首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The stable insertion of the retroviral genome into the host chromosomes requires the association between integration complexes and cellular chromatin via the interaction between retroviral integrase and the nucleosomal target DNA. This final association may involve the chromatin-binding properties of both the retroviral integrase and its cellular cofactor LEDGF/p75. To investigate this and better understand the LEDGF/p75-mediated chromatin tethering of HIV-1 integrase, we used a combination of biochemical and chromosome-binding assays. Our study revealed that retroviral integrase has an intrinsic ability to bind and recognize specific chromatin regions in metaphase even in the absence of its cofactor. Furthermore, this integrase chromatin-binding property was modulated by the interaction with its cofactor LEDGF/p75, which redirected the enzyme to alternative chromosome regions. We also better determined the chromatin features recognized by each partner alone or within the functional intasome, as well as the chronology of efficient LEDGF/p75-mediated targeting of HIV-1 integrase to chromatin. Our data support a new chromatin-binding function of integrase acting in concert with LEDGF/p75 for the optimal association with the nucleosomal substrate. This work also provides additional information about the behavior of retroviral integration complexes in metaphase chromatin and the mechanism of action of LEDGF/p75 in this specific context.  相似文献   

2.
3.
4.
LEDGF/p75 is a chromatin-interacting, cellular cofactor of HIV integrase that dictates lentiviral integration site preference. In this study we determined the role of the PWWP domain of LEDGF/p75 in tethering and targeting of the lentiviral pre-integration complex, employing potent knockdown cell lines allowing analysis in the absence of endogenous LEDGF/p75. Deletion of the PWWP domain resulted in a diffuse subnuclear distribution pattern, loss of interaction with condensed chromatin, and failure to rescue proviral integration, integration site distribution, and productive virus replication. Substitution of the PWWP domain of LEDGF/p75 with that of hepatoma-derived growth factor or HDGF-related protein-2 rescued viral replication and lentiviral integration site distribution in LEDGF/p75-depleted cells. Replacing all chromatin binding elements of LEDGF/p75 with full-length hepatoma-derived growth factor resulted in more integration in genes combined with a preference for CpG islands. In addition, we showed that any PWWP domain targets SMYD1-like sequences. Analysis of integration preferences of lentiviral vectors for epigenetic marks indicates that the PWWP domain is critical for interactions specifying the relationship of integration sites to regions enriched in specific histone post-translational modifications.  相似文献   

5.
6.
7.
Although LEDGF/p75 is believed to act as a cellular cofactor of lentiviral integration by tethering integrase (IN) to chromatin, there is no good in vitro model to analyze this functionality. We designed an AlphaScreen assay to study how LEDGF/p75 modulates the interaction of human immunodeficiency virus type 1 IN with DNA. IN bound with similar affinity to DNA mimicking the long terminal repeat or to random DNA. While LEDGF/p75 bound DNA strongly, a mutant of LEDGF/p75 with compromised nuclear localization signal (NLS)/AT hook interacted weakly, and the LEDGF/p75 PWWP domain did not interact, corroborating previous reports on the role of NLS and AT hooks in charge-dependent DNA binding. LEDGF/p75 stimulated IN binding to DNA 10-fold to 30-fold. Stimulation of IN-DNA binding required a direct interaction between IN and the C-terminus of LEDGF/p75. Addition of either the C-terminus of LEDGF/p75 (amino acids 325-530) or LEDGF/p75 mutated in the NLS/AT hooks interfered with IN binding to DNA. Our results are consistent with an in vitro model of LEDGF/p75-mediated tethering of IN to DNA. The inhibition of IN-DNA interaction by the LEDGF/p75 C-terminus may provide a novel strategy for the inhibition of HIV IN activity and may explain the potent inhibition of HIV replication observed after the overexpression of C-terminal fragments in cell culture.  相似文献   

8.
Integration is an essential step in the retroviral lifecycle, and the lentiviral integrase binding protein lens epithelium-derived growth factor (LEDGF)/p75 plays a crucial role during human immunodeficiency virus type 1 (HIV-1) cDNA integration. In vitro, LEDGF/p75 stimulates HIV-1 integrase activity into naked target DNAs. Here, we demonstrate that this chromatin-associated protein also stimulates HIV-1 integration into reconstituted polynucleosome templates. Activation of integration depended on the LEDGF/p75-integrase interaction with either type of template. A differential requirement for the dominant DNA and chromatin-binding elements of LEDGF/p75 was however observed when using naked DNA versus polynucleosomes. With naked DNA, the complete removal of these N-terminal elements was required to abate cofactor function. With polynucleosomes, activation mainly depended on the PWWP domain, and to a lesser extent on nearby AT-hook DNA-binding motifs. GST pull-down assays furthermore revealed a role for the PWWP domain in binding to nucleosomes. These results are completely consistent with recent ex vivo studies that characterized the PWWP and integrase-binding domains of LEDGF/p75 as crucial for restoring HIV-1 infection to LEDGF-depleted cells. Our studies therefore establish novel in vitro conditions, highlighting chromatinized DNA as target acceptor templates, for physiologically relevant studies of LEDGF/p75 in lentiviral cDNA integration.  相似文献   

9.
10.
11.
Lens epithelium–derived growth factor (LEDGF/p75) is a cellular cofactor of HIV-1 integrase (IN) that interacts with IN through its IN binding domain (IBD) and tethers the viral pre-integration complex to the host cell chromatin. Here we report the generation of a human somatic LEDGF/p75 knockout cell line that allows the study of spreading HIV-1 infection in the absence of LEDGF/p75. By homologous recombination the exons encoding the LEDGF/p75 IBD (exons 11 to 14) were knocked out. In the absence of LEDGF/p75 replication of laboratory HIV-1 strains was severely delayed while clinical HIV-1 isolates were replication-defective. The residual replication was predominantly mediated by the Hepatoma-derived growth factor related protein 2 (HRP-2), the only cellular protein besides LEDGF/p75 that contains an IBD. Importantly, the recently described IN-LEDGF/p75 inhibitors (LEDGINs) remained active even in the absence of LEDGF/p75 by blocking the interaction with the IBD of HRP-2. These results further support the potential of LEDGINs as allosteric integrase inhibitors.  相似文献   

12.
13.
Integration of the HIV-1 cDNA into the human genome is catalyzed by the viral integrase (IN) protein. Several studies have shown the importance of cellular cofactors that interact with integrase and affect viral integration and infectivity. In this study, we produced a stable complex between HIV-1 integrase, viral U5 DNA, the cellular cofactor LEDGF/p75 and the integrase binding domain of INI1 (INI1-IBD), a subunit of the SWI/SNF chromatin remodeling factor. The stoichiometry of the IN/LEDGF/INI1-IBD/DNA complex components was found to be 4/2/2/2 by mass spectrometry and Fluorescence Correlation Spectroscopy. Functional assays showed that INI1-IBD inhibits the 3′ processing reaction but does not interfere with specific viral DNA binding. Integration assays demonstrate that INI1-IBD decreases the amount of integration events but inhibits by-product formation such as donor/donor or linear full site integration molecules. Cryo-electron microscopy locates INI1-IBD within the cellular DNA binding site of the IN/LEDGF complex, constraining the highly flexible integrase in a stable conformation. Taken together, our results suggest that INI1 could stabilize the PIC in the host cell, by maintaining integrase in a stable constrained conformation which prevents non-specific interactions and auto integration on the route to its integration site within nucleosomes, while LEDGF organizes and stabilizes an active integrase tetramer suitable for specific vDNA integration. Moreover, our results provide the basis for a novel type of integrase inhibitor (conformational inhibitor) representing a potential new strategy for use in human therapy.  相似文献   

14.
15.
We initially identified lens epithelium-derived growth factor/p75 (LEDGF/p75) as a binding partner of human immunodeficiency virus type 1 (HIV-1) integrase. To investigate the role of LEDGF/p75 in HIV replication and its potential as a new antiviral target, we stably overexpressed two different fragments containing the integrase binding domain (IBD) of LEDGF/p75 fused to enhanced green fluorescent protein (eGFP). HIV-1 replication was severely inhibited by overexpression of the eGFP-IBD fusion proteins, while no inhibition was observed in cell lines overexpressing the interaction-deficient D366A mutant. Quantitative PCR pinpointed the block to the integration step, whereas nuclear import was not affected. Competition of the IBD fusion proteins with endogenous LEDGF/p75 for binding to integrase led to a potent defect in HIV-1 replication in both HeLaP4- and MT-4-derived cell lines. A previously described diketo acid-resistant HIV-1 strain remained fully susceptible to inhibition, suggesting that this strategy will also work in patients who harbor strains resistant to the current experimental integrase inhibitors. These data support LEDGF/p75 as an important cofactor for HIV replication and provide proof of concept for the LEDGF/p75-integrase interaction as a novel target for treating HIV-1 infection.  相似文献   

16.
The integration of the viral DNA into the host genome is one of the essential steps in the HIV replication cycle. This process is mediated by the viral enzyme integrase (IN) and lens epithelium‐derived growth factor (LEDGF/p75). LEDGF/p75 has been identified as a crucial cellular co‐factor of integration that acts by tethering IN to the cellular chromatin. Recently, circular peptides were identified that bind to the C‐terminal domain of IN and disrupt the interaction with LEDGF/p75. Starting from the circular peptides, we identified a short peptidic sequence able to inhibit the LEDGF/p75‐IN interaction at low μM concentration through its binding to the IN binding site of LEDGF/p75. This discovery can lead to the synthesis of peptidomimetics with high anti‐HIV activity targeting the cellular co‐factor LEDGF/p75 and not the viral protein IN. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
18.
19.
20.
The binding of integrase (IN) to lens epithelium-derived growth factor (LEDGF)/p75 in large part determines the efficiency and specificity of HIV-1 integration. However, a significant residual preference for integration into active genes persists in Psip1 (the gene that encodes for LEDGF/p75) knockout (KO) cells. One other cellular protein, HRP2, harbors both the PWWP and IN-binding domains that are important for LEDGF/p75 co-factor function. To assess the role of HRP2 in HIV-1 integration, cells generated from Hdgfrp2 (the gene that encodes for HRP2) and Psip1/Hdgfrp2 KO mice were infected alongside matched control cells. HRP2 depleted cells supported normal infection, while disruption of Hdgfrp2 in Psip1 KO cells yielded additional defects in the efficiency and specificity of integration. These deficits were largely restored by ectopic expression of either LEDGF/p75 or HRP2. The double-KO cells nevertheless supported residual integration into genes, indicating that IN and/or other host factors contribute to integration specificity in the absence of LEDGF/p75 and HRP2. Psip1 KO significantly increased the potency of an allosteric inhibitor that binds the LEDGF/p75 binding site on IN, a result that was not significantly altered by Hdgfrp2 disruption. These findings help to rule out the host factor-IN interactions as the primary antiviral targets of LEDGF/p75-binding site IN inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号