首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Glandular secreting trichomes of cultivated tomato (Solanum lycopersicum) produce a wide array of volatile and nonvolatile specialized metabolites. Many of these compounds contribute to the characteristic aroma of tomato foliage and constitute a key part of the language by which plants communicate with other organisms in natural environments. Here, we describe a novel recessive mutation called odorless-2 (od-2) that was identified on the basis of an altered leaf-aroma phenotype. od-2 plants exhibit pleiotrophic phenotypes, including alterations in the morphology, density, and chemical composition of glandular trichomes. Type VI glandular trichomes isolated from od-2 leaves accumulate only trace levels of monoterpenes, sesquiterpenes, and flavonoids. Other foliar defensive compounds, including acyl sugars, glycoalkaloids, and jasmonate-regulated proteinase inhibitors, are produced in od-2 leaves. Growth of od-2 plants under natural field conditions showed that the mutant is highly susceptible to attack by an indigenous flea beetle, Epitrix cucumeris, and the Colorado potato beetle, Leptinotarsa decemlineata. The increased susceptibility of od-2 plants to Colorado potato beetle larvae and to the solanaceous specialist Manduca sexta was verified in no-choice bioassays. These findings indicate that Od-2 is essential for the synthesis of diverse trichome-borne compounds and further suggest that these compounds influence host plant selection and herbivore community composition under natural conditions.The plant epidermal surface provides a formidable protective barrier to invasion by pathogens and arthropod herbivores. Hair-like protuberances, called trichomes, are among the most conspicuous defense-related structures on the aerial epidermis of leaves, stems, and floral organs. Trichomes are typically classified morphologically as being either nonglandular or glandular. Nonglandular trichomes physically impede the movement of small arthropod herbivores on the plant surface. Molecular and ecological studies indicate that trichome density is both a highly adaptive and a functionally important trait for resistance to herbivory (Kennedy, 2003; Kivimaki et al., 2007). In-depth knowledge of the molecular mechanisms that control trichome development in Arabidopsis (Arabidopsis thaliana), which produces unicellular nonglandular trichomes, has provided significant insight into the genetic basis of variation in trichome habit (Marks, 1997; Karkkainen and Agren, 2002; Yoshida et al., 2009).In contrast to our understanding of nonglandular trichomes, much less is known about the development and ecological function of glandular trichomes, many of which are multicellular. These epidermal structures synthesize a diverse array of specialized (i.e. secondary) metabolites that exert toxic or repellent effects on myriad phytophagous animals (Kennedy, 2003; Shepherd et al., 2005; Schilmiller et al., 2008). Rupture of the cuticle upon insect contact releases gland contents, which can rapidly oxidize to form a sticky exudate that physically entraps small insects. Among the major classes of compounds involved in trichome-mediated resistance are terpenoids, alkaloids, flavonoids, and defensive proteins (Shepherd and Wagner, 2007; Schilmiller et al., 2008). Large-scale sequencing of ESTs isolated from purified glands has provided unprecedented insight into the biochemical pathways that operate in glandular trichomes (Lange et al., 2000; Aziz et al., 2005; Wang et al., 2008, 2009; Xie et al., 2008; Schilmiller et al., 2009a; Dai et al., 2010). Many key biosynthetic genes in these pathways have been identified and characterized (Iijima et al., 2004; Falara et al., 2008; Slocombe et al., 2008; Ben-Israel et al., 2009; Marks et al., 2009; Schilmiller et al., 2009a).Cultivated tomato (Solanum lycopersicum) and its wild relatives produce several different types of nonglandular and glandular trichomes on aerial tissues (Luckwill, 1943; Kang et al., 2010). The chemical composition of glandular trichomes varies significantly within and between tomato species (Antonious, 2001; Schilmiller et al., 2008; Besser et al., 2009). Acyl sugars secreted by Solanum pennellii type IV trichomes provide effective resistance to a wide range of insects (Goffreda et al., 1990; Rodriguez et al., 1993; Juvik et al., 1994). Methyl ketone and sesquiterpene derivatives produced in type VI glands of Solanum habrochaites also exert powerful toxic and repellent effects on numerous insect pests (Williams et al., 1980; Maluf et al., 2001; Antonious and Snyder, 2006). Recent studies indicate that trichomes are also an important component of induced anti-insect defenses that are regulated by the plant hormone jasmonate (JA). For example, the density of type VI trichomes on tomato leaves is regulated by the JA pathway (Li et al., 2004; Boughton et al., 2005; Peiffer et al., 2009). JA also plays a role in controlling the accumulation of defense-related terpenoids in type VI glands (Li et al., 2004; van Schie et al., 2007). Recent studies provide evidence that type VI trichomes accumulate JA and may function as sensors for detecting insect movement on the leaf surface (Peiffer et al., 2009). These collective observations highlight the importance of glandular trichomes in shaping plant-insect relations.Our current understanding of the role of trichomes in mediating S. lycopersicum interaction with arthropod herbivores comes mainly from insect bioassays performed under controlled laboratory conditions (Kennedy, 2003; Li et al., 2004; Bleeker et al., 2009; Peiffer et al., 2009; Kang et al., 2010). Much less is known about the ecological relevance of trichomes in tomato plants grown under more natural conditions in the field. Here, we report the characterization of a tomato mutant, odorless-2 (od-2), that was identified on the basis of an altered leaf-aroma phenotype. This mutant exhibits defects in the development and density of glandular trichomes. Detailed chemical analysis of isolated type VI glands showed that od-2 disrupts the production of diverse specialized metabolites, including volatile terpenes and flavonoids. Consistent with important ecological roles for these compounds in host plant selection and defense, we show that od-2 plants are highly susceptible to natural populations of insect herbivores. Our results suggest that trichome-based chemical defenses play a major role in the resistance of cultivated tomato to opportunistic herbivores and also influence herbivore community composition under natural conditions.  相似文献   

15.
16.
17.
Phytocystatins are potent inhibitors of cysteine proteases and have been shown to participate in senescence, seed and organ biogenesis, and plant defense. However, phytocystatins are generally poor inhibitors of the cysteine protease, bromelain, of pineapple (Ananas comosus). Here, we demonstrated that pineapple cystatin, AcCYS1, inhibited (>95%) stem and fruit bromelain. AcCYS1 is a unique cystatin in that it contains an extended N-terminal trunk (NTT) of 63 residues rich in alanine and glutamate. A signal peptide preceding the NTT is processed in vitro by microsomal membranes giving rise to a 27-kD species. AcCYS1 mRNA was present in roots and leaves but was most abundant in fruit. Using immunofluorescence and immunoelectron microscopy with an AcCYS1-specific antiserum, AcCYS1 was found in the apoplasm. Immunoblot analysis identified a 27-kD protein in fruit, roots, and leaves and a 15-kD species in mature ripe fruit. Ripe fruit extracts proteolytically removed the NTT of 27-kD AcCYS1 in vitro to produce the 15-kD species. Mass spectrometry analysis was used to map the primary cleavage site immediately after a conserved critical glycine-94. The AE-rich NTT was required to inhibit fruit and stem bromelain (>95%), whereas its removal decreased inhibition to 20% (fruit) and 80% (stem) and increased the dissociation equilibrium constant by 1.8-fold as determined by surface plasmon resonance assays. We propose that proteolytic removal of the NTT results in the decrease of the inhibitory potency of AcCYS1 against fruit bromelain during fruit ripening to increase tissue proteolysis, softening, and degradation.Phytocystatins are Cys protease inhibitors from plants that reside in the cystatin superfamily and contain a distinctive α-helix-forming sequence, [LVI]-[AGT]-[RKE]-[FY]-[AS]-[VI]-x-[EDQV]-[HYFQ]-N, in the main body (Margis et al., 1998). The most investigated phytocystatin is rice (Oryza sativa) oryzacystatin I (OC-I; Abe et al., 1987). Its three-dimensional structure (Nagata et al., 2000) resembles the structure of chicken egg white cystatin (Bode et al., 1988). These structural features of OC-I include a five-stranded antiparallel β-pleated sheet, which is wrapped around the α-helix. Two regions are predicted to reversibly bind to the active site of papain-like Cys proteases. They are the highly conserved QxVxG motif that is situated on a loop between the second and third β-strand and a conserved W on a loop between the fourth and fifth β-strand (Arai et al., 1991; Urwin et al., 1995). A conserved G immediately precedes the main body at the N terminus. The region preceding the conserved G is referred to as the N-terminal trunk (NTT) and has been shown to interact with Cys protease (Machleidt et al., 1989; Björk et al., 1995; Girard et al., 2007), but the role of the NTT in phytocystatins is less clear.Although the NTT of OC-I did not affect the inhibition of papain (Abe et al., 1988; Chen et al., 1992), the NTTs of other phytocystatins were subsequently shown to modulate the binding affinities to various enzymes (Urwin et al., 1995; Kiggundu et al., 2006). Some phytocystatins were predicted to possess an N-terminal signal peptide for transport into the lumen of the endoplasmic reticulum and/or a C-terminal extension, which may be involved in binding legumain-type Cys proteases (Lim et al., 1996; Womack et al., 2000; Martínez et al., 2005a, 2007; Abraham et al., 2006; Gianotti et al., 2006). Other phytocystatins, designated multicystatins, contain multiple copies of the main body (Kouzuma et al., 2000; Diop et al., 2004; Christova et al., 2006; Girard et al., 2007).Phytocystatins function in diverse biological processes, such as protein turnover during seed development and germination (Kuroda et al., 2001; Martínez et al., 2005c; Abraham et al., 2006; Kiyosaki et al., 2007; Valdés-Rodríguez et al., 2007), organogenesis (Corre-Menguy et al., 2002; Massonneau et al., 2005; Rivard et al., 2007), programmed cell death (Beers et al., 2000; Belenghi et al., 2003), fruit development (Ryan et al., 1998), and defense against a variety of pests and pathogens (Koiwa et al., 2000; Gholizadeh et al., 2005; Christova et al., 2006; Girard et al., 2007). Thus, phytocystatins inhibit both endogenous and exogenous Cys proteases. It is expected that cystatins have a high affinity for their endogenous cognate targets because they have coevolved functionally in the same cellular environment and the cystatin could control potentially damaging proteolytic activity (Otlewski et al., 2005). Similarly, exogenous targets require effective inhibitor-enzyme binding to confer resistance upon pathogen/herbivore attack (Kiggundu et al., 2006). The identification of natural targets of phytocystatins and the elucidation of their regulatory mechanisms are critical to improve our understanding of their roles in plants and for the development of practical applications (Urwin et al., 1997; Arai et al., 1998; Lilley et al., 2004).In pineapple (Ananas comosus), four major Cys proteases have been identified. They are the stem (Ritonja et al., 1989) and fruit bromelains (Yamada et al., 1976; Rowan et al., 1990) and unique ananain (Lee et al., 1997) and comosain (Rowan et al., 1990). Stem and fruit bromelains are encoded by distinct genes (Harrach et al., 1998; Jung et al., 2008) and share 68% sequence identity. They both contain signal peptides for entering the secretory pathway and propeptides for intramolecular inhibition and assisting protein folding. However, the primary species of bromelains that accumulate in plant cells have the propeptide removed (Yamada et al., 1976; Ritonja et al., 1989). Due to their broad substrate specificity and strong proteolytic activity, pineapple Cys proteases have become of considerable economical importance in the food and pharmaceutical industry (Rowan et al., 1990; Maurer, 2001). Fruit and stem bromelains are highly abundant and have been extensively studied (Vanhoof and Cooreman, 1997). Only kiwifruit (Actinidia deliciosa) cystatin has some inhibitory effect on stem bromelain (Rasaam and Laing, 2004). Here, we analyzed a ubiquitously expressed pineapple cystatin, AcCYS1, that we found to be secreted to the apoplast. AcCYS1 is unusual in that it contains an extended NTT of 63 residues that is rich in Ala and Glu. We showed that the NTT is important for complete inhibition of fruit and stem bromelain in the picomolar range and it is cleaved upon fruit ripening. Based on in vitro inhibition analysis against fruit and stem bromelain of three different species of AcCYS1, differing in the length of their NTT, we hypothesize that the cleavage of the NTT enhances the proteolytic activity of fruit bromelain during fruit ripening and senescence.  相似文献   

18.
To investigate sepal/petal/lip formation in Oncidium Gower Ramsey, three paleoAPETALA3 genes, O. Gower Ramsey MADS box gene5 (OMADS5; clade 1), OMADS3 (clade 2), and OMADS9 (clade 3), and one PISTILLATA gene, OMADS8, were characterized. The OMADS8 and OMADS3 mRNAs were expressed in all four floral organs as well as in vegetative leaves. The OMADS9 mRNA was only strongly detected in petals and lips. The mRNA for OMADS5 was only strongly detected in sepals and petals and was significantly down-regulated in lip-like petals and lip-like sepals of peloric mutant flowers. This result revealed a possible negative role for OMADS5 in regulating lip formation. Yeast two-hybrid analysis indicated that OMADS5 formed homodimers and heterodimers with OMADS3 and OMADS9. OMADS8 only formed heterodimers with OMADS3, whereas OMADS3 and OMADS9 formed homodimers and heterodimers with each other. We proposed that sepal/petal/lip formation needs the presence of OMADS3/8 and/or OMADS9. The determination of the final organ identity for the sepal/petal/lip likely depended on the presence or absence of OMADS5. The presence of OMADS5 caused short sepal/petal formation. When OMADS5 was absent, cells could proliferate, resulting in the possible formation of large lips and the conversion of the sepal/petal into lips in peloric mutants. Further analysis indicated that only ectopic expression of OMADS8 but not OMADS5/9 caused the conversion of the sepal into an expanded petal-like structure in transgenic Arabidopsis (Arabidopsis thaliana) plants.The ABCDE model predicts the formation of any flower organ by the interaction of five classes of homeotic genes in plants (Yanofsky et al., 1990; Jack et al., 1992; Mandel et al., 1992; Goto and Meyerowitz, 1994; Jofuku et al., 1994; Pelaz et al., 2000, 2001; Theißen and Saedler, 2001; Pinyopich et al., 2003; Ditta et al., 2004; Jack, 2004). The A class genes control sepal formation. The A, B, and E class genes work together to regulate petal formation. The B, C, and E class genes control stamen formation. The C and E class genes work to regulate carpel formation, whereas the D class gene is involved in ovule development. MADS box genes seem to have a central role in flower development, because most ABCDE genes encode MADS box proteins (Coen and Meyerowitz, 1991; Weigel and Meyerowitz, 1994; Purugganan et al., 1995; Rounsley et al., 1995; Theißen and Saedler, 1995; Theißen et al., 2000; Theißen, 2001).The function of B group genes, such as APETALA3 (AP3) and PISTILLATA (PI), has been thought to have a major role in specifying petal and stamen development (Jack et al., 1992; Goto and Meyerowitz, 1994; Krizek and Meyerowitz, 1996; Kramer et al., 1998; Hernandez-Hernandez et al., 2007; Kanno et al., 2007; Whipple et al., 2007; Irish, 2009). In Arabidopsis (Arabidopsis thaliana), mutation in AP3 or PI caused identical phenotypes of second whorl petal conversion into a sepal structure and third flower whorl stamen into a carpel structure (Bowman et al., 1989; Jack et al., 1992; Goto and Meyerowitz, 1994). Similar homeotic conversions for petal and stamen were observed in the mutants of the AP3 and PI orthologs from a number of core eudicots such as Antirrhinum majus, Petunia hybrida, Gerbera hybrida, Solanum lycopersicum, and Nicotiana benthamiana (Sommer et al., 1990; Tröbner et al., 1992; Angenent et al., 1993; van der Krol et al., 1993; Yu et al., 1999; Liu et al., 2004; Vandenbussche et al., 2004; de Martino et al., 2006), from basal eudicot species such as Papaver somniferum and Aquilegia vulgaris (Drea et al., 2007; Kramer et al., 2007), as well as from monocot species such as Zea mays and Oryza sativa (Ambrose et al., 2000; Nagasawa et al., 2003; Prasad and Vijayraghavan, 2003; Yadav et al., 2007; Yao et al., 2008). This indicated that the function of the B class genes AP3 and PI is highly conserved during evolution.It has been thought that B group genes may have arisen from an ancestral gene through multiple gene duplication events (Doyle, 1994; Theißen et al., 1996, 2000; Purugganan, 1997; Kramer et al., 1998; Kramer and Irish, 1999; Lamb and Irish, 2003; Kim et al., 2004; Stellari et al., 2004; Zahn et al., 2005; Hernandez-Hernandez et al., 2007). In the gymnosperms, there was a single putative B class lineage that duplicated to generate the paleoAP3 and PI lineages in angiosperms (Kramer et al., 1998; Theißen et al., 2000; Irish, 2009). The paleoAP3 lineage is composed of AP3 orthologs identified in lower eudicots, magnolid dicots, and monocots (Kramer et al., 1998). Genes in this lineage contain the conserved paleoAP3- and PI-derived motifs in the C-terminal end of the proteins, which have been thought to be characteristics of the B class ancestral gene (Kramer et al., 1998; Tzeng and Yang, 2001; Hsu and Yang, 2002). The PI lineage is composed of PI orthologs that contain a highly conserved PI motif identified in most plant species (Kramer et al., 1998). Subsequently, there was a second duplication at the base of the core eudicots that produced the euAP3 and TM6 lineages, which have been subject to substantial sequence changes in eudicots during evolution (Kramer et al., 1998; Kramer and Irish, 1999). The paleoAP3 motif in the C-terminal end of the proteins was retained in the TM6 lineage and replaced by a conserved euAP3 motif in the euAP3 lineage of most eudicot species (Kramer et al., 1998). In addition, many lineage-specific duplications for paleoAP3 lineage have occurred in plants such as orchids (Hsu and Yang, 2002; Tsai et al., 2004; Kim et al., 2007; Mondragón-Palomino and Theißen, 2008, 2009; Mondragón-Palomino et al., 2009), Ranunculaceae, and Ranunculales (Kramer et al., 2003; Di Stilio et al., 2005; Shan et al., 2006; Kramer, 2009).Unlike the A or C class MADS box proteins, which form homodimers that regulate flower development, the ability of B class proteins to form homodimers has only been reported in gymnosperms and in the paleoAP3 and PI lineages of some monocots. For example, LMADS1 of the lily Lilium longiflorum (Tzeng and Yang, 2001), OMADS3 of the orchid Oncidium Gower Ramsey (Hsu and Yang, 2002), and PeMADS4 of the orchid Phalaenopsis equestris (Tsai et al., 2004) in the paleoAP3 lineage, LRGLOA and LRGLOB of the lily Lilium regale (Winter et al., 2002), TGGLO of the tulip Tulipa gesneriana (Kanno et al., 2003), and PeMADS6 of the orchid P. equestris (Tsai et al., 2005) in the PI lineage, and GGM2 of the gymnosperm Gnetum gnemon (Winter et al., 1999) were able to form homodimers that regulate flower development. Proteins in the euAP3 lineage and in most paleoAP3 lineages were not able to form homodimers and had to interact with PI to form heterodimers in order to regulate petal and stamen development in various plant species (Schwarz-Sommer et al., 1992; Tröbner et al., 1992; Riechmann et al., 1996; Moon et al., 1999; Winter et al., 2002; Kanno et al., 2003; Vandenbussche et al., 2004; Yao et al., 2008). In addition to forming dimers, AP3 and PI were able to interact with other MADS box proteins, such as SEPALLATA1 (SEP1), SEP2, and SEP3, to regulate petal and stamen development (Pelaz et al., 2000; Honma and Goto, 2001; Theißen and Saedler, 2001; Castillejo et al., 2005).Orchids are among the most important plants in the flower market around the world, and research on MADS box genes has been reported for several species of orchids during the past few years (Lu et al., 1993, 2007; Yu and Goh, 2000; Hsu and Yang, 2002; Yu et al., 2002; Hsu et al., 2003; Tsai et al., 2004, 2008; Xu et al., 2006; Guo et al., 2007; Kim et al., 2007; Chang et al., 2009). Unlike the flowers in eudicots, the nearly identical shape of the sepals and petals as well as the production of a unique lip in orchid flowers make them a very special plant species for the study of flower development. Four clades (1–4) of genes in the paleoAP3 lineage have been identified in several orchids (Hsu and Yang, 2002; Tsai et al., 2004; Kim et al., 2007; Mondragón-Palomino and Theißen, 2008, 2009; Mondragón-Palomino et al., 2009). Several works have described the possible interactions among these four clades of paleoAP3 genes and one PI gene that are involved in regulating the differentiation and formation of the sepal/petal/lip of orchids (Tsai et al., 2004; Kim et al., 2007; Mondragón-Palomino and Theißen, 2008, 2009). However, the exact mechanism that involves the orchid B class genes remains unclear and needs to be clarified by more experimental investigations.O. Gower Ramsey is a popular orchid with important economic value in cut flower markets. Only a few studies have been reported on the role of MADS box genes in regulating flower formation in this plant species (Hsu and Yang, 2002; Hsu et al., 2003; Chang et al., 2009). An AP3-like MADS gene that regulates both floral formation and initiation in transgenic Arabidopsis has been reported (Hsu and Yang, 2002). In addition, four AP1/AGAMOUS-LIKE9 (AGL9)-like MADS box genes have been characterized that show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis (Hsu et al., 2003; Chang et al., 2009). Compared with other orchids, the production of a large and well-expanded lip and five small identical sepals/petals makes O. Gower Ramsey a special case for the study of the diverse functions of B class MADS box genes during evolution. Therefore, the isolation of more B class MADS box genes and further study of their roles in the regulation of perianth (sepal/petal/lip) formation during O. Gower Ramsey flower development are necessary. In addition to the clade 2 paleoAP3 gene OMADS3, which was previously characterized in our laboratory (Hsu and Yang, 2002), three more B class MADS box genes, OMADS5, OMADS8, and OMADS9, were characterized from O. Gower Ramsey in this study. Based on the different expression patterns and the protein interactions among these four orchid B class genes, we propose that the presence of OMADS3/8 and/or OMADS9 is required for sepal/petal/lip formation. Further sepal and petal formation at least requires the additional presence of OMADS5, whereas large lip formation was seen when OMADS5 expression was absent. Our results provide a new finding and information pertaining to the roles for orchid B class MADS box genes in the regulation of sepal/petal/lip formation.  相似文献   

19.
Globular and crystalloid chromoplasts were observed to be region specifically formed in sweet orange (Citrus sinensis) flesh and converted from amyloplasts during fruit maturation, which was associated with the composition of specific carotenoids and the expression of carotenogenic genes. Subsequent isobaric tag for relative and absolute quantitation (iTRAQ)-based quantitative proteomic analyses of purified plastids from the flesh during chromoplast differentiation and senescence identified 1,386 putative plastid-localized proteins, 1,016 of which were quantified by spectral counting. The iTRAQ values reflecting the expression abundance of three identified proteins were validated by immunoblotting. Based on iTRAQ data, chromoplastogenesis appeared to be associated with three major protein expression patterns: (1) marked decrease in abundance of the proteins participating in the translation machinery through ribosome assembly; (2) increase in abundance of the proteins involved in terpenoid biosynthesis (including carotenoids), stress responses (redox, ascorbate, and glutathione), and development; and (3) maintenance of the proteins for signaling and DNA and RNA. Interestingly, a strong increase in abundance of several plastoglobule-localized proteins coincided with the formation of plastoglobules in the chromoplast. The proteomic data also showed that stable functioning of protein import, suppression of ribosome assembly, and accumulation of chromoplast proteases are correlated with the amyloplast-to-chromoplast transition; thus, these processes may play a collective role in chromoplast biogenesis and differentiation. By contrast, the chromoplast senescence process was inferred to be associated with significant increases in stress response and energy supply. In conclusion, this comprehensive proteomic study identified many potentially new plastid-localized proteins and provides insights into the potential developmental and molecular mechanisms underlying chromoplast biogenesis, differentiation, and senescence in sweet orange flesh.Chromoplasts are special organelles with superior ability to synthesize and store massive amounts of carotenoids, bringing vivid red, orange, and yellow colors to many flowers, fruits, and vegetables (Li and Yuan, 2013). Chromoplasts exhibit various morphologies, such as crystalline, globular, tubular, and membranous structures (Egea et al., 2010). The relationship between the architecture and carotenoid composition has been well stated in diverse pepper (Capsicum annuum) and tomato (Solanum lycopersicum) fruits (Kilcrease et al., 2013; Nogueira et al., 2013). Crystalline bodies have been observed in carrot (Daucus carota; Frey-Wyssling and Schwegler, 1965) and tomato (Harris and Spurr, 1969), which predominantly consist of β-carotene and lycopene, respectively. Globular and/or tubular-globular chromoplasts, in which numerous lipid droplets (also named plastoglobules), which act as passive storage compartments for triglycerides, sterol ester, and some pigments, are accumulated, were described for yellow fruits from kiwi (Actinidia deliciosa), papaya (Carica papaya), and mango (Mangifera indica), which contain lutein, β-cryptoxanthin, and β-carotene as the major pigments, respectively (Vasquez-Caicedo et al., 2006; Montefiori et al., 2009; Schweiggert et al., 2011). Carotenoid composition has been reported to be regulated by the expression of carotenogenic genes in the flesh of various citrus fruits differing in their internal colors (Fanciullino et al., 2006, 2008). Chromoplasts are frequently derived from fully developed chloroplasts, as seen during fruit ripening from green to red or yellow fruits in tomato and pepper (Egea et al., 2010). In some cases, chromoplasts also arise from nonphotosynthetic plastids, such as colorless proplastids, leucoplasts, or amyloplasts (Knoth et al., 1986; Schweiggert et al., 2011). To date, most studies on chromoplast differentiation have been focused on the synthesis of carotenoids by combining biochemical and molecular analyses (Cazzonelli and Pogson, 2010; Egea et al., 2010; Bian et al., 2011; Li and Yuan, 2013), and little is known about the molecular mechanisms underlying chromoplast biogenesis (Li and Yuan, 2013).Recently, proteomics has become an efficient tool to study the protein composition of subcellular organelles such as chromoplasts and their dynamic changes during the development of a particular plant organ/tissue. The majority of chromoplast-related studies are concerned with the functions of these organelles in various crops, such as pepper, tomato, watermelon (Citrulis lanatus), carrot, cauliflower (Brassica oleracea), and papaya (Siddique et al., 2006; Wang et al., 2013). However, only a few of such studies addressed the mechanisms underlying plastid differentiation, such as the transition from proplastid to chloroplast in maize (Zea mays; Majeran et al., 2010), from etioplast to chloroplast in pea (Pisum sativum; Kanervo et al., 2008) and rice (Oryza sativa; Kleffmann et al., 2007), and from chloroplast to chromoplast in tomato (Barsan et al., 2012). In tomato, chromoplastogenesis appears to be associated with major metabolic shifts, including a strong decrease in abundance of the proteins involved in light reaction and an increase in terpenoid biosynthesis and stress-response proteins (Barsan et al., 2012). These changes in proteins are in agreement with the structural changes occurring in tomato during fruit ripening, which is characterized by the loss of chlorophyll and the synthesis of colored compounds. Chromoplast differentiation from nonphotosynthetic plastids occurs frequently in a number of plant tissues, such as watermelon flesh and carrot root (Kim et al., 2010; Wang et al., 2013). However, to the best of our knowledge, no large-scale proteomic study for understanding this developmental process has been reported.Citrus is one of the most economically important fruit crops in the world. Different from the model fruit tomato, which represents climacteric fruits, citrus shows nonclimacteric characteristics during fruit maturation. Additionally, citrus fruits exhibit a unique anatomical fruit structure consisting of two major sections, the pericarp and the edible flesh. Considerable progress has been made in the understanding of chromoplast differentiation in the pericarp of citrus fruits (Eilati et al., 1969; Iglesias et al., 2007), which is a process similar to that of tomato and pepper (Egea et al., 2010). However, little is known about the molecular basis of chromoplast differentiation in the edible flesh, even though there is increasing evidence suggesting an essential role of carotenoid synthesis in inducing chromoplast differentiation (Egea et al., 2010; Bian et al., 2011; Li and Yuan, 2013). Recently, we successfully isolated and purified intact chromoplasts containing a large number of plastoglobules from the flesh of sweet orange (Citrus sinensis) fruits at the maturation stage (Zeng et al., 2011). The same method has also been used successfully to isolate plastids from sweet orange flesh in earlier maturation stages (Zeng et al., 2014), thus making comparative and quantitative proteomic analyses of plastid differentiation possible. In this study, we investigated how ultrastructural changes of plastids/chromoplasts during sweet orange fruit maturation might be associated with changes in the composition of carotenoids and the expression of carotenogenic genes in red and yellow flesh of the fruits. Furthermore, we employed the isobaric tag for relative and absolute quantitation (iTRAQ)-based technology to investigate how protein compositional changes might be correlated with metabolic and structural changes in the plastids of sweet orange flesh during their transformation from amyloplasts to chromoplasts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号