首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Populations of many species are isolated within narrow elevation bands of Neotropical mountain habitat, and how well dispersal maintains genetic connectivity is unknown. We asked whether genetic structure of an epiphytic orchid, Epidendrum firmum, corresponds to gaps between Costa Rican mountain ranges, and how these gaps influence pollen and seed flow. We predicted that significant genetic structure exists among mountain ranges due to different colonization histories and limited gene flow. Furthermore, we predicted that pollen movement contributes more to gene flow than seeds because seeds are released into strong winds perpendicular to the narrow northwest–southeast species distribution, while the likely pollinators are strong fliers. Individuals from 12 populations and three mountain ranges were genotyped with nuclear microsatellites (nDNA) and chloroplast sequences (cpDNA). Genetic diversity was high for both markers, while nDNA genetic structure was low (FSTn = 0.020) and cpDNA structure was moderate (FSTc = 0.443). Significant cpDNA barriers occurred within and among mountain ranges, but nDNA barriers were not significant after accounting for geographic distance. Consistent with these contrasting patterns of genetic structure, pollen contributes substantially more to gene flow among populations than seed (mp/ms = 46). Pollinators mediated extensive gene flow, eroding nDNA colonization footprints, while seed flow was comparatively limited, possibly due to directional prevailing winds across linearly distributed populations. Dispersal traits alone may not accurately inform predictions about gene flow or genetic structure, supporting the need for research into the potentially crucial role of pollinators and landscape context in gene flow among isolated populations.  相似文献   

2.
Wang FY  Ge XJ  Gong X  Hu CM  Hao G 《Biochemical genetics》2008,46(1-2):75-87
The East Himalaya-Hengduan Mountains region is the center of diversity of the genus Primula, and P. sikkimensis is one of the most common members of the genus in the region. In this study, the genetic diversity and structure of P. sikkimensis populations in China were assessed using inter-simple sequence repeat (ISSR) and chloroplast microsatellite markers. The 254 individuals analyzed represented 13 populations. High levels of genetic diversity were revealed by ISSR markers. At the species level, the expected heterozygosity and Shannon’s index were 0.4032 and 0.5576, respectively. AMOVA analysis showed that 50.3% of the total genetic diversity was partitioned among populations. Three pairs of chloroplast microsatellite primers tested yielded a total of 12 size variants and 15 chloroplast haplotypes. Strong cpDNA genetic differentiation (G ST = 0.697) and evidence for phylogeographic structure were detected (N ST = 0.788, significantly higher than G ST). Estimated rates of pollen-mediated gene flow are approximately 27% greater than estimated rates of seed-mediated gene flow in P. sikkimensis. Both seed and pollen dispersal, however, are limited, and gene flow among populations appears to be hindered by the patchiness of the species’ habitats and their geographic isolation. These features may have played important roles in shaping the genetic structure of P. sikkimensis. A minimum-spanning tree of chloroplast DNA haplotypes was constructed, and possible glacial refugia of P. sikkimensis were identified.  相似文献   

3.
Big-leaf mahogany (Swietenia macrophylla King) is one of the most valuable and overharvested timber trees of tropical America. In order to better characterize geographic patterns of genetic variation, we performed a phylogeographic analysis of S. macrophylla based on six polymorphic chloroplast genome simple sequence repeat loci (cpSSRs) analyzed in 16 populations (N?=?245 individuals) distributed across Central America and the Brazilian Amazon. Of the 31 total cpDNA haplotypes identified, 16 occurred in Central America and 15 in Amazonia with no single haplotype shared between the two regions. Populations from Central America showed moderate differentiation (F ST ?=?0.36) while within population genetic diversity was generally high (mean Nei’s H E ?=?0.639). In contrast, the Amazonian populations were strongly differentiated (F ST ?=?0.91) and contained relatively low genetic diversity (mean H E ?=?0.176), except for one highly diverse population (H E ?=?0.925) from eastern Amazonia. Spatial analysis of molecular variance (SAMOVA) identified a single Central American phylogroup and four Amazonian phylogroups, indicating stronger phylogeographic structure within Amazonia. The results demonstrate distinctive regional patterns of S. macrophylla differentiation, and the first evidence of a strong phylogeographic break between Central American and South American mahogany populations. We suggest that the frequent occurrence of hurricanes in Central America, the differences in the glacial histories and in the duration and intensity of anthropogenic disturbance during the late Holocene may have played important roles in the geographic structuring of cpDNA lineages in the two regions. The high private haplotype diversity in Brazilian populations suggests that cpSSRs can be used as DNA barcodes for regional timber certification.  相似文献   

4.
The beech species Fagus hayatae is an important relict tree species in subtropical China, whose biogeographical patterns may reflect floral responses to climate change in this region during the Quaternary. Previous studies have revealed phylogeography for three of the four Fagus species in China, but study on F. hayatae, the most sparsely distributed of these species, is still lacking. Here, molecular methods based on eight simple sequence repeat (SSR) loci of nuclear DNA (nDNA) and three chloroplast DNA (cpDNA) sequences were applied for analyses of genetic diversity and structure in 375 samples from 14 F. hayatae populations across its whole range. Both nDNA and cpDNA indicated a high level of genetic diversity in this species. Significant fixation indexes and departures from the Hardy–Weinberg equilibrium, with a genetic differentiation parameter of Rst of 0.233, were detected in nDNA SSR loci among populations, especially those on Taiwan Island, indicating strong geographic partitioning. The populations were classified into two clusters, without a prominent signal of isolation‐by‐distance. For the 15 haplotypes detected in the cpDNA sequence fragments, there was a high genetic differentiation parameter (Gst = 0.712) among populations. A high Gst of 0.829 was also detected outside but not within the Sichuan Basin. Consistent with other Fagus species in China, no recent population expansion was detected from tests of neutrality and mismatch distribution analysis. Overall, genetic isolation with limited gene flow was prominent for this species and significant phylogeographic structures existed across its range except for those inside the Sichuan Basin. Our study suggested long‐term geographic isolation in F. hayatae with limited population admixture and the existence of multiple refugia in the mountainous regions of the Sichuan Basin and southeast China during the Quaternary. These results may provide useful information critical for the conservation of F. hayatae and other Chinese beech species.  相似文献   

5.
Saussurea involucrata (Asteraceae) is a medicinal and second-degree national priority endangered plant that is mainly distributed in the high latitude region of the western Tianshan Mountains. The population is fragmented and isolated, and extensive human impact merits a suitable and specific conservation strategy, which can be compiled based on the genetic diversity, population structure, and demographic history. Phylogeographic studies were conducted on a total of five natural populations and 150 individuals were sampled. Data from three cpDNA intergenic spacer regions (trnL-F, matK, and ndhF-rpl32) and nrDNA ITS sequences showed that twelve haplotypes in cpDNA and five haplotypes in nrDNA indicated high genetic diversity among populations sampled (H T?=?0.820 and 0.756) and within populations sampled (H S?=?0.792 and 0.721). Additionally, the high genetic diversity did not mirror genetic structure in either cpDNA (F ST?=?0.03153, G ST?>?N ST, p?<?0.05) or nrDNA (F ST?=?0.03666, meaningless G ST and N ST). Two groups (north and south) were determined for a SAMOVA analysis. Based on this analysis, the demographic history was conducted with a Bayesian Skyline Plot and Isolation with Migration analysis, which showed sustainable and stable extension without a marked bottleneck. Divergence time was indicated at c. 6.25 Mya (90%HPD: 15.30–0.22 Mya) in the Miocene, which is consistent with the formation of the Kelasu section of Tianshan. The southern populations in the Bayanbulak and Gonglu regions require additional attention and transplanting would be an effective way to restore rare cpDNA haplotypes, increase effective population size, and migration rate. Our results suggested that in situ conservation of S. involucrata in western Tianshan should be the main strategy for protection and recovery of the species.  相似文献   

6.
Beech is one of the most important trees in the temperate and subtropical forests of the Northern Hemisphere. Despite Chinese beeches have the particularity that only grow in subtropical areas, they have received few phylogeographic research. In this study, we sampled 25 populations of the northernmost-distributed Chinese beech, Fagus engleriana, and detected six haplotypes across 350 individuals by using sequences of two chloroplast intergenic spacers. The chloroplast genetic diversity was relatively low (h T?=?0.659), with most genetic variance residing among populations (G ST?=?0.831, N ST?=?0.855, G ST??N ST). SAMOVA analysis indicated that populations clustered into six groups with little admixture among them (most groups were characterized by a unique hapotype). Pairwise difference among haplotypes and Fu??s Fs statistic indicated that populations of F. engleriana have not experienced recent sudden expansions. Both the phylogeographic and demographic patterns found in this study suggest that F. engleriana remained fragmented in multiple refugia throughout the Pleistocene climatic changes, and experienced limited both glacial and interglacial/postglacial expansion. The results of this study imply that long-term isolation among multiple refugia, coupled with little admixture among populations of different refugia provided numerous opportunities for population divergence and allopatric speciation, which might be a driving factor for the exceptionally broad temperate species diversity in southern China.  相似文献   

7.
Chinese cherry (Prunus pseudocerasus Lindl.) is a commercially valuable fruit crop in China. In order to obtain new insights into its evolutionary history and provide valuable recommendations for resource conservation, phylogeographic patterns of 26 natural populations (305 total individuals) from six geographic regions were analyzed using chloroplast and nuclear DNA fragments. Low levels of haplotype and nucleotide diversity were found in these populations, especially in landrace populations. It is likely that a combined effect of botanical characteristics impact the effective population size, such as inbreeding mating system, long life span, as well as vegetative reproduction. In addition, strong bottleneck effect caused by domestication, together with founder effect after dispersal and subsequent demographic expansion, might also accelerate the reduction of the genetic variation in landrace populations. Interestingly, populations from Longmen Mountain (LMM) and Daliangshan Mountain (DLSM) exhibited relatively higher levels of genetic diversity, inferring the two historical genetic diversity centers of the species. Moreover, moderate population subdivision was also detected by both chloroplast DNA (GST = 0.215; NST = 0.256) and nuclear DNA (GST = 0.146; NST = 0.342), respectively. We inferred that the episodes of efficient gene flow through seed dispersal, together with features of long generation cycle and inbreeding mating system, were likely the main contributors causing the observed phylogeographic patterns. Finally, factors that led to the present demographic patterns of populations from these regions and taxonomic varieties were also discussed.  相似文献   

8.
Aim We analysed variation in chloroplast DNA (cpDNA) in red maple (Acer rubrum L.) and silver maple (Acer saccharinum L.) across a large part of their geographic ranges. Acer rubrum is one of the most common and morphologically variable deciduous trees of eastern North America, while its sister species A. saccharinum has a more restricted habitat distribution and displays markedly less morphological variation. Our objective was to infer the impact of biogeographic history on cpDNA diversity and phylogeographic structure in both species. Location Deciduous forests of eastern North America. Methods We sequenced 1289 to 1645 bp of non‐coding cpDNA from A. rubrum (n = 258) and A. saccharinum (n = 83). Maximum parsimony networks and spatial analysis of molecular variance (SAMOVA) were used to analyse phylogeographic structure. Rarefaction analyses were used to compare genetic diversity. Results A total of 40 cpDNA haplotypes were recovered from A. rubrum (38 haplotypes) and A. saccharinum (7 haplotypes). Five of the seven A. saccharinum haplotypes were shared with nearby samples of A. rubrum. SAMOVA recovered four phylogeographic groups for A. rubrum in: (1) south‐eastern USA, (2) the Gulf and south‐eastern Coastal Plain, (3) the lower Mississippi River Valley, and (4) the central and northern regions of eastern North America. Acer saccharinum had significantly lower haplotype diversity than A. rubrum, and novel haplotypes in post‐glaciated northern limits of its range were shared with A. rubrum. Main conclusions This is the first study of A. rubrum to report a distinct phylogeographic group centred on the lower Mississippi River, and the first to examine data comparatively with A. saccharinum. We hypothesized that A. rubrum would display stronger phylogeographic structure and greater haplotype diversity than A. saccharinum because of its greater geographic range, and ecological and morphological variation. This hypothesis was supported by the cpDNA analysis. The sharing of cpDNA and chloroplast simple sequence repeat (cpSSR) haplotypes in areas of geographic overlap provides evidence of introgression, which led to an increase in haplotype diversity in both species, and to novel phylogeographic structure in A. rubrum. We recommend that introgression be considered, along with other potential causes, as an explanation for the phylogeographic structure of cpDNA in plants.  相似文献   

9.

Background

The origin of extraordinarily rich biodiversity in tropical forests is often attributed to evolution under stable climatic conditions over a long period or to climatic fluctuations during the recent Quaternary period. Here, we test these two hypotheses using Dracaena cambodiana, a plant species distributed in paleotropical forests.

Methods

We analyzed nucleotide sequence data of two chloroplast DNA (cpDNA: atpB-rbcL and trnD-trnT) regions and genotype data of six nuclear microsatellites from 15 populations (140 and 363 individuals, respectively) distributed in Indochina Peninsular and Hainan Island to infer the patterns of genetic diversity and phylogeographic structure. The population bottleneck and genetic drift were estimated based upon nuclear microsatellites data using the software programs BOTTLENECK and 2MOD. The lineage divergence times and past population dynamics based on cpDNA data were estimated using coalescent-based isolation-with-migration (IMa) and BEAST software programs.

Results

A significant phylogeographic structure (N ST = 0.876, G ST = 0.796, F ST-SSR = 0.329, R ST = 0.449; N ST>G ST, R ST>F ST-SSR, P<0.05) and genetic differentiation among populations were detected. Bottleneck analyses and Bayesian skyline plot suggested recent population reduction. The cpDNA haplotype network revealed the ancestral populations from the southern Indochina region expanded to northward. The most recent ancestor divergence time of D. cambodiana dated back to the Tertiary era and rapid diversification of terminal lineages corresponded to the Quaternary period.

Conclusions

The results indicated that the present distribution of genetic diversity in D. cambodiana was an outcome of Tertiary dispersal and rapid divergence during the Quaternary period under limited gene flow influenced by the uplift of Himalayan-Tibetan Plateau and Quaternary climatic fluctuations respectively. Evolutionary processes, such as extinction-recolonization during the Pleistocene may have contributed to the fast diversification in D. cambodiana.  相似文献   

10.
Understanding geographical pattern of genetic diversity and population structure is of great importance for formulating conservation and utilization strategies. In this study, we investigated the genetic diversity and population structure of 28 natural populations of Castanea mollissima in China using eight nuclear and six chloroplast microsatellite makers (nSSRs and cpSSRs). Populations from central China harbored the highest genetic diversity at both nSSR and cpSSR markers (nSSR: H E?=?0.705; cpSSR: H?=?0.461). The standardized measure of genetic differentiation estimated as G′ ST was 0.447 for nSSR and 0.803 for cpSSR, respectively. The GST-based pollen to seed flow ratio is 3.043, indicating that pollen flow is not extensive among C. mollissima populations. No obvious population genetic structure by geographical locations was found by STRUCTURE analysis based on nSSR data, and similarly, no signal of phylogeographic structure was detected for cpSSR analysis. Five boundaries defining zones of maximum genetic differences within the network of the C. mollissima populations were found, and the locations of those barriers were consistent with those of four mountains, i.e., Daloushan Mountain, Dabashan Mountain, Wushan Mountain, and Qingliangfeng Mountain, indicating that those mountains might act as genetic barriers obstructing the genetic exchange among natural C. mollissima populations. These results provide valuable baseline data for conservation and utilization of this species.  相似文献   

11.
Taxus cuspidata, a tree species with high economic value because of its anticancer properties, is experiencing severe reduction in populations across its range in China. We examined one chloroplast DNA (cpDNA) region (petA-psbE) and 9 nuclear simple sequence repeats (SSRs) loci variations among seven populations in the Changbai Mountains of China to investigate the levels of genetic diversity and population structure. A moderate level of haplotype diversity (HT = 0.625), low nuclear microsatellite diversity (HE = 0.261 ± 0.028), significant genetic differences (FST = 0.065) and substantial gene flow (Nm = 2.806) were observed. Most of the total genetic variation was partitioned within the population (87.8% and 94.0% for cpDNA and SSRs, respectively). Our haplotype identification permutation tests revealed that GST > NST, indicating an absence of phylogeographic structure in T. cuspidata. Neither STRUCTURE nor UPGMA analyses showed any geographic pattern in T. cuspidata populations. By comparatively analyzing the genetic diversity and survival situation of T. cuspidata, our results provide a theoretical foundation for the resource protection, utilization cultivation and breeding of this valuable plant.  相似文献   

12.
Aim Using the heather Erica scoparia s.l. as a model, this paper aims to test theoretical predictions that island populations are genetically less diverse than continental ones and to determine the extent to which island and continental populations are connected by pollen‐ and seed‐mediated gene flow. Location Macaronesia, Mediterranean, Atlantic fringe of Europe. Methods Patterns of genetic diversity are described based on variation at two chloroplast DNA (cpDNA) loci and one nuclear DNA (nDNA) locus for 109 accessions across the entire distribution range of the species. Global patterns of genetic differentiation were investigated using principal coordinates analysis. Genetic differentiation between island and continental areas, estimations of pollen‐ and seed‐mediated gene flow, and the presence of phylogeographical signal were assessed by means of Fst /NST (continental scale) and Fij/Nij (local scale). Extant and past distribution ranges of the species were inferred from niche modelling using layers describing present and Last Glacial Maximum (LGM) macroclimatic conditions. Results The Azores exhibited a significantly higher genetic diversity than the continent. The lowest levels of genetic differentiation were observed between the Azores and the western Mediterranean, and the diversity observed in the Azores resulted from at least two colonization waves. Within the Azores, kinship coefficients showed a significant and much steeper decrease with geographical distance in the cpDNA than in the nDNA. The distribution predicted by LGM models was markedly different from the current potential distribution, particularly in western Europe, where no suitable areas were predicted by LGM models, and along the Atlantic coast of the African continent, where LGM models predicted highly suitable climatic conditions. Main conclusions The higher diversity observed in Azorean than in continental populations is inconsistent with MacArthur and Wilson’s equilibrium model and derived theoretical population genetic expectations. This inverted pattern may be the result of extinction on the continent coupled with multiple island colonization events and subsequent allopatric diversification and lineage hybridization in the Azores. The results highlight the role of allopatric diversification in explaining diversification on islands and suggest that this process has played a much more significant role in shaping Azorean biodiversity than previously thought.  相似文献   

13.
Aim This study investigated the influence of contemporary habitat loss on the genetic diversity and structure of animal species using a common, but ecologically specialized, butterfly, Theclinesthes albocincta (Lepidoptera: Lycaenidae), as a model. Location South Australia. Methods We used amplified fragment length polymorphism (AFLP) and allozyme datasets to investigate the genetic structure and genetic diversity among populations of T. albocincta in a fragmented landscape and compared this diversity and structure with that of populations in two nearby landscapes that have more continuous distributions of butterflies and their habitat. Butterflies were sampled from 15 sites and genotyped, first using 363 informative AFLP bands and then using 17 polymorphic allozyme loci (n = 248 and 254, respectively). We complemented these analyses with phylogeographic information based on mitochondrial DNA (mtDNA) haplotype information derived from a previous study in the same landscapes. Results Both datasets indicated a relatively high level of genetic structuring across the sampling range (AFLP, FST = 0.34; allozyme, FST = 0.13): structure was greatest among populations in the fragmented landscape (AFLP, FST = 0.15; allozyme, FST = 0.13). Populations in the fragmented landscape also had significantly lower genetic diversity than populations in the other two landscapes: there were no detectable differences in genetic diversity between the two continuous landscapes. There was also evidence (r2 = 0.33) of an isolation by distance effect across the sampled range of the species. Main conclusions The multiple lines of evidence, presented within a phylogeographic context, support the hypothesis that contemporary habitat fragmentation has been a major driver of genetic erosion and differentiation in this species. Theclinesthes albocincta populations in the fragmented landscape are thus likely to be at greater risk of extinction because of reduced genetic diversity, their isolation from conspecific subpopulations in other landscapes, and other extrinsic forces acting on their small population sizes. Our study provides compelling evidence that habitat loss and fragmentation have significant rapid impacts on the genetic diversity and structure of butterfly populations, especially specialist species with particular habitat preferences and poor dispersal abilities.  相似文献   

14.
Aim Bryophytes exhibit apparently low rates of endemism in Macaronesia and differ from angiosperms in their diversity patterns by the widespread occurrence of endemics within and among archipelagos. This paper investigates the phylogeography of the leafy liverwort Radula lindenbergiana to determine: (1) whether or not morphologically cryptic diversification has occurred in Macaronesia, and (2) the relationships between Macaronesian and continental populations. Location Macaronesia, Europe, Africa. Methods Eighty‐four samples were collected across the species’ distribution range and sequenced at four chloroplast DNA (cpDNA) loci (atpB–rbcL, trnG, trnL and rps4). Phylogenetic reconstructions and Bayesian ancestral area reconstructions were used in combination with population genetics statistics (H, NST, FST) to describe the pattern of present genetic diversity in R. lindenbergiana and infer its biogeographic history. Results Patterns of genetic diversity in R. lindenbergiana exhibit a striking westwards gradient, wherein haplotype (0.90) and nucleotide (0.0038 ± 0.0019) diversity peak in Macaronesia, with a substantial endemic component. We found 20.9% of the genetic variance between biogeographic regions, and most pairwise FST comparisons between regions are significantly different from zero. The global NST (0.78) is significantly higher than the global FST (0.20), providing evidence for the presence of phylogeographic signal in the data. Ancestral area reconstructions suggest that the haplotypes currently found in western Europe share a Macaronesian common ancestor. Main conclusions The haplotype diversification exhibited by R. lindenbergiana in Macaronesia is comparable to that reported for many angiosperm groups at the species level. The apparent lack of radiation among Macaronesian bryophytes may thus reflect the reduced morphology of bryophytes in comparison with angiosperms. The high diversity found among Macaronesian haplotypes, especially in Madeira and the Canary Islands, and the significant NST/FST ratio between Macaronesia and all the other biogeographic regions (an indication that mutation rate exceeds dispersal rates) suggest that Macaronesian archipelagos could have served as a refugium during the Quaternary glaciations. Many haplotypes currently found in Europe share a Macaronesian common ancestor, and this further suggests that Macaronesia might have played a key role in the back‐colonization of the continent.  相似文献   

15.
Identifying factors governing the origin, distribution, and maintenance of Neotropical plant diversity is an enduring challenge. To explore the complex and dynamic historical processes that shaped contemporary genetic patterns for a Central American plant species, we investigated the spatial distribution of chloroplast haplotypes of a geographically and environmentally widespread epiphytic bromeliad with wind‐dispersed seeds, Catopsis nutans, in Costa Rica. We hypothesized that genetic discontinuities occur between northwestern and southwestern Pacific slope populations, resembling patterns reported for other plant taxa in the region. Using non‐coding chloroplast DNA from 469 individuals and 23 populations, we assessed the influences of geographic and environmental distance as well as historical climatic variation on the genetic structure of populations spanning >1200 m in elevation. Catopsis nutans revealed seven haplotypes with low within‐population diversity (mean haplotype richness = 1.2) and moderate genetic structure (FST = 0.699). Pairwise FST was significantly correlated with both geographic and environmental distance. The frequency of dominant haplotypes was significantly correlated with elevation. A cluster of nine Pacific lowland populations exhibited a distinct haplotype profile and contained five of the seven haplotypes, suggesting historical isolation and limited seed‐mediated gene flow with other populations. Paleodistribution models indicated lowland and upland habitats in this region were contiguous through past climatic oscillations. Based on our paleodistribution analysis and comparable prior phylogeographic studies, the genetic signature of recent climatic oscillations are likely superimposed upon the distribution of anciently divergent lineages. Our study highlights the unique phylogeographic history of a Neotropical plant species spanning an elevation gradient.  相似文献   

16.
Genetic structure and major climate factors may contribute to the distribution of genetic diversity of a highly valued oil tree species Xanthoceras sorbifolium (yellowhorn). Long‐term over utilization along with climate change is affecting the viability of yellowhorn wild populations. To preserve the species known and unknown valuable gene pools, the identification of genetic diversity “hotspots” is a prerequisite for their consideration as in situ conservation high priority. Chloroplast DNA (cpDNA) diversity was high among 38 natural populations (Hd = 0.717, K = 4.616, Tajmas’ D = ?0.22) and characterized by high genetic divergence (FST = 0.765) and relatively low gene flow (Nm = 0.03), indicating populations isolation reflecting the species’ habitat fragmentation and inbreeding depression. Six out of the studied 38 populations are defined as genetic diversity “hotspots.” The number and geographic direction of cpDNA mutation steps supported the species southwest to northeast migration history. Climatic factors such as extreme minimum temperature over 30 years indicated that the identified genetic “hotspots” are expected to experience 5°C temperature increase in next following 50 years. The results identified vulnerable genetic diversity “hotspots” and provided fundamental information for the species’ future conservation and breeding activities under the anticipated climate change. More specifically, the role of breeding as a component of a gene resource management strategy aimed at fulfilling both utilization and conservation goals.  相似文献   

17.
Previous phylogeographic studies of the warm-temperate zone in China focused on woody plants, but little attention was given to the climate-sensitive herbaceous plants. In this work, we implemented a phylogeographic survey on the perennial herb Achyranthes bidentata in China’s warm-temperate zone. The sequence variation of cpDNA and nDNA was examined across 209 individuals from 21 populations. A total of 11 chlorotypes and 26 ribotypes were identified. The cpDNA data showed weak population genetic differentiation and could not divide the 21 populations into different genetic groups. By contrast, the nDNA data revealed stronger genetic differentiation than cpDNA and could divide these populations into two genetic groups. The cpDNA and nDNA data both gave unambiguous signs of recent sudden population expansion. Based on the cpDNA and nDNA data, the estimated time of population expansion occurred at interglacial Marine Isotope Stage (MIS) 9 of the Penultimate Glaciation in China. The cpDNA and nDNA data suggested that the glaciation during this period deeply influenced the current distribution patterns and intraspecific divergence of A. bidentata. Our survey showed that A. bidentata tracked climatic oscillations by a large range of southward retreat into three main refugia during MIS 8, followed by the sudden northward expansion from these refugia during MIS 9.  相似文献   

18.
The Brazilian rosewood (Dalbergia nigra) is an endangered tree endemic to the central Brazilian Atlantic Forest, one of the world''s most threatened biomes. The population diversity, phylogeographic structure and demographic history of this species were investigated using the variation in the chloroplast DNA (cpDNA) sequences of 185 individuals from 19 populations along the geographical range of the species. Fifteen haplotypes were detected in the analysis of 1297 bp from two non-coding sequences, trnV-trnM and trnL. We identified a strong genetic structure (FST=0.62, P<0.0001), with a latitudinal separation into three phylogeographic groups. The two northernmost groups showed evidence of having maintained historically larger populations than the southernmost group. Estimates of divergence times between these groups pointed to vicariance events in the Middle Pleistocene (ca. 350 000–780 000 years ago). The recurrence of past climatic changes in the central part of the Atlantic forest, with cycles of forest expansion and contraction, may have led to repeated vicariance events, resulting in the genetic differentiation of these groups. Based on comparisons among the populations of large reserves and small, disturbed fragments of the same phylogeographic group, we also found evidence of recent anthropogenic effects on genetic diversity. The results were also analysed with the aim of contributing to the conservation of D. nigra. We suggest that the three phylogeographic groups could be considered as three distinct management units. Based on the genetic diversity and uniqueness of the populations, we also indicate priority areas for conservation.  相似文献   

19.
In phylogenetically related plant species, hybridization can influence their current genetic structure. Long-lasting hybridization may be related to persistence in shared glacial refugia, where the differential abilities of each species to survive could have provided adaptations to changing environmental conditions. In temperate South American forests at the Patagonia region, the pattern of Quaternary glaciations offered several opportunities for refuge. At mid-latitudes (42° to 44° S), particular topographic characteristics determined different glaciation patterns, defining the existence of a transitional zone. We studied two widespread Nothofagus species (Nothofagus pumilio, Nothofagus antarctica) characterized by contrasting plasticity. We screened 40 coupled populations with three cpDNA markers and found 14 different haplotypes. Both species presented significant phylogeographic structure (N ST????G ST, p?>?0.001), with two geographically segregated lineages (north?Csouth). A latitudinal cline in the distribution of genetic diversity was determined, with most variable populations in the north (35°?C41°?S). Population diversity diminished to southern latitudes, but a particular situation occurs between 42°S and 44°S. The transition zone, a putative refuge area, presented unique haplotypes. The more plastic species, N. antarctica, probably persisted in more refuge areas, which could be reflected in its higher levels of diversity. In these species, sympatric distribution explains introgression (IG?>?IG e), but the differential levels of haplotype sharing between N. pumilio and N. antarctica at population level are relevant to the understanding of phylogeographic patterns. Hybridization may have facilitated recruitment in the onset of postglacial colonization by middle to long-distance pollen dispersal. In the current scenario of climate change, the presence of hybrids with different plastic responses is of remarkable importance.  相似文献   

20.
Southeast China is one of the core areas of the Sino-Japanese floristic region and a hotspot of biodiversity in East Asia. This region has been considered as both a museum and a cradle of woody genera in China. Why a region with highly stable topography and climate could be a cradle of species diversity remains unclear. In this study, the phylogeographic pattern and genetic structure of Wikstroemia monnula, an endemic species to southeast China, were analyzed by sequencing four chloroplast DNA fragments (4679 bp in total) of 836 individuals from 39 populations. Extremely high diversity and endemism of chlorotypes were found. Out of 54 chlorotypes, 51 (94.44%) were private, with genetic diversity index (HT) near 1 (HT = 0.992), and 96.51% of the genetic variation occurring among populations, indicating that this species has undergone strong intraspecific differentiation and very limited migration. The correlational analysis showed that the population differentiation of W. monnula was driven not only via isolation by distance (IBD), but more importantly via isolation by environment (IBE). A significant phylogeographic structure was not found (NST = 0.979, GST = 0.833, P > 0.05); however, the spatial pattern of the sublineages of chlorotypes was largely consistent with the biogeographic boundaries on a smaller scale in the region. These results suggest that habitat heterogeneity in southeast China not only promoted speciation on a long time-scale, but still continues to impact population differentiation in recent times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号