhon si Thammarat Range in the central peninsula (southern Thailand). Geological, palaeontological and phylogenetic evidence for such hypothetical seaways is scant (there have been no focussed searches) but does not preclude their occurrence. The role of such Neogene highstands in explaining present day biogeographical patterns in Southeast Asia and elsewhere requires assessment. 相似文献
8.
《Plant Ecology & Diversity》2013,6(5-6):419-429
Background: Reductions of genetic diversity and phenotypic changes in invasive plants are often observed to occur at high elevations. Genetic/phenotypic changes of invasive plants along elevation help to understand mechanisms of the presumed resistance of mountain ecosystems to invasion.Aims: To assess genetic variability and phenotypic plasticity along an elevation gradient of Eschscholzia californica in the Andes, central Chile.Methods: Eleven microsatellites were used to describe the genetic structure and the allelic diversity individuals, distributed at three elevations and two sites. We assessed the number of flowers per plant, floral biomass, leaf area, number of leaves, vegetative biomass and plant height of plants at each elevation.Results: Genetic diversity as genetic structure did not decrease with elevations. Plant height and flower numbers decreased while leaf number and vegetative biomass increased with elevation. The ratio of the number of flowers to vegetative biomass, decreased significantly with elevation.Conclusions: Strong genetic differences among elevations and similar genetic diversity along elevation do not suggest dispersal limitation to higher elevation. Reduction of reproductive and vegetative traits concomitantly with an increase of the reproductive cost suggests reproductive stress with increasing elevation, reducing the invasiveness of this species to higher elevation. 相似文献
9.
This study documents differences in fish assemblages for 32 freshwater streams located between 258 and 2242 m a.s.l. on the eastern slopes of the central range of the Colombian Andes. A total of 2049 fishes belonging to 62 species, 34 genera and 16 families were collected. Species richness declined rapidly with altitude; nearly 90% of the species were recorded between 250 and 1250 m a.s.l. Three of the four physico‐chemical variables, of the water, temperature, dissolved oxygen and pH, explained 53·5% of the variation in species richness along the altitudinal gradient, with temperature the most important (37·6%). An analysis of species composition showed that the distinctiveness of the fish fauna increased with elevation, with the greatest turnover observed between 1000 and 1750 m a.s.l. On this altitudinal gradient, turnover was dominated by the loss of species rather than gain, and dominance by just a few species was greater at higher elevations. Turnover was also observed along the altitudinal gradient in the structure of the three functional groups (torrential, pool and pelagic species). The study focused on understanding the pattern of diversity of fish communities inhabiting the Andes in Colombia. Anthropogenic effects on the altitudinal distribution of fish species in the region, however, are largely unknown and would require further investigations. 相似文献
10.
苔藓物种多样性沿海拔梯度呈什么样的分布格局?基于53个20 m×20 m样地,采集并鉴定了样地内所有生境中的苔藓物种;采用多元回归树(multivariate regression trees,MRT)对苔藓植物进行分类;采用典范对应分析(canonical correspondence analysis,CCA)进行排序分析;用广义线性模型(Generalized Linear Model,GLM)研究苔藓物种多样性沿海拔的分布格局。结果如下:(1)采集的1378份苔藓植物标本经过鉴定,共有33科89属240种,其中藓类226种,苔类14种;(2)经交叉验证认为本区苔藓植物可分为4类,Ⅰ长肋青藓(Brachythecium populeum)+大叶匐灯藓(Plagiomnium succulentum)+圆叶匐灯藓(Plagiomnium vesicatum)群落,Ⅱ灰白青藓(Brachythecium albicans)+宽叶青藓(Brachythecium curtum)+短肋羽藓(Thuidium kanedae)+平肋提灯藓(Mnium laevinerve)群落,Ⅲ短肋羽藓(Thuidium kanedae)+光萼叶苔(Jungermannia leiantha)+薄罗藓(Leskea polycarpa)+叉肋藓(Trachyphyllum inflexum)群落,Ⅳ宽叶青藓(Brachythecium curtum)+垂蒴棉藓(Plagiothecium nemorale)+全缘匐灯藓(Plagiomnium integrum)群落;(3)海拔、坡度和坡向对苔藓物种分布的解释量为7.29%;(4)苔藓物种多样性随海拔的变化成明显的上升格局。通过研究了解了小秦岭国家级自然保护区苔藓物种组成、群丛划分以及每种苔藓植物的海拔分布范围;苔藓物种多样性随海拔的上升呈显著的上升格局,与乔木、灌木和草本的分布格局不同。希望此研究能为苔藓植物生态学研究和物种多样性保护提供参考。 相似文献
11.
12.
Bird diversity along elevational gradients in the Andes of Colombia: area and mass effects 总被引:5,自引:0,他引:5
Aim The decrease in species richness with increasing elevation is a widely recognized pattern. However, recent work has shown that there is variation in the shape of the curve, such that both negative monotonic or unimodal patterns occur, influenced by a variety of factors at local and regional scales. Discerning the shape of the curve may provide clues to the underlying causes of the observed pattern. At regional scales, the area of the altitudinal belts and mass effects are important determinants of species richness. This paper explores the relationship between bird species richness, elevation, mass effects and area of altitudinal zones for birds in tropical mountains. Location The three Andean ranges of Colombia and the peripheral mountain ranges of La Macarena and Santa Marta. Methods Lists of bird species were compiled for altitudinal belts in eastern and western slopes of the three Andean Cordilleras and for La Macarena and Santa Marta. The area of the altitudinal belts was computed from digital elevation models. The effect of area was analysed by testing for differences among altitudinal belts in the slopes and intercepts of the species‐area relationships. Mass effects were explored by separately analysing two sets of species: broadly distributed species, i.e. lowland species whose distributions extend into the Andes, and tropical Andean species, i.e., species that evolved in the Andes. Results Plotting total number of species in each altitudinal belt revealed a decline in species richness with elevation. In slopes with a complete elevational gradient from lowlands to mountain peaks, the decrease was monotonic. In internal Andean slopes where the lower elevational belts are truncated, there was a peak at mid elevations. There was a linear relationship between number of species and area of the altitudinal belts. When controlling for area, there were no differences in the number of species among altitudinal belts (500–2600 m), except for the two upper‐elevation zones (2600–3200 and > 3200 m), which had lower species richness. Diversity of widely distributed species declined monotonically with elevation, whereas tropical Andean species exhibited a mid‐elevation peak. Main conclusions A large proportion of the variation in species richness with elevation was explained by area of the altitudinal belts. When controlling for area, species richness remained constant up to 2600 m and then decreased. This pattern contrasts with a previously reported hump‐shaped pattern for Andean birds. Diversity patterns of widely distributed species suggested that immigration of lowland species inflates diversity of lower elevational belts through mass effects. This influence was particularly evident in slopes with complete altitudinal gradients (i.e. connected to the lowlands). Tropical Andean species, in contrast, were more diverse in mid‐elevational belts, where speciation rates are expected to be higher. The influence of these species was more prevalent in internal Andean slopes with no connection to the lowlands. The decline of species richness at high elevations may be related to higher extinction rates and lower resource levels. 相似文献
13.
小秦岭森林群落数量分类、排序及多样性垂直格局 总被引:3,自引:0,他引:3
采用分层取样的方法,沿小秦岭林区海拔梯度设立56块20 m×20 m样地,用多元回归树(MRT)方法对小秦岭森林群落进行分类,采用除趋势对应分析(DCA)进行排序,用广义可加模型(GAM)研究不同生活型物种多样性沿海拔梯度分布格局。结果表明:(1)56个样地进行MRT分类,经交叉验证并依据植物群落分类和命名原则,本区植物群落可分为5类;(2)样方DCA排序明确地揭示各群落类型生境分布范围,较好地反映小秦岭自然保护区森林群落与环境因子的关系;(3)不同生活型物种多样性指数随海拔梯度变化发生一定的波动,且呈现不同的多样性格局:丰富度指数中,乔木层呈显著的单峰分布格局,灌木层在中海拔段呈明显下降趋势,草本层随着海拔的升高总体呈下降趋势;Shannon-Wiener多样性指数中,不同生活型物种随海拔变化趋势与物种丰富度变化趋势大体相同;不同生活型物种的均匀度指数随海拔变化趋势较平缓。 相似文献
14.
Flavia A. Montaño-Centellas 《Ecography》2020,43(6):930-942
Ecological communities are comprised of species that interact with each other and those interactions ultimately generate community structure. Network theory provides a useful framework to study communities, by simultaneously considering species composition and the interactions among species. In this study, I use mixed-species flocks as model systems to gain insights on community and network structure. Specifically, I use co-occurrence network analyses to explore if avian mixed-species flocks change in richness and composition and/or in network structure and pair-wise associations, across elevations in the tropical Andes of Bolivia. Networks of flocking species changed both in composition and in the frequency and realization of pair-wise interactions across elevations, but changes in pair-wise associations explained most of network turnover along elevation. Pair-wise interactions changed rapidly, with shared species changing in position and importance within the network. Network dissimilarity was mostly explained by changes in the nature of associations rather than by differences in composition. Altogether, results show that montane mixed-species flocks are composed of loosely connected species and that most species have the potential of switching associations, often increasing in association strength at high elevations (up to 3150 m). Networks increased in connectivity and cohesion with elevation; flocks in lower elevations had more connections and these were less even. Above 3150 m a.s.l., there was rapid decay suggesting that flocks above this critical point are less connected and cohesive. This study exemplifies how combining community, network and pair-wise analyses can provide a more holistic view on the responses of species and assemblages to environmental gradients. 相似文献
15.
Silvinichthys huachi new species, is described from a stream along the lower slope of the Andean Cordillera in the Provincia de San Juan, Argentina. It shares the distinctive modifications characteristic of Silvinichthys, but is distinguished from the four previously described congeners by the combination of a lack of the pelvic fin and the pelvic girdle, details of pigmentation and various meristic and morphometric features. Silvinichthys huachi is apparently endemic to the type locality situated within an arid region of western central Argentina in the Andino Cuyana Province. Major gaps in the range of species of Silvinichthys may indicate that the origin of the genus predates the uplift events that subdivided drainages along the eastern slopes of the Andean Cordillera in west central Argentina. Silvinichthys huachi is hypothesized to be the sister species of Silvinichthys bortayro. 相似文献
16.
武夷山植被带土壤微生物量沿海拔梯度的变化 总被引:11,自引:1,他引:11
土壤微生物量是陆地生态系统碳循环的重要组成部分,在森林生态系统物质循环和能量转化中占有特别重要的地位.以武夷山常绿阔叶林(EBF)、针叶林(CF)、亚高山矮林(DF)和高山草甸(AM)为试验对象,研究了土壤微生物量沿海拔梯度的变化特征.结果表明:在0~10cm土壤层,随着海拔高度的增加,年平均土壤微生物量增大,AM的年平均土壤微生物量为4.07 g·kg-1,分别为DF、CF和EBF的2.06、3.21倍和3.91倍;AM的年平均土壤微生物量显著大于DF、CF和AM(p<0.01),DF的年平均土壤微生物量显著大于EBF、CF(p<0.05),EBF和CF的年平均土壤微生物量无显著性差异(p>0.05),10~25cm土壤层的年平均土壤微生物量的变化规律与上层基本一致;在0~10cm土壤层,不同海拔年平均土壤微生物量分别与土壤有机碳、全氮、全硫含量以及土壤湿度呈显著正相关(p<0.05),在10~25cm土壤层,不同海拔年平均土壤微生物量分别与土壤有机碳、全氮含量呈显著正相关(p<0.05).研究表明,武夷山亚热带森林年平均土壤微生物量随海拔高度升高而增加,土壤有机碳、全氮、全硫和土壤湿度可能是调控土壤微生物量沿海拔梯度变化的主要因子. 相似文献
17.
James L. Luteyn 《The Botanical review》2002,68(1):55-87
In the Neotropics, the Ericaceae are an Andean-centered family, adapted to moist, open, cool montane environments. Overall
species richness increases nearer the Equator, with the highest species numbers concentrated in Colombia and Ecuador between
1000 m and 3000 m. There are 46 genera (70% endemic) and about 800 species (ca. 94% endemic) of Ericaceae native to the Neotropics.
Five biogeographical regions are recognized for the neotropical Ericaceae, with the greatest species diversity found in the
Andes of northwestern South America. Following Pliocene/Pleistocene mountain-building and climatic events, neotropical Ericaceae
underwent dynamic speciation and extensive adaptive radiation due to their ecological and life-form plasticity, colonization
abilities, adaptation to epiphytic habits, and coevolution with hummingbirds. Given high diversity and singularity within
neotropical Ericaceae, along with high levels of habitat alteration, protection of Andean montane ecosystems should become
a priority for the conservation of Ericaceae in the Neotropics.
Resumen La familia de las Ericáceas en el Neotrópico se concentra en los Andes, adaptada a los ambientes montanosos humedos, de vegetación abierta y fríos. La riqueza total de especies se incrementa a medida que se acerca a la línea ecuatorial, encontrándose el mayor número de especies en Colombia y Ecuador entre 1000 y 3000 msnm. Existen 46 géneros (70% endémicos) y aproximadamente 800 especies (ca. 94% endémicas) de Ericáceas nativas en el Neotrópico. Se reconocen cinco regiones biogeográficas para las Ericáceas neotropicales, siendo los Andes del noroeste de Sur América el lugar de mayor diversidad de especies. Después del levantamiento de las cordilleras y de los eventos climáticos del Plioceno y Pleistoceno, las Ericáceas neotropicales sufrieron una dinámica de especiación y una radiación adaptativa debido a la plasticidad ecológica y de formas de vida, a la capacidad de colonización, de adaptación al epifitismo y a la coevolución con colibríes. Dada la alta diversidad y la singularidad de las Ericáceas neotropicales, así como también los altos niveles de alteración de su hábitat, la protección de los ecosistemas alto-andinos debería ser prioridad en los esfuerzos de conservación en el Neotrópico.相似文献
18.
Albert J. Parker 《Plant Ecology》1994,115(2):145-155
Latitudinal gradients of tree species composition along the Sierran/Cascade axis in northern California were explored by comparing forests of Lassen Volcanic and Yosemite National Parks, USA. A calibration procedure based on canonical correspondence analysis predicted a mean rate of elevational displacement of 172.1 m/° latitude for Lassen sites in Yosemite. This is a steep latitudinal gradient compared with other temperate uplands (which average around 100 m/0 latitude), but it corresponds with the magnitude of the July mean temperature gradient (143 m/0 latitude) and the annual precipitation gradient (230 m/0 latitude). Elevational displacement of basal-area weighted species means showed considerable variation. The range for montane species was 20–153 m/0 latitude; for subalpine species the range was 142–305 m/0 latitude. This disparity is related to differential temperature lapse rates between regions and is reinforced by contrasting biogeographic affinities of montane vs. subalpine species. Whereas it is uniformly hot and dry during the growing season at lower elevations in both regions, growing seasons in the subalpine zone are significantly warmer and drier (at comparable elevations) in Yosemite, the more southerly locale. Furthermore, montane species are principally of Sierran affinity, whereas subalpine are primarily of Pacific Northwestern affinity. 相似文献
19.
长白山北坡森林群落结构组成及其海拔变化 总被引:10,自引:2,他引:10
对长白山北坡海拔700~1900m的13个森林群落进行了群落组成、结构随海拔上升变化情况的研究。结果表明,随着海拔的升高,群落的建群种组成、层次结构等,都表现出由复杂多样逐渐向简单单一过渡的变化趋势,从700m至1700m,针叶树所占的比例随海拔的升高呈明显的增加趋势,阔叶树比例随之减少,到林线时针阔叶树种均急剧减少,沿海拔梯度存在明显的树种更替现象。从群落的平均胸径及胸高断面积和可知。最大值出现于900~1100m及1600m,这2个海拔段正是不同森林群落类型间的过渡区。除海拔1800m的岳桦林之外,其它群落径级结构都呈倒J形分布,即各径级树木中,更新幼苗、幼树在数量上占绝对优势,随着胸径的增大,立木株数逐渐减少,这种径级结构表明,长白山北坡各海拔群落更新良好,群落处于稳定的发展状态。 相似文献
20.
Breeding bird species richness in Taiwan: distribution on gradients of elevation, primary productivity and urbanization 总被引:8,自引:0,他引:8
Aim To examine the richness of breeding bird species in relation to elevation, primary productivity and urbanization. Location The island of Taiwan (120°–122° E, 22°–25° N). Methods We arranged bird species richness (BSR) data from 288 bird censuses undertaken in Taiwan into a 2 × 2 km quadrat system and calculated average values of elevation, primary productivity [surrogated by normalized difference vegetation index (NDVI)], and urbanization (surrogated by road density and percentage of built area) for each 2 × 2 km quadrat. Results Bird species richness showed a hump‐shaped relationship with elevation. It increased with elevation from sea level (10–64 species per 2 × 2 km quadrat), peaked around 2000 m (43–76 species), and then decreased with elevation towards its minimum at the highest elevation. Road density and percentage of built area decreased with elevation, and NDVI showed a hump‐shaped relationship with elevation and inverse relationships with road density and percentage of built area. BSR increased with NDVI and decreased with road density and percentage of built area. Linear and cubic terms of elevation together explained 31.3% of the variance in BSR, and road density explained additional 3.4%. The explanatory power of NDVI on BSR was insignificant after the effects of elevation and road density had been justified. Main conclusions We argue that urbanization plays an important role in the BSR of Taiwan. Urbanization might indirectly decrease BSR through decreasing primary productivity and therefore change the hypothetical inverse relationship between BSR and elevation into a hump‐shaped relationship. We also propose a time hypothesis that the biotic communities in the mid‐elevation zone of Taiwan had relatively longer periods of existence during the Pleistocene glacial cycles, which might be one underlying process of the observed hump‐shaped relationship between species diversity and elevation. 相似文献