首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Akt regulates growth by directly phosphorylating Tsc2   总被引:3,自引:0,他引:3  
The direct mechanism by which the serine/threonine kinase Akt (also known as protein kinase B (PKB)) regulates cell growth is unknown. Here, we report that Drosophila melanogaster Akt/PKB stimulates growth by phosphorylating the tuberous sclerosis complex 2 (Tsc2) tumour suppressor and inhibiting formation of a Tsc1-Tsc2 complex. We show that Akt/PKB directly phosphorylates Drosophila Tsc2 in vitro at the conserved residues, Ser 924 and Thr 1518. Mutation of these sites renders Tsc2 insensitive to Akt/PKB signalling, increasing the stability of the Tsc1-Tsc2 complex within the cell. Stimulating Akt/PKB signalling in vivo markedly increases cell growth/size, disrupts the Tsc1-Tsc2 complex and disturbs the distinct subcellular localization of Tsc1 and Tsc2. Furthermore, all Akt/PKB growth signals are blocked by expression of a Tsc2 mutant lacking Akt phosphorylation sites. Thus, Tsc2 seems to be the critical target of Akt in mediating growth signals for the insulin signalling pathway.  相似文献   

2.
Potter CJ  Huang H  Xu T 《Cell》2001,105(3):357-368
Tuberous sclerosis complex is a dominant disorder that leads to the development of benign tumors in multiple organs. We have isolated a mutation in the Drosophila homolog of TSC1 (Tsc1). Cells mutant for Tsc1 are dramatically increased in size yet differentiate normally. Organ size is also increased in tissues that contain a majority of mutant cells. Clones of Tsc1 mutant cells in the imaginal discs undergo additional divisions but retain normal ploidy. We also show that the Tsc1 protein binds to Drosophila Tsc2 in vitro. Overexpression of Tsc1 or Tsc2 alone in the wing and eye has no effect, but co-overexpression leads to a decrease in cell size, cell number, and organ size. Genetic epistasis data are consistent with a model that Tsc1 and Tsc2 function together in the insulin signaling pathway.  相似文献   

3.
Target of Rapamycin (TOR) mediates a signalling pathway that couples amino acid availability to S6 kinase (S6K) activation, translational initiation and cell growth. Here, we show that tuberous sclerosis 1 (Tsc1) and Tsc2, tumour suppressors that are responsible for the tuberous sclerosis syndrome, antagonize this amino acid-TOR signalling pathway. We show that Tsc1 and Tsc2 can physically associate with TOR and function upstream of TOR genetically. In Drosophila melanogaster and mammalian cells, loss of Tsc1 and Tsc2 results in a TOR-dependent increase of S6K activity. Furthermore, although S6K is normally inactivated in animal cells in response to amino acid starvation, loss of Tsc1-Tsc2 renders cells resistant to amino acid starvation. We propose that the Tsc1-Tsc2 complex antagonizes the TOR-mediated response to amino acid availability. Our studies identify Tsc1 and Tsc2 as regulators of the amino acid-TOR pathway and provide a new paradigm for how proteins involved in nutrient sensing function as tumour suppressors.  相似文献   

4.
Insulin signaling in osteoblasts regulates global energy balance by stimulating the production of osteocalcin, a bone-derived protein that promotes insulin production and action. To identify the signaling pathways in osteoblasts that mediate insulin''s effects on bone and energy metabolism, we examined the function of the tuberous sclerosis 2 (Tsc2) protein, a key target important in coordinating nutrient signaling. Here, we show that loss of Tsc2 in osteoblasts constitutively activates mTOR and destabilizes Irs1, causing osteoblasts to differentiate poorly and become resistant to insulin. Young Tsc2 mutant mice demonstrate hypoglycemia with increased levels of insulin and undercarboxylated osteocalcin. However, with age, Tsc2 mutants develop metabolic features similar to mice lacking the insulin receptor in the osteoblast, including peripheral adiposity, hyperglycemia, and decreased pancreatic β cell mass. These metabolic abnormalities appear to result from chronic elevations in undercarboxylated osteocalcin that lead to downregulation of the osteocalcin receptor and desensitization of the β cell to this hormone. Removal of a single mTOR allele from the Tsc2 mutant mice largely normalizes the bone and metabolic abnormalities. Together, these findings suggest that Tsc2 serves as a key checkpoint in the osteoblast that is required for proper insulin signaling and acts to ensure normal bone acquisition and energy homeostasis.  相似文献   

5.
6.
Mutations in either TSC1 or TSC2 cause tuberous sclerosis complex, an autosomal dominant disorder characterized by seizures, mental retardation, and benign tumors of the skin, brain, heart, and kidneys. Homologs for the TSC1 and TSC2 genes have been identified in mouse, rat, Fugu, Drosophila, and in the yeast Schizosaccharomyces pombe. Here we show that S. pombe lacking tsc1+ or tsc2+ have similar phenotypes including decreased arginine uptake, decreased expression of three amino acid permeases, and low intracellular levels of four members of the arginine biosynthesis pathway. Recently, the small GTPase Rheb was identified as a target of the GTPase-activating domain of tuberin in mammalian cells and in Drosophila. We show that the defect in arginine uptake in cells lacking tsc2+ is rescued by the expression of a dominant negative form of rhb1+, the Rheb homolog in S. pombe, but not by expressing wild-type rhb1+. Expression of the tsc2+ gene with a patient-derived mutation within the GAP domain did not rescue the arginine uptake defect in tsc2+ mutant yeast. Taken together, these findings support a model in which arginine uptake is regulated through tsc1+, tsc2+, and rhb1+ in S. pombe and also suggest a role for the Tsc1 and Tsc2 proteins in amino acid biosynthesis and sensing.  相似文献   

7.
Tapon N  Ito N  Dickson BJ  Treisman JE  Hariharan IK 《Cell》2001,105(3):345-355
The inherited human disease tuberous sclerosis, characterized by hamartomatous tumors, results from mutations in either TSC1 or TSC2. We have characterized mutations in the Drosophila Tsc1 and Tsc2/gigas genes. Inactivating mutations in either gene cause an identical phenotype characterized by enhanced growth and increased cell size with no change in ploidy. Overall, mutant cells spend less time in G1. Coexpression of both Tsc1 and Tsc2 restricts tissue growth and reduces cell size and cell proliferation. This phenotype is modulated by manipulations in cyclin levels. In postmitotic mutant cells, levels of Cyclin E and Cyclin A are elevated. This correlates with a tendency for these cells to reenter the cell cycle inappropriately as is observed in the human lesions.  相似文献   

8.
Human Thioredoxin-1 (hTrx-1) is a small redox protein with a molecular weight of 12 kDa that contains two cysteine residues found in its catalytic site. HTrx-1 plays an important role in cell growth, apoptosis, and cancer patient prognosis. Recently, we have demonstrated that hTrx-1 binds to the C2 domain of the human tumor suppressor, PTEN, in a redox dependent manner. This binding leads to the inhibition of PTEN lipid phosphatase activity in mammalian tissue culture systems. In this study, we show that over-expression of hTrx-1 in Drosophila melanogaster promotes cell growth and proliferation during eye development as measured by eye size and ommatidia size. Furthermore, hTrx-1 rescues the small eye phenotype induced by the over-expression of PTEN. We demonstrate that this rescue of the PTEN-induced eye size phenotype requires cysteine-218 in the C2 domain of PTEN. We also show that hTrx-1 over-expression results in increased Akt phosphorylation in fly head extracts supporting our observations that the hTrx-1-induced eye size increase results from the inhibition of PTEN activity. Our study confirms the redox regulation of PTEN through disulfide bond formation with the hTrx-1 in Drosophila and suggests conserved mechanisms for thioredoxins and their interactions with the phosphatidylinositol-3-kinase signaling pathway in humans and fruit flies.  相似文献   

9.
Tuberous sclerosis complex (TSC) is a genetic disease characterized by multiorgan benign tumors as well as neurological manifestations. Epilepsy and autism are two of the more prevalent neurological complications and are usually severe. TSC is caused by mutations in either the TSC1 (encodes hamartin) or the TSC2 (encodes tuberin) genes with TSC2 mutations being associated with worse outcomes. Tuberin contains a highly conserved GTPase‐activating protein (GAP) domain that indirectly inhibits mammalian target of rapamycin complex 1 (mTORC1). mTORC1 dysregulation is currently thought to cause much of the pathogenesis in TSC but mTORC1‐independent mechanisms may also contribute. We generated a novel conditional allele of Tsc2 by flanking exons 36 and 37 with loxP sites. Mice homozygous for this knock‐in Tsc2 allele are viable and fertile with normal appearing growth and development. Exposure to Cre recombinase then creates an in‐frame deletion involving critical residues of the GAP domain. Homozygous conditional mutant mice generated using Emx1Cre have increased cortical mTORC1 signaling, severe developmental brain anomalies, seizures, and die within 3 weeks. We found that the normal levels of the mutant Tsc2 mRNA, though GAP‐deficient tuberin protein, appear unstable and rapidly degraded. This novel animal model will allow further study of tuberin function including the requirement of the GAP domain for protein stability. genesis 51:284–292. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
TBK1 responds to microbes to initiate cellular responses critical for host innate immune defense. We found previously that TBK1 phosphorylates mTOR (mechanistic target of rapamycin) on S2159 to increase mTOR complex 1 (mTORC1) signaling in response to the growth factor EGF and the viral dsRNA mimetic poly(I:C). mTORC1 and the less well studied mTORC2 respond to diverse cues to control cellular metabolism, proliferation, and survival. Although TBK1 has been linked to Akt phosphorylation, a direct relationship between TBK1 and mTORC2, an Akt kinase, has not been described. By studying MEFs lacking TBK1, as well as MEFs, macrophages, and mice bearing an Mtor S2159A knock-in allele (MtorA/A) using in vitro kinase assays and cell-based approaches, we demonstrate here that TBK1 activates mTOR complex 2 (mTORC2) directly to increase Akt phosphorylation. We find that TBK1 and mTOR S2159 phosphorylation promotes mTOR-dependent phosphorylation of Akt in response to several growth factors and poly(I:C). Mechanistically, TBK1 coimmunoprecipitates with mTORC2 and phosphorylates mTOR S2159 within mTORC2 in cells. Kinase assays demonstrate that TBK1 and mTOR S2159 phosphorylation increase mTORC2 intrinsic catalytic activity. Growth factors failed to activate TBK1 or increase mTOR S2159 phosphorylation in MEFs. Thus, basal TBK1 activity cooperates with growth factors in parallel to increase mTORC2 (and mTORC1) signaling. Collectively, these results reveal cross talk between TBK1 and mTOR, key regulatory nodes within two major signaling networks. As TBK1 and mTOR contribute to tumorigenesis and metabolic disorders, these kinases may work together in a direct manner in a variety of physiological and pathological settings.  相似文献   

11.
Tuberous sclerosis complex 1 (Tsc1) is a tumor suppressor negatively regulating mammalian target of rapamycin complex 1 (mTORC1). It is reported that mice lacking Tsc1 gene in oocytes show depletion of primordial follicles, resulting in premature ovarian failure and subsequent infertility. A recent study indicated that deletion of Tsc1 in somatic cells of the reproductive tract caused infertility of female mice. However, it is not known whether specific disruption of Tsc1 in granulosa cells influences the reproductive activity of female mice. To clarify this problem, we mated Tsc1flox/flox mice with transgenic mice strain expressing cyp19-cre which exclusively expresses in granulosa cells of the ovary. Our results demonstrated that Tsc1flox/flox; cyp19-cre mutant mice were fertile, ovulating more oocytes and giving birth to more pups than control Tsc1flox/flox mice. Progressive accumulation of corpora lutea occurred in the Tsc1flox/flox; cyp19-cre mutant mice with advanced age. These phenotypes could be explained by the elevated activity of mTORC1, as indicated by increased phosphorylation of rpS6, a substrate of S6 in the Tsc1flox/flox; cyp19-cre mutant granulosa cells. In addition, rapamycin, a specific mTORC1 inhibitor, effectively rescued the phenotype caused by increased mTORC1 activity in the Tsc1cko ovaries. Our data suggest that conditional knockout of Tsc1 in granulosa cells promotes reproductive activity in mice.  相似文献   

12.
Sen B  Wolf DC  Hester SD 《Mutation research》2004,549(1-2):213-224
Hereditary renal cell carcinoma (RCC) in Eker rats results from an inherited insertional mutation in the Tsc2 tumor suppressor gene and provides a valuable experimental model to characterize the function of the Tsc2 gene product, tuberin in vivo. The Tsc2 mutation predisposes the Eker rat to develop renal tumors at an early age. The exact mechanism of Tsc2 mediated tumor suppression is not known, however, there is evidence that it is most likely mediated by changes in cell cycle regulation via the PI3K/Akt pathway. The present study was designed to identify if gene expression was different in Tsc2 heterozygous mutant rat kidney compared to wild-type and if any of those differences are associated with tumorigenesis. cDNA microarray analysis of the untreated Tsc2 (+/-) mutant Long Evans (Eker) rat was compared to the Tsc2 (+/+) wild-type Long Evans rat to search for patterns that might be indicative of the intrinsic role of Tsc2. Of 4395 genes queried, 3.2% were significantly altered in kidneys from heterozygous mutant rats, of which 110 (76%) were up-regulated and 34 (24%) were down-regulated relative to the wild-type. The genes with altered expression belonged to the functional categories of cell cycle regulation, cell proliferation, cell adhesion and endocytosis. Many of these genes appear to be directly or indirectly regulated by the PI3K/Akt pathway. In addition to the PI3K/Akt pathway, other signaling pathways were also differentially expressed in Tsc2 mutant Eker rat kidneys compared to wild-type rats. The gene expression profiles of the Tsc2 heterozygous mutant and wild-type animals highlights new pathways for investigation that may be associated with the tumorigenic activity of tuberin loss and correlate with the enhanced susceptibility of the Tsc2 mutant animal's tendency to develop renal cell carcinoma.  相似文献   

13.
Mammalian target of rapamycin complex 2 (mTORC2) is a key activator of protein kinases that act downstream of insulin and growth factor signaling. Here we report that mice lacking the essential mTORC2 component rictor in liver (Lrictor(KO)) are unable to respond normally to insulin. In response to insulin, Lrictor(KO) mice failed to inhibit hepatic glucose output. Lrictor(KO) mice also fail to develop hepatic steatosis on a high fat diet and manifest half-normal serum cholesterol levels. This is accompanied by lower levels of expression of SREBP-1c and SREBP-2 and genes of fatty acid and cholesterol biosynthesis. Lrictor(KO) mice had defects in insulin-stimulated Akt Ser-473 and Thr-308 phosphorylation, leading to decreased phosphorylation of Akt substrates FoxO, GSK-3β, PRAS40, AS160, and Tsc2. Lrictor(KO) mice also manifest defects in insulin-activated mTORC1 activity, evidenced by decreased S6 kinase and Lipin1 phosphorylation. Glucose intolerance and insulin resistance of Lrictor(KO) mice could be fully rescued by hepatic expression of activated Akt2 or dominant negative FoxO1. However, in the absence of mTORC2, forced Akt2 activation was unable to drive hepatic lipogenesis. Thus, we have identified an Akt-independent relay from mTORC2 to hepatic lipogenesis that separates the effects of insulin on glucose and lipid metabolism.  相似文献   

14.
The tumor suppressors Tsc1 and Tsc2 form the tuberous sclerosis complex (TSC), a regulator of mTOR activity. Tsc1 stabilizes Tsc2; however, the precise mechanism involved remains elusive. The molecular chaperone heat‐shock protein 90 (Hsp90) is an essential component of the cellular homeostatic machinery in eukaryotes. Here, we show that Tsc1 is a new co‐chaperone for Hsp90 that inhibits its ATPase activity. The C‐terminal domain of Tsc1 (998–1,164 aa) forms a homodimer and binds to both protomers of the Hsp90 middle domain. This ensures inhibition of both subunits of the Hsp90 dimer and prevents the activating co‐chaperone Aha1 from binding the middle domain of Hsp90. Conversely, phosphorylation of Aha1‐Y223 increases its affinity for Hsp90 and displaces Tsc1, thereby providing a mechanism for equilibrium between binding of these two co‐chaperones to Hsp90. Our findings establish an active role for Tsc1 as a facilitator of Hsp90‐mediated folding of kinase and non‐kinase clients—including Tsc2—thereby preventing their ubiquitination and proteasomal degradation.  相似文献   

15.
The tuberous sclerosis gene products Tsc1 and Tsc2 behave as tumor suppressors by restricting cell growth, a function conserved among metazoans. Recent evidence has indicated that hyperactivation of S6 kinase 1 (S6K1) may represent an important biochemical change in the development of tuberous sclerosis-associated lesions. We show here that deletion of either Tsc1 or Tsc2 or expression of the Rheb (Ras homolog enriched in brain) GTPase leads to hyperphosphorylation of S6K1 at a subset of regulatory sites, particularly those of two essential residues functionally conserved among AGC superfamily serine/threonine kinases, i.e. the activation loop (T-loop; Thr-229) and the hydrophobic motif (H-motif; Thr-389). These sites are reciprocally and dose-dependently regulated when S6K1 is coexpressed with the Tsc1-Tsc2 complex. Mutations that render S6K1 mTOR (mammalian target of rapamycin)-resistant also protect S6K1 activity and phosphorylation from down-regulation by Tsc1/2. We demonstrate that two disease-associated mutations in Tsc2 fail to negatively regulate S6K1 activity concomitant with a failure to modify T-loop and H-motif phosphorylation. Finally, we identify one pathological Tsc2 mutation that retains its ability to negatively regulate S6K1, suggesting that, in some cases, tuberous sclerosis may develop independently of S6K1 hyperactivation. These results also highlight the importance of dual control of T-loop and H-motif phosphorylation of S6K1 by the Tsc1-Tsc2 complex.  相似文献   

16.

Background

p27kip1 (p27) is a multifunctional protein implicated in regulation of cell cycling, signal transduction, and adhesion. Its activity is controlled in part by Phosphatylinositol-3-Kinase (PI3K)/Akt1 signaling, and disruption of this regulatory connection has been identified in human breast cancers. The serine/threonine protein kinase Akt1 directly phosphorylates p27, so identifying the modified residue(s) is essential for understanding how it regulates p27 function. Various amino acids have been suggested as potential targets, but recent attention has focused on threonine 157 (T157) because it is located in a putative Akt1 consensus site. However, T157 is not evolutionarily conserved between mouse and human. We therefore re-evaluated Akt1 phosphorylation of p27 using purified proteins and in cells.

Results

Here we show purified Akt1 phosphorylates human and mouse p27 equally well. Phospho-peptide mapping indicates Akt1 targets multiple sites conserved in both species, while phospho-amino acid analysis identifies the targeted residues as serine rather than threonine. P27 deletion mutants localized these sites to the N-terminus, which contains the major p27 phosphorylation site in cells (serine 10). P27 phosphorylated by Akt1 was detected by a phospho-S10 specific antibody, confirming this serine was targeted. Akt1 failed to phosphorylate p27S10A despite evidence of a second site from mapping experiments. This surprising result suggested S10 phosphorylation might be required for targeting the second site. We tested this idea by replacing S10 with threonine, which as expected led to the appearance of phospho-threonine. Phospho-serine was still present, however, confirming Akt1 sequentially targets multiple serines in this region. We took two approaches in an attempt to explain why different residues were previously implicated. A kinetic analysis revealed a putative Akt1 binding site in the C-terminus, which may explain why mutations in this region affect p27 phosphorylation. Furthermore, commercially available recombinant Akt1 preparations exhibit striking differences in substrate specificity and site selectivity. To confirm S10 is a relevant site, we first showed that full-length wild type Akt1 purified from mammalian cells phosphorylates both human and mouse p27 on S10. Finally, we found that in cultured cells under physiologically relevant conditions such as oxidative stress or growth factor deprivation, endogenous Akt1 causes p27 accumulation by phosphorylating S10.

Conclusion

Identifying where Akt1 phosphorylates p27 is essential for understanding its functional implications. We found that full-length wild type Akt1 – whether purified, transiently overexpressed in cells, or activated in response to cellular stress – phosphorylates p27 at S10, a noncanonical but evolutionarily conserved site known to regulate p27 activity and stability. Using recombinant Akt1 recapitulating this specificity, we showed modification of p27S10 also leads to phosphorylation of an adjacent serine. These results integrate PI3K/Akt1 signaling in response to stress with p27 regulation through its major phosphorylation site in cells, and thus identify new avenues for understanding p27 deregulation in human cancers.  相似文献   

17.
Serine palmitoyltransferase catalyzes the first step of sphingolipid synthesis, condensation of serine and palmitoyl CoA to form the long chain base 3-ketosphinganine. The LCB1/TSC2 and LCB2/TSC1 genes encode homologous proteins of the alpha-oxoamine synthase family required for serine palmitoyltransferase activity. The other alpha-oxoamine synthases are soluble homodimers, but serine palmitoyltransferase is a membrane-associated enzyme composed of at least two subunits, Lcb1p and Lcb2p. Here, we report the characterization of a third gene, TSC3, required for optimal 3-ketosphinganine synthesis in Saccharomyces cerevisiae. S. cerevisiae cells lacking the TSC3 gene have a temperature-sensitive lethal phenotype that is reversed by supplying 3-ketosphinganine, dihydrosphingosine, or phytosphingosine in the growth medium. The tsc3 mutant cells have severely reduced serine palmitoyltransferase activity. The TSC3 gene encodes a novel 80-amino acid protein with a predominantly hydrophilic amino-terminal half and a hydrophobic carboxyl terminus that is membrane-associated. Tsc3p coimmunoprecipitates with Lcb1p and/or Lcb2p but does not bind as tightly as Lcb1p and Lcb2p bind to each other. Lcb1p and Lcb2p remain tightly associated with each other and localize to the membrane in cells lacking Tsc3p. However, Lcb2p is unstable in cells lacking Lcb1p and vice versa.  相似文献   

18.
Rictor is an essential component of mTOR (mammalian target of rapamycin) complex 2 (mTORC2), a kinase complex that phosphorylates Akt at Ser473 upon activation of phosphatidylinositol 3-kinase (PI-3 kinase). Since little is known about the role of either rictor or mTORC2 in PI-3 kinase-mediated physiological processes in adult animals, we generated muscle-specific rictor knockout mice. Muscle from male rictor knockout mice exhibited decreased insulin-stimulated glucose uptake, and the mice showed glucose intolerance. In muscle lacking rictor, the phosphorylation of Akt at Ser473 was reduced dramatically in response to insulin. Furthermore, insulin-stimulated phosphorylation of the Akt substrate AS160 at Thr642 was reduced in rictor knockout muscle, indicating a defect in insulin signaling to stimulate glucose transport. However, the phosphorylation of Akt at Thr308 was normal and sufficient to mediate the phosphorylation of glycogen synthase kinase 3 (GSK-3). Basal glycogen synthase activity in muscle lacking rictor was increased to that of insulin-stimulated controls. Consistent with this, we observed a decrease in basal levels of phosphorylated glycogen synthase at a GSK-3/protein phosphatase 1 (PP1)-regulated site in rictor knockout muscle. This change in glycogen synthase phosphorylation was associated with an increase in the catalytic activity of glycogen-associated PP1 but not increased GSK-3 inactivation. Thus, rictor in muscle tissue contributes to glucose homeostasis by positively regulating insulin-stimulated glucose uptake and negatively regulating basal glycogen synthase activity.  相似文献   

19.
The current concept is that Tsc-deficient cells are sensitized to apoptosis due to the inhibition of Akt activity by the negative feedback mechanism induced by the hyperactive mTORC1. Unexpectedly, however, we found that Tsc1/2-deficient cells exhibit increased resistance to serum deprivation-induced apoptosis. mTORC1 hyperactivity contributes to the apoptotic resistance of serum-deprived Tsc1/2-deficient cells in part by increasing the growth factor-independent expression of hexokinase II (HKII) and GLUT1. mTORC1-mediated increase in hypoxia-inducible factor 1α (HIF1α) abundance, which occurs in the absence of serum in normoxic Tsc2-deficient cells, contributes to these changes. Increased HIF1α abundance in these cells is attributed to both an increased level and the sustained translation of HIF1α mRNA. Sustained glycogen synthase kinase 3β inhibition and Mcl-1 expression also contribute to the apoptotic resistance of Tsc2-deficient cells to serum deprivation. The inhibition of mTORC1 activity by either rapamycin or Raptor knockdown cannot resensitize these cells to serum deprivation-induced apoptosis because of elevated Akt activity that is an indirect consequence of mTORC1 inhibition. However, the increased HIF1α abundance and the maintenance of Mcl-1 protein expression in serum-deprived Tsc2−/ cells are dependent largely on the hyperactive eIF4E in these cells. Consistently, the reduction of eIF4E levels abrogates the resistance of Tsc2−/ cells to serum deprivation-induced apoptosis.Growth factors are obligatory for the survival of mammalian cells. The evolutionarily conserved kinase Akt has emerged as the predominant and indispensable mediator of the ability of growth factors to promote cell survival in mammalian cells (reviewed in reference 9). Akt promotes cell survival by multiple mechanisms, including key roles in regulating cellular energy metabolism. Akt maintains mitochondrial integrity and inhibits apoptosis at least in part through effects on mitochondrial hexokinases and their functionally coupled facilitated glucose transporters (reviewed in reference 18). One of the most crucial functions of Akt involves the activation of the mammalian target of rapamycin complex 1 (mTORC1), which integrates growth factor signaling with nutritional cues and synchronizes these upstream signals with the downstream stimulation of cell growth and proliferation (reviewed in reference 1). Akt activates mTORC1 in part by inhibiting the heterodimeric tuberous sclerosis complex (Tsc1/Tsc2). Tsc2 (or tuberin) functions as a GTPase-activating protein (GAP) to specifically inhibit the small GTPase Rheb, which activates mTORC1. The formation of a functional heterodimeric complex between Tsc2 and Tsc1 (or hamartin) is required for mTORC1 inhibition. As such, the disruption of the expression or function of either Tsc1 or Tsc2 is sufficient to activate mTORC1. Mammalian cells have evolved a negative feedback mechanism between mTORC1 and Akt to maintain an optimal balance between their activities. When Akt activates mTORC1, it initiates a negative feedback loop that serves to attenuate Akt activity. As such, mTORC1 serves as both an upstream and a downstream effector of Akt signaling. The loss of a functional Tsc1/Tsc2 complex disrupts this delicate balance, resulting in mTORC1 hyperactivity, which greatly reduces Akt activation (reviewed in reference 1). This is relevant to the heritable development of tuberous sclerosis in humans, which is caused by the mutational inactivation of either the TSC1 or TSC2 gene, leading to benign hamartoma formation and growth in a variety of organs (11).It is widely appreciated that low basal Akt activity renders Tsc1/2-deficient cells more sensitive to proapoptotic stimuli (4, 19). Unexpectedly, however, we found that both Tsc1 and Tsc2 null cells exhibit increased apoptotic resistance to growth factor withdrawal despite greatly reduced Akt activity relative to that of their wild-type counterparts. This implies that Tsc1/2 deficiency promotes or unmasks potent antiapoptotic mechanisms that reduce mammalian cell dependence upon growth factors and Akt for survival. Further investigation has uncovered a critical role for mTORC1 in promoting cell survival in the absence of growth factors.Trophic growth factors found in serum play a pivotal role in the cellular uptake and utilization of glucose, and serum withdrawal results in attenuated glucose metabolism. The maintenance of glucose utilization by the overexpression of the rate-limiting glycolytic enzyme hexokinase and its functionally coupled facilitative glucose transporters maintains cell survival in the absence of growth factors (reviewed in reference 18). We found that serum deprivation markedly increased both hexokinase II (HKII) and GLUT1 abundance in Tsc2-deficient cells, and the knockdown of HKII and GLUT1 increased the apoptotic susceptibility of these cells to serum deprivation. The elevated expression of HKII and GLUT1 is mediated by hypoxia-inducible factor 1α (HIF1α) protein, which is markedly induced by mTORC1 in serum-deprived Tsc2−/ cells.In addition to increased HKII and GLUT1 expression, Tsc2−/ cells display the sustained inhibition of glycogen synthase kinase 3 (GSK3) activity and stable Mcl-1 abundance following serum withdrawal, which also contribute to their apoptotic resistance under these conditions. Mcl-1 abundance, which normally declines following serum deprivation, is sustained in Tsc2−/ cells by the constitutive inhibition of GSK3 and the activation of eIF4E.  相似文献   

20.
By studying primary isogenic murine embryonic fibroblasts (MEFs), we have shown that PLK3 null MEFs contain a reduced level of phosphatase and tensin homolog (PTEN) and increased Akt1 activation coupled with decreased GSK3β activation under normoxia and hypoxia. Purified recombinant Plk3, but not a kinase-defective mutant, efficiently phosphorylates PTEN in vitro. Mass spectrometry identifies threonine 366 and serine 370 as two putative residues that are phosphorylated by Plk3. Immunoblotting using a phosphospecific antibody confirms these sites as Plk3 phosphorylation sites. Moreover, treatment of MEFs with LiCl, an inhibitor of GSK3β and CK2, only partially suppresses the phosphorylation, suggesting Plk3 as an additional kinase that phosphorylates these sites in vivo. Plk3-targeting mutants of PTEN are expressed at a reduced level in comparison with the wild-type counterpart, which is associated with an enhanced activity of PDK1, an upstream activator of Akt1. Furthermore, the reduced level of PTEN in PLK3 null MEFs is stabilized by treatment with MG132, a proteosome inhibitor. Combined, our study identifies Plk3 as a new player in the regulation of the PI3K/PDK1/Akt signaling axis by phosphorylation and stabilization of PTEN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号