首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ADP-dependent glucokinases represent a unique family of kinases that belong to the ribokinase superfamily, being present mainly in hyperthermophilic archaea. For these enzymes there is no agreement about the magnitude of the structural transitions associated with ligand binding and whether they are meaningful to the function of the enzyme. We used the ADP-dependent glucokinase from Termococcus litoralis as a model to investigate the conformational changes observed in X-ray crystallographic structures upon substrate binding and to compare them with those determined in solution in order to understand their interplay with the glucokinase function. Initial velocity studies indicate that catalysis follows a sequential ordered mechanism that correlates with the structural transitions experienced by the enzyme in solution and in the crystal state. The combined data allowed us to resolve the open-closed conformational transition that accounts for the complete reaction cycle and to identify the corresponding clusters of aminoacids residues responsible for it. These results provide molecular bases for a general mechanism conserved across the ADP-dependent kinase family.  相似文献   

2.
Various forms of stress induce pathways that converge on the phosphorylation of the alpha (α) subunit of eukaryotic translation initiation factor eIF2 at serine 51 (S51), a modification that results in a global inhibition of protein synthesis. In many cases eIF2α phosphorylation is a biological response that facilitates cells to cope with stressful environments. Glucose deficiency, an important form of stress, is associated with an induction of apoptosis. Herein, we demonstrate that eIF2α phosphorylation is a key step in maintaining a balance between the life and death of a glucose-deficient cell. That is, eIF2α phosphorylation acts as a molecular switch that shifts cells from a proapoptotic to a cytoprotective state in response to prolonged glucose deficiency. This adaptation process is associated with the timely expression of proteins and activation of pathways with significant contributions to cell survival and adaptation including the X-linked inhibitor of apoptosis protein (XIAP). We also show that among the eIF2α kinases GCN2 plays a proapoptotic role whereas PERK and PKR play a cytoprotective one in response to glucose deficiency. Our data demonstrate that eIF2α phosphorylation is a significant determinant of survival and adaptation of glucose-deficient cells with possible important implications in biological processes that interfere with glucose metabolism.  相似文献   

3.
We studied skin microbiota present in three skin sites (forearm, axilla, scalp) in men from six ethnic groups living in New York City. Methods. Samples were obtained at baseline and after four days following use of neutral soap and stopping regular hygiene products, including shampoos and deodorants. DNA was extracted using the MoBio Power Lyzer kit and 16S rRNA gene sequences determined on the IIlumina MiSeq platform, using QIIME for analysis. Results. Our analysis confirmed skin swabbing as a useful method for sampling different areas of the skin because DNA concentrations and number of sequences obtained across subject libraries were similar. We confirmed that skin location was the main factor determining the composition of bacterial communities. Alpha diversity, expressed as number of species observed, was greater in arm than on scalp or axilla in all studied groups. We observed an unexpected increase in α-diversity on arm, with similar tendency on scalp, in the South Asian group after subjects stopped using their regular shampoos and deodorants. Significant differences at phylum and genus levels were observed between subjects of the different ethnic origins at all skin sites. Conclusions. We conclude that ethnicity and particular soap and shampoo practices are secondary factors compared to the ecological zone of the human body in determining cutaneous microbiota composition.  相似文献   

4.
5.
《Molecular cell》2020,77(6):1163-1175.e9
  1. Download : Download high-res image (373KB)
  2. Download : Download full-size image
  相似文献   

6.
7.
We have examined the relationship between coreceptor utilization and sensitivity to neutralization in a primary isolate of human immunodeficiency virus type 1 and its T-cell line-adapted (TCLA) derivative. We determined that adaptation of the primary-isolate (PI) virus 168P results in the loss of the unique capacity of PI viruses to utilize the CCR5 coreceptor and in the acquisition by the TCLA 168C virus of sensitivity to neutralization by V3-directed monoclonal antibodies (MAbs). In experiments wherein infection by 168P is directed via either the CCR5 or the CXCR4 pathway, we demonstrate that the virus, as well as pseudotyped virions bearing a molecularly cloned 168P envelope protein, remains refractory to neutralization by MAbs 257-D, 268-D, and 50.1 regardless of the coreceptor utilized. This study suggests that coreceptor utilization is not a primary determinant of differential neutralization sensitivity in PI and TCLA viruses.Although CD4 had long been recognized as the cellular receptor to which the human immunodeficiency virus type 1 (HIV) envelope protein binds (9, 21, 22), it had also been recognized that expression of CD4 alone is insufficient to render nonhuman cells susceptible to HIV infection (4, 5, 22). Similarly, different HIV isolates display different abilities to infect CD4-positive human macrophages, T lymphocytes, and established T-cell lines (31, 32, 35), suggesting that additional molecules may be responsible for cell tropism specificity. During the past year, cellular molecules that act in conjunction with CD4 have been identified as required cofactors for HIV envelope protein-mediated binding and entry (1, 6, 1012, 14). These HIV coreceptors are members of the superfamily of seven-transmembrane segment G-protein-coupled receptors and act primarily as cellular receptors for chemokines.The discovery of cellular coreceptors for HIV has provided new perspectives for understanding these early events in HIV infection (see review in reference 2). Thus, phenotypically distinct isolates of HIV utilize as coreceptors different chemokine receptor molecules. Although all primary isolates of HIV infect primary T lymphocytes, some also infect cells of the macrophage lineage (31, 32). These monocyteropic isolates utilize the CCR5 chemokine receptor, whose natural ligands include the chemokines RANTES, MIP-1α, and MIP-1β (1, 6, 1012). Monocytropic isolates do not induce syncytia in primary lymphocyte culture and do not infect established T-cell lines (31). During the late course of HIV infection, syncytium-inducing (SI) primary viruses often arise from the population of monocytropic viruses (31, 32). These SI primary isolates no longer infect macrophages, and they utilize both CCR5 and another chemokine receptor, CXCR4 (7, 33, 38). CXCR4, whose natural chemokine ligand is SDF-1 (3, 27), was originally identified by Feng et al. as the cofactor used by laboratory-adapted viruses (14). In fact, the common laboratory viruses (IIIb/LAI, LAV, and RF) are unable to utilize CCR5 coreceptor (1, 6, 1012), presumably reflecting the lack of CCR5 expression in most established T-cell lines (1, 13). Although some primary isolates utilize additional chemokine receptor molecules, notably CCR3 and CCR2b (6, 11, 18), the relationship between these coreceptors and viral phenotypes is less clear. The ability to utilize CCR5 coreceptor, however, is unique to primary-isolate (PI) viruses.Paralleling these differences in coreceptor utilization and cell tropism are differences in sensitivity to virus neutralization. Although laboratory-adapted isolates of HIV can be potently neutralized by sera elicited by recombinant gp120 (rgp120) protein, primary isolates are largely refractory to neutralization by rgp120 vaccine sera (23, 37). Similarly, PI viruses are significantly more resistant than T-cell line-adapted (TCLA) viruses to neutralization by gp120-directed monoclonal antibodies (MAbs) (25, 37) and to inhibition by soluble forms of CD4 (8). We and others have demonstrated that neutralization sensitivity develops concomitantly with adaptation of primary isolates to persistent growth in established T-cell lines (24, 37). By studying pedigreed PI and TCLA viruses (168P and 168C, respectively), we have shown that adaptation renders the TCLA virus sensitive not only to rgp120 vaccine sera and CD4 immunoadhesin but also to MAbs directed to the V3 loop of gp120 (37). However, the basis for this increase in neutralization sensitivity remains unclear.In this report, we explore the relationship between neutralization sensitivity and coreceptor utilization, especially with regard to changes that accompany adaptation. We examined neutralization sensitivity of the well-characterized SI primary isolate 168P under experimental conditions where infection can be directed via either the CXCR4 or the CCR5 pathway. The pedigreed TCLA derivative 168C utilizes only CXCR4 and was sensitive to neutralization by the panel of V3-directed MAbs used in these assays. However, the primary isolate 168P remained refractory to neutralization regardless of coreceptor pathway taken. Our findings suggest that envelope protein structure, and not coreceptor utilization, is the primary determinant of differential neutralization sensitivity in PI and TCLA viruses.

Coreceptor utilization by pedigreed PI and TCLA viruses.

Cross-sectional surveys of coreceptor use have shown that primary SI isolates generally utilize CXCR4 and CCR5 coreceptors, whereas unrelated laboratory-adapted isolates utilize only CXCR4 (1, 6, 7, 1012, 14, 33, 38). We wished to confirm this trend in a longitudinal study of adaptation. We previously described the adaptation of the SI primary isolate 168P to persistent growth in the FDA/H9 T-cell line and the concomitant development of neutralization sensitivity in the resulting TCLA virus 168C (37). In the present study, the ability of these pedigreed viruses to utilize specific coreceptors was tested by infection of U87 human glioma cell lines expressing CD4 (U87-CD4) and the specific coreceptor (19).For this assay, virus stocks were prepared from cell culture supernatants of phytohemagglutinin (PHA)-stimulated peripheral blood lymphocytes (PBLs) (168P) or FDA/H9 cells (168C) and standardized to yield a submaximal number of foci of infection on U87-CD4-CXCR4 cells (approximately 100 to 200 foci/96-well microplate culture). To confirm coreceptor specificity, in some assays CCR5 chemokines (each at 500 ng/ml) were added to cells 1 h prior to infection. After 2 days of incubation, cell monolayers were fixed with methanol-acetone and immunochemically stained with HIV immunoglobulin (HIVIG) (29), anti-human ABC kit (Biomeda Corp.), and diaminobenzidine substrate.Figure Figure11 confirms the ability of the SI 168P virus to utilize both CXCR4 and CCR5 and the subsequent loss of this latter specificity in the 168C TCLA virus. Infection was dependent on coreceptor expression, and both PI and TCLA viruses could also utilize CCR3 (data not presented). Open in a separate windowFIG. 1Coreceptor utilization by pedigreed PI and TCLA 168 viruses. U87-CD4 cell lines expressing CXCR4 (▪) or CCR5 () were used to define the ability of 168P and 168C viruses to utilize the respective coreceptor. CCR5 utilization was further tested by the addition to U87-CD4-CCR5 cells of CCR5-specific chemokines (RANTES, MIP-1α, and MIP-1β; R&D Systems) (□). For details, see text. ∗, no foci were observed.In keeping with the determined coreceptor specificity, infection could be blocked by addition of coreceptor-specific ligands. Thus, 168P virus infection of CCR5-expressing cells was blocked by the CCR5-specific ligands RANTES, MIP-1α, and MIP-1β (1, 6, 1012) (Fig. (Fig.1).1). Similarly, infection of CXCR4-expressing U87-CD4 cells by either virus could be blocked by the CXCR4-specific chemokine ligand SDF-1 (3, 27) (data not presented).

Coreceptor pathway and neutralization sensitivity.

In previous work, we demonstrated that the PI 168P virus is refractory to neutralization by HIV MN gp120 vaccine sera and by several well-characterized V3-directed murine MAbs which strongly neutralize infectivity of the TCLA 168C virus (37). In the present study, we extended the panel of MAbs to include two V3-directed human MAbs, 257-D and 268-D (17). These well-characterized human MAbs recognize core epitopes at the crown of the V3 loop of gp120 (KRIHI and HIGPGR, respectively), linear sequences known to be present in both 168P and 168C envelope proteins (37). These epitope predictions were confirmed by gp120 capture enzyme-linked immunosorbent assay (ELISA) (26) which demonstrated equal binding to envelope protein in detergent-solubilized 168P and 168C virions (data not presented). Sensitivity to neutralization by these human MAbs was determined in a standard assay using PHA-activated PBLs (37). MAbs 257-D and 268-D were found to potently neutralize 168C but fail to neutralize 168P (Fig. (Fig.2).2). This pattern of neutralization sensitivity is similar to that previously described for the V3-directed murine MAb 50.1 (30, 36, 37). Open in a separate windowFIG. 2Neutralization sensitivity of 168 viruses in PBL culture. Virus neutralization assays in PHA-stimulated PBL culture were performed as previously described (37). 168P (○, •) and 168C (□, ▪) virus stocks were standardized to yield submaximal extents of virus spread during the 5-day infection. CCR5-specific chemokines (•, ▪) were added as described for Fig. Fig.1.1. The V3-directed MAbs are indicated. p24 antigen was determined by p24 antigen capture ELISA (SAIC Frederick) and was normalized to infected cell control values (168P, 190 ng/ml [170 ng/ml with chemokines]; 168C, 36 ng/ml [33 ng/ml with chemokines]).To examine whether sensitivity to neutralization was affected by the coreceptor pathway utilized in infection of PBLs, we used inhibitory concentrations of CCR5-specific chemokine ligands RANTES, MIP-1α, and MIP-1β in order to restrict infection to the CXCR4 pathway. Addition of these chemokines to the PBL cultures did not affect virus growth, nor did it affect sensitivity to neutralization by the V3-directed human MAbs (Fig. (Fig.2).2). To the extent that CCR5 blockade was complete, these results suggest that the simple availability of the CCR5 pathway is not a factor in the resistance of PI viruses to neutralization.To strengthen this conclusion, we examined neutralization sensitivity in human U87-CD4 cell lines expressing only CXCR4 or CCR5. Using this method, we confirmed that the SI 168P virus remained refractory to neutralization by human MAbs 257-D and 268-D as well as by the murine MAb 50.1, regardless of whether infection occurred via CXCR4 or CCR5 (Fig. (Fig.3).3). These results suggest that availability of the CCR5 pathway is not a primary determinant for the resistance of PI viruses to neutralization. The TCLA 168C virus utilized CXCR4 only and was sensitive to neutralization. Open in a separate windowFIG. 3Neutralization sensitivity of 168 viruses in U87-CD4 cell lines expressing CCR5 or CXCR4 coreceptor. 168P (○, •) and 168C (▪) viruses were used to infect U87-CD4 cell lines expressing CXCR4 (•, ▪) or CCR5 (○) as described for Fig. Fig.1.1. The V3-directed MAbs were incubated with virus for 1 h prior to infection.

Molecularly cloned PI and TCLA envelope genes.

To understand better the changes that accompany adaptation and those that determine coreceptor utilization and neutralization sensitivity, we molecularly cloned the envelope genes of the 168P and 168C viruses. High-fidelity XL PCR (rTth and Vent DNA polymerases; PE Applied Biosystems) and primers envA and envN (15) were used to amplify a 3.1-kb region of proviral DNA encoding the rev and envelope genes. PCR products were isolated by unidirectional T/A cloning in the eucaryotic expression vector pCR3.1-Uni (Invitrogen). Expression in pCR3.1-Uni is driven by the cytomegalovirus immediate-early promoter. Multiple clones were isolated from each virus, and transient transfection studies in COS-7 cells confirmed the surface expression and fusion competence of all clones tested (data not presented).DNA sequence analysis demonstrated that all 168C molecular clones analyzed encoded the three adaptation-associated amino acid changes previously identified by PCR sequencing of the 168C virus population (V2, I166R; C2, I282N; and V3, G318R) (37). Two molecular clones of each 168P and 168C envelope were subjected to complete DNA sequence analysis (GenBank accession no. AF035532 to AF035534). Molecular clones 168C23 and 168C60 were identical throughout the envelope gene. Molecular clones 168P5 and 168P23 differed from each other and from the previously determined sequence at four to five positions distinct from those associated with adaptation. These scattered changes within the primary virus quasispecies are considered inconsequential at the present level of analysis; the significance of the three adaptation-associated changes is under separate investigation.Functional analysis of these molecularly cloned envelope genes was performed by incorporation of the molecularly cloned envelope protein into pseudotyped HIV virions. We used an envelope-defective provirus derived from the molecularly cloned NL4-3 provirus (kindly provided by I. S. Y. Chen, University of California, Los Angeles). The pNLthyΔBgl provirus (28) contains a BglII-BglII deletion within the envelope gene and a substitution of the viral nef gene with a cDNA encoding the murine Thy1.2 cell surface protein. The simian virus 40 ori was subsequently introduced into the plasmid to generate pSVNLthyΔBgl (27a). Cotransfection of COS-7 cells (16, 20) with pSVNLthyΔBgl provirus and the envelope expression plasmid resulted in the production of pseudotyped HIV virions. Culture supernatants were harvested 3 days posttransfection, filtered, and used to infect U87-CD4 cell lines expressing coreceptor. Cells infected by virions bearing the complementing envelope protein were identified by immunostaining for murine Thy1.2 or HIV proteins.As anticipated, the molecularly cloned envelope proteins recapitulated the coreceptor specificity of the parental virus population (see the legend to Fig. Fig.4).4). Pseudotyped virions containing 168C60 were able to infect only U87-CD4 cells expressing CXCR4, while virions containing 168P23 envelope were able to infect U87-CD4 cells expressing either CCR5 or CXCR4. Thus, the viral envelope protein appears to be the major, if not sole, determinant of viral coreceptor use. These findings also indicate that dual coreceptor use is a direct property of the envelope protein complex and not a result of a mixture of distinct envelope proteins in the SI virus population. This conclusion is corroborated by the failure of CCR5-specific chemokine ligands to diminish 168P virus infection in PBL culture (Fig. (Fig.22).Open in a separate windowFIG. 4Neutralization sensitivity of pseudotyped virions in U87-CD4 cell lines expressing CCR5 or CXCR4 coreceptor. Pseudotyped virions were derived by cotransfection of COS-7 cells with pSVNLthyΔBgl provirus and plasmid expressing 168P23 (○, •) or 168C60 (▪) envelope protein. Virion preparations were incubated with U87-CD4 cell lines expressing CXCR4 (•, ▪) or CCR5 (○) as described for Fig. Fig.1;1; V3-directed MAbs were added as indicated. The number of foci was normalized to control values (60 to 100 foci/well for U87-CD4-CXCR4 cells; 10 foci/well for U87-CD4-CCR5 cells). ∗, no foci were observed.Finally, we wished to determine the neutralization sensitivity of pseudotyped virions containing the molecularly cloned 168P23 and 168C60 envelope proteins and to confirm that coreceptor pathway is not a primary determinant of neutralization sensitivity. We found that infection of U87-CD4-CXCR4 cells by pseudotyped virions containing 168C60 envelope protein was sensitive to neutralization by MAbs 257-D, 268-D, and 50.1 at concentrations comparable to those determined in assays using 168C virus (Fig. (Fig.4).4). Pseudotyped virions containing 168P23 envelope protein remained refractory to neutralization by all three V3-directed MAbs, regardless of the coreceptor expressed by the U87-CD4 cell line. In summary, we examined the relationship between coreceptor utilization and sensitivity to neutralization by V3-directed MAbs. The observed dichotomy in the sensitivity to neutralization of PI and TCLA viruses had suggested a discrete difference between these viruses, and we tested one hypothesis: that PI viruses are refractory to neutralization as a result of their unique ability to utilize the CCR5 coreceptor. We examined neutralization sensitivity of a well-characterized SI primary isolate under experimental conditions wherein the virus was forced to utilize either CCR5 or CXCR4 for infection. We showed that coreceptor pathway is not a direct determinant of neutralization sensitivity. The primary virus envelope protein remained refractory to neutralization by V3-directed MAbs regardless of the coreceptor pathway utilized. Similarly, coreceptor utilization did not affect neutralization sensitivity by soluble CD4 (34) or HIVIG (data not presented).In discarding the otherwise attractive hypothesis that PI viruses escape neutralization through their unique ability to utilize CCR5, we are left to consider the as yet undefined structural differences between the envelope protein complex of PI and TCLA viruses. Several studies have suggested that critical determinants in the envelope protein of PI viruses are less accessible than those of TCLA viruses and that it is this differential access that determines neutralization sensitivity (reviewed in reference 25). By contrast, our studies have indicated similar binding of V3-directed MAbs to PBLs infected with neutralization-resistant isolate 168P or neutralization-sensitive isolate 168C (37). Thus, the basis for the differential neutralization sensitivity of PI and TCLA viruses remains unresolved.Our present studies also do not address whether changes in coreceptor utilization and/or neutralization sensitivity are necessarily linked as a consequence of adaptation. The analysis of independently derived PI and TCLA viruses may allow further separation of these viral phenotypes. Subsequent dissection of the amino acid changes that distinguish pedigreed PI and TCLA envelope proteins will help to define the structural bases underlying the changes that accompany adaptation.  相似文献   

8.
Lamina associated polypeptide 1 (LAP1) is an integral protein of the inner nuclear membrane that is ubiquitously expressed. LAP1 binds to lamins and chromatin, probably contributing to the maintenance of the nuclear envelope architecture. Moreover, LAP1 also interacts with torsinA and emerin, proteins involved in DYT1 dystonia and X-linked Emery-Dreifuss muscular dystrophy disorder, respectively. Given its relevance to human pathological conditions, it is important to better understand the functional diversity of LAP1 proteins. In rat, the LAP1 gene (TOR1AIP1) undergoes alternative splicing to originate three LAP1 isoforms (LAP1A, B and C). However, it remains unclear if the same occurs with the human TOR1AIP1 gene, since only the LAP1B isoform had thus far been identified in human cells. In silico analysis suggested that, across different species, potential new LAP1 isoforms could be generated by alternative splicing. Using shRNA to induce LAP1 knockdown and HPLC-mass spectrometry analysis the presence of two isoforms in human cells was described and validated: LAP1B and LAP1C; the latter is putatively N-terminal truncated. LAP1B and LAP1C expression profiles appear to be dependent on the specific tissues analyzed and in cultured cells LAP1C was the major isoform detected. Moreover, LAP1B and LAP1C expression increased during neuronal maturation, suggesting that LAP1 is relevant in this process. Both isoforms were found to be post-translationally modified by phosphorylation and methionine oxidation and two LAP1B/LAP1C residues were shown to be dephosphorylated by PP1. This study permitted the identification of the novel human LAP1C isoform and partially unraveled the molecular basis of LAP1 regulation.  相似文献   

9.
Cyclic hypoxia and alterations in oncogenic signaling contribute to switch cancer cell metabolism from oxidative phosphorylation to aerobic glycolysis. A major consequence of up-regulated glycolysis is the increased production of metabolic acids responsible for the presence of acidic areas within solid tumors. Tumor acidosis is an important determinant of tumor progression and tumor pH regulation is being investigated as a therapeutic target. Autophagy is a cellular catabolic pathway leading to lysosomal degradation and recycling of proteins and organelles, currently considered an important survival mechanism in cancer cells under metabolic stress or subjected to chemotherapy. We investigated the response of human melanoma cells cultured in acidic conditions in terms of survival and autophagy regulation. Melanoma cells exposed to acidic culture conditions (7.0 < pH < 6.2) promptly accumulated LC3+ autophagic vesicles. Immunoblot analysis showed a consistent increase of LC3-II in acidic culture conditions as compared with cells at normal pH. Inhibition of lysosomal acidification by bafilomycin A1 further increased LC3-II accumulation, suggesting an active autophagic flux in cells under acidic stress. Acute exposure to acidic stress induced rapid inhibition of the mammalian target of rapamycin signaling pathway detected by decreased phosphorylation of p70S6K and increased phosphorylation of AMP-activated protein kinase, associated with decreased ATP content and reduced glucose and leucine uptake. Inhibition of autophagy by knockdown of the autophagic gene ATG5 consistently reduced melanoma cell survival in low pH conditions. These observations indicate that induction of autophagy may represent an adaptation mechanism for cancer cells exposed to an acidic environment. Our data strengthen the validity of therapeutic strategies targeting tumor pH regulation and autophagy in progressive malignancies.  相似文献   

10.
Human BUB3 is a key mitotic checkpoint factor that recognizes centromeric components and recruits other mitotic checkpoint molecules to the unattached kinetochore. The key amino acid residues responsible for its localization are not yet defined. In this study, we identified a motif from Lys216 to Lys222 in BUB3 as its nuclear localization signal. A BUB3 mutant with deletion of this motif (Del216–222) was found to localize to both the cytoplasm and the nucleus, distinct from the exclusively nuclear distribution of wild-type BUB3. Further analysis revealed that residues Glu213, Lys216, Lys217, Lys218, Tyr219, and Phe221, but not Lys222, contribute to nuclear localization. Interestingly, the nuclear localization signal was also critical for the kinetochore localization of BUB3. The deletion mutant Del216–222 and a subtle mutant with four residue changes in this region (E213Q/K216E/K217E/K218E (QE)) did not localize to the kinetochore efficiently or mediate mitotic checkpoint arrest. Protein interaction data suggested that the QE mutant was able to interact with BUB1, MAD2, and BubR1 but that its association with the centromeric components CENP-A and KNL1 was impaired. A motif from Leu61 to Leu65 in CENP-A was found to be involved in the association of BUB3 and CENP-A in cells; however, further assays suggested that CENP-A does not physically interact with BUB3 and does not affect BUB3 localization. Our findings help to dissect the mechanisms of BUB3 in mitotic checkpoint signaling.  相似文献   

11.
Prohibitin (PHB or PHB1) is an evolutionarily conserved, multifunctional protein which is present in various cellular compartments including the plasma membrane. However, mechanisms involved in various functions of PHB are not fully explored yet. Here we report for the first time that PHB interacts with O-linked β-N-acetylglucosamine transferase (O-GlcNAc transferase, OGT) and is O-GlcNAc modified; and also undergoes tyrosine phosphorylation in response to insulin. Tyrosine 114 (Tyr114) and tyrosine 259 (Tyr259) in PHB are in the close proximity of potential O-GlcNAc sites serine 121 (Ser121) and threonine 258 (Thr258) respectively. Substitution of Tyr114 and Tyr259 residues in PHB with phenylalanine by site-directed mutagenesis results in reduced tyrosine phosphorylation as well as reduced O-GlcNAc modification of PHB. Surprisingly, this also resulted in enhanced tyrosine phosphorylation and activity of OGT. This is attributed to the presence of similar tyrosine motifs in PHB and OGT. Substitution of Ser121 and Thr258 with alanine and isoleucine respectively resulted in attenuation of O-GlcNAc modification and increased tyrosine phosphorylation of PHB suggesting an association between these two dynamic modifications. Sequence analysis of O-GlcNAc modified proteins having known O-GlcNAc modification site(s) or known tyrosine phosphorylation site(s) revealed a strong potential association between these two posttranslational modifications in various proteins. We speculate that O-GlcNAc modification and tyrosine phosphorylation of PHB play an important role in tyrosine kinase signaling pathways including insulin, growth factors and immune receptors signaling. In addition, we propose that O-GlcNAc modification and tyrosine phosphorylation is a novel previously unidentified binary switch which may provide new mechanistic insights into cell signaling pathways and is open for direct experimental examination.  相似文献   

12.
The GroE chaperonin system facilitates protein folding in an ATP-dependent manner. It has remained unclear why some proteins are obligate clients of the GroE system, whereas other closely related proteins are able to fold efficiently in its absence. Factors that cause folding to be slower affect kinetic partitioning between spontaneous folding and chaperone binding in favor of the latter. One such potential factor is contact order (CO), which is the average separation in sequence between residues that are in contact in the native structure. Here, we generated variants of enhanced green fluorescent protein with different COs using circular permutations. We found that GroE dependence in vitro and in vivo increases with increasing CO. Thus, our results show that CO is relevant not only for folding in vitro of relatively simple model systems but also for chaperonin dependence and folding in vivo.  相似文献   

13.
14.
Demonstrations of both pro-apoptotic and pro-survival abilities of Fas (TNFRSF6/CD95/APO-1) have led to a shift from the exclusive “Fas apoptosis” to “Fas multisignals” paradigm and the acceptance that Fas-related therapies face a major challenge, as it remains unclear what determines the mode of Fas signaling. Through protein evolution analysis, which reveals unconventional substitutions of Fas tyrosine during divergent evolution, evolution-guided tyrosine-phosphorylated Fas proxy, and site-specific phosphorylation detection, we show that the Fas signaling outcome is determined by the tyrosine phosphorylation status of its death domain. The phosphorylation dominantly turns off the Fas-mediated apoptotic signal, while turning on the pro-survival signal. We show that while phosphorylations at Y232 and Y291 share some common functions, their contributions to Fas signaling differ at several levels. The findings that Fas tyrosine phosphorylation is regulated by Src family kinases (SFKs) and the phosphatase SHP-1 and that Y291 phosphorylation primes clathrin-dependent Fas endocytosis, which contributes to Fas pro-survival signaling, reveals for the first time the mechanistic link between SFK/SHP-1-dependent Fas tyrosine phosphorylation, internalization route, and signaling choice. We also demonstrate that levels of phosphorylated Y232 and Y291 differ among human cancer types and differentially respond to anticancer therapy, suggesting context-dependent involvement of Fas phosphorylation in cancer. This report provides a new insight into the control of TNF receptor multisignaling by receptor phosphorylation and its implication in cancer biology, which brings us a step closer to overcoming the challenge in handling Fas signaling in treatments of cancer as well as other pathologies such as autoimmune and degenerative diseases.  相似文献   

15.
Genotype Is a Stronger Determinant than Sex of the Mouse Gut Microbiota   总被引:1,自引:0,他引:1  
The mammalian gut microbiota is considered to be determined mostly by diet, while the effect of genotype is still controversial. Here, we examined the effect of genotype on the gut microbiota in normal populations, exhibiting only natural polymorphisms, and evaluated this effect in comparison to the effect of sex. DNA fingerprinting approaches were used to profile the gut microbiota of eight different recombinant inbred mouse lines of the collaborative cross consortium, whose level of genetic diversity mimics that of a natural human population. Analyses based on automated ribosomal internal transcribed spacer analysis demonstrated significant higher similarity of the gut microbiota composition within mouse lines than between them or within same-gender groups. Thus, genetic background significantly impacts the microbiota composition and is a stronger determinant than gender. These findings imply that genetic polymorphisms help shape the intestinal microbiota of mammals and consequently could affect host susceptibility to diseases.  相似文献   

16.
《Current biology : CB》2020,30(23):4753-4762.e7
  1. Download : Download high-res image (114KB)
  2. Download : Download full-size image
  相似文献   

17.
(22R,23R,24S)-3α,5-Cyclo-22,23-diacetoxy-5a-ergostan-6-one (2b) is a new key intermediate of some naturally occurring brassinosteroids such as brassinolide (la), castasterone (lb), teasterone (lc) and typhasterol (Id). The cycloketone 2b was prepared in 10 steps via (22R,23R,24S)-6p- benzyloxy-3a,5-cyclo-22,23-dihydroxy-5a-ergostane (5) from stigmasterol. 2b was treated with a catalytic amount of /7-toluenesulfonic acid and sodium bromide to give an enone (7b), which was oxidized with osmium tetroxide and derived to give a 2a,3a-acetonide (8b). 8b was easily separated from its isomer by the use of silica gel column chromatography. 8b was oxidized with tri- fluoroperacetic acid and deacetylated to give la. 8b was deacetylated and deacetonized to give lb. 2b was treated with dilute sulfuric acid in acetic acid to give a 3/^-acetate (10). 10 was treated with sodium hydroxide to give lc. 2b was treated with hydrobromic acid to give a 3/i-bromide (12), which was treated with silver acetate to give a 3a-acetate (13). 13 was treated with sodium hydroxide to give Id.  相似文献   

18.

Background

It is not clear whether elevated uric acid is a risk factor for the onset of impaired fasting glucose after stratifying by baseline fasting plasma glucose levels. We conducted a community-based retrospective longitudinal cohort study to clarify the relationship between uric acid levels and the onset of impaired fasting glucose, according to baseline fasting plasma glucose levels.

Methods

We enrolled 6,403 persons (3,194 men and 3,209 women), each of whom was 18–80 years old and had >2 annual check-ups during 2003–2010. After excluding persons who had fasting plasma glucose levels ≥6.11 mM and/or were currently taking anti-diabetic agents, the remaining 5,924 subjects were classified into quartiles according to baseline fasting plasma glucose levels. The onset of impaired fasting glucose was defined as fasting plasma glucose ≥6.11 mM during the observation period.

Results

In the quartile groups, 0.9%, 2.1%, 3.4%, and 20.2% of the men developed impaired fasting glucose, respectively, and 0.1%, 0.3%, 0.5%, and 5.6% of the women developed impaired fasting glucose, respectively (P trend <0.001). After adjusting for age, body mass index, systolic blood pressure, triacylglycerols, high density lipoprotein-cholesterol, creatinine, fatty liver, family history of diabetes, alcohol consumption, and current smoking, uric acid levels were positively associated with onset of impaired fasting glucose in men with highest-quartile fasting plasma glucose levels (adjusted hazard ratio, 1.003; 95% confidence interval, 1.0001–1.005, P = 0.041).

Conclusions

Among men with high fasting plasma glucose, hyperuricemia may be independently associated with an elevated risk of developing impaired fasting glucose.  相似文献   

19.
Inhibition of the degradation of filtered albumin has been proposed as a widespread, benign form of albuminuria. There have however been recent reports that radiolabeled albumin fragments in urine are not exclusively generated by the kidney and that in albuminuric states albumin fragment excretion is not inhibited. In order to resolve this controversy we have examined the fate of various radiolabeled low molecular weight protein degradation products (LMWDPs) introduced into the circulation in rats. The influence of puromycin aminonucleoside nephrosis on the processing and excretion of LMWDPs is also examined. The status and destinies of radiolabeled LMWDPs in the circulation are complex. A major finding is that LMWDPs are rapidly eliminated from the circulation (>97% in 2 h) but only small quantities (<4%) are excreted in urine. Small (<4%) but significant amounts of LMWDPs may have prolonged elimination (>24 h) due to binding to high molecular weight components in the circulation. If LMWDPs of albumin seen in the urine are produced by extra renal degradation it would require the degradation to far exceed the known catabolic rate of albumin. Alternatively, if an estimate of the role of extra renal degradation is made from the limit of detection of LMWDPs in plasma, then extra renal degradation would only contribute <1% of the total excretion of LMWDPs of albumin. We confirm that the degradation process for albumin is specifically associated with filtered albumin and this is inhibited in albuminuric states. This inhibition is also the primary determinant of the massive change in intact albuminuria in nephrotic states.  相似文献   

20.
BackgroundDiabetes (DM) is estimated to affect 10–15% of the adult population in the Caribbean. Preventive efforts require population wide measures to address its social determinants. We undertook a systematic review to determine current knowledge about the social distribution of diabetes, its risk factors and major complications in the Caribbean. This paper describes our findings on the distribution by gender.MethodsWe searched Medline, Embase and five databases through the Virtual Health Library, for Caribbean studies published between 2007 and 2013 that described the distribution by gender for: known risk factors for Type 2 DM, prevalence of DM, and DM control or complications. PRISMA guidance on reporting systematic reviews on health equity was followed. Only quantitative studies (n>50) were included; each was assessed for risk of bias. Meta-analyses were performed, where appropriate, on studies with a low or medium risk of bias, using random effects models.ResultsWe found 50 articles from 27 studies, yielding 118 relationships between gender and the outcomes. Women were more likely to have DM, obesity, be less physically active but less likely to smoke. In meta-analyses of good quality population-based studies odds ratios for women vs. men for DM, obesity and smoking were: 1.65 (95% CI 1.43, 1.91), 3.10 (2.43, 3.94), and 0.24 (0.17, 0.34). Three studies found men more likely to have better glycaemic control but only one achieved statistical significance.

Conclusion and Implications

Female gender is a determinant of DM prevalence in the Caribbean. In the vast majority of world regions women are at a similar or lower risk of type 2 diabetes than men, even when obesity is higher in women. Caribbean female excess of diabetes may be due to a much greater excess of risk factors in women, especially obesity. These findings have major implications for preventive policies and research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号