首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
脊椎动物性别决定和分化的分子机制研究进展   总被引:8,自引:1,他引:8  
哺乳类性别决定是多种转录因子和生长因子相继表达和相互调控的结果。SRY的表达启动雄性通路并诱导下游雄性特异基因SOX9、AMH等的表达。FOXL2在雌性未分化性腺表达,WNT-4和DAX1也在雌性性别决定或分化时期表达,表明雌性通路也是受特定基因调控的,而并非“默认通路”。鸟类的性别也是由遗传基因决定的,EFT1(雌性)和DMRT1(雄性)可能是性别决定候选基因。爬行类为温度性别决定的典型,温度可能通过调节雌激素水平和控制性别特异遗传基因表达决定性别。大部分两栖类性别受环境因素影响,但发现DMRT1和DAX1可能与其精巢发育有关。鱼类性别决定和分化方式差异很大,多种因素(遗传基因、环境因素、类固醇激素等)参与了这一过程。从青Q鳉Y染色体定位克隆的DMY,被认为是第一个非哺乳类脊椎动物雄性性别决定基因。所有这些表明脊椎动物性别决定和分化机制是多样化的。  相似文献   

2.
3.
Dmrt1 has been suggested to play significant roles in sex determination and differentiation, but various expression patterns and cell types have been observed in the testis of vertebrates. Polyploid gibel carp, because of the multiple modes of unisexual gynogenesis and sexual reproduction, has become a unique case to explore the evolution of sex determination and differentiation. However, the sex-determination related genes in gibel carp have remained unknown. In this study, we identified and characterized 4 cDNAs of Dmrt1 genes. Subsequently, a polyclonal antibody specific to CagDMRT1 was prepared to examine its expression and distribution patterns at protein level. Significantly, both relative real-time PCR and Western blot detection confirmed predominant expression of CagDmrt1 in the adult testis of gibel carp. Moreover, the intensive expression of CagDMRT1 around spermatogenic cysts was revealed during spermatogenesis. And, following immunofluorescence co-localization of CagDMRT1 and CagVASA, a prominent CagDMRT1 expression in Sertoli cells and a mild CagDMRT1 expression in spermatogenic cells including spermatogonia and primary spermatocytes were clearly characterized. The CagDMRT1 signal in Sertoli cells is extensively distributed in both nuclei and cytoplasm, while the CagDMRT1 in spermatogonia and primary spermatocytes is mainly expressed in nuclei, and there is only the remained CagDMRT1 signal in the cytoplasm of secondary spermatocytes. These findings suggest that DMRT1 should be related to testis differentiation and spermatogenesis in gibel carp.  相似文献   

4.
Genes related to the Drosophila melanogaster doublesex and Caenorhabditis elegans mab-3 genes are conserved in human. They are identified by a DNA-binding homology motif, the DM domain, and constitute a gene family (DMRTs). Unlike the invertebrate genes, whose role in the sex-determination process is essentially understood, the function of the different vertebrate DMRT genes is not as clear. Evidence has accumulated for the involvement of DMRT1 in male sex determination and differentiation. DMRT2 (known as terra in zebrafish) seems to be a critical factor for somitogenesis. To contribute to a better understanding of the function of this important gene family, we have analyzed DMRT1, DMRT2, and DMRT3 from the genome model organism Fugu rubripes and the medakafish, a complementary model organism for genetics and functional studies. We found conservation of synteny of human chromosome 9 in F. rubripes and an identical gene cluster organization of the DMRTs in both fish. Although expression analysis and gene linkage mapping in medaka exclude a function for any of the three genes in the primary step of male sex determination, comparison of F. rubripes and human sequences uncovered three putative regulatory regions that might have a role in more downstream events of sex determination and human XY sex reversal.  相似文献   

5.
6.
7.
Sex determination and sexual differentiation in the avian model   总被引:2,自引:0,他引:2  
Chue J  Smith CA 《The FEBS journal》2011,278(7):1027-1034
The sex of birds is determined by the inheritance of sex chromosomes (ZZ male and ZW female). Genes carried on one or both of these sex chromosomes control sexual differentiation during embryonic life, producing testes in males (ZZ) and ovaries in females (ZW). This minireview summarizes our current understanding of avian sex determination and gonadal development. Most recently, it has been shown that sex is cell autonomous in birds. Evidence from gynandromorphic chickens (male on one side, female on the other) points to the likelihood that sex is determined directly in each cell of the body, independently of, or in addition to, hormonal signalling. Hence, sex-determining genes may operate not only in the gonads, to produce testes or ovaries, but also throughout cells of the body. In the chicken, as in other birds, the gonads develop into ovaries or testes during embryonic life, a process that must be triggered by sex-determining genes. This process involves the Z-linked DMRT1 gene. If DMRT1 gene activity is experimentally reduced, the gonads of male embryos (ZZ) are feminized, with ovarian-type structure, downregulation of male markers and activation of female markers. DMRT1 is currently the best candidate gene thought to regulate gonadal sex differentiation. However, if sex is cell autonomous, DMRT1 cannot be the master regulator, as its expression is confined to the urogenital system. Female development in the avian model appears to be shared with mammals; both the FOXL2 and RSPO1/WNT4 pathways are implicated in ovarian differentiation.  相似文献   

8.
Modern pyrosequencing has the potential to uncover many interesting aspects of genome evolution, even in lineages where genomic resources are scarce. In particular, 454 pyrosequencing of nonmodel species has been used to characterize expressed sequence tags, xenobiotics, gene ontologies, and relative levels of gene expression. Herein, we use pyrosequencing to study the evolution of genes expressed in the gonads of a polyploid fish, the lake sturgeon (Acipenser fulvescens). Using 454 pyrosequencing of transcribed genes, we produced more than 125 MB of sequence data from 473,577 high-quality sequencing reads. Sequences that passed stringent quality control thresholds were assembled into 12,791 male contigs and 32,629 female contigs. Average depth of coverage was 4.2 × for the male assembly and 5.5× for the female assembly. Analytical rarefaction indicates that our assemblies include most of the genes expressed in lake sturgeon gonads. Over 86,700 sequencing reads were assigned gene ontologies, many to general housekeeping genes like protein, RNA, and ion binding genes. We searched specifically for sex determining genes and documented significant sex differences in the expression of two genes involved in animal sex determination, DMRT1 and TRA-1. DMRT1 is the master sex determining gene in birds and in medaka (Oryzias latipes) whereas TRA-1 helps direct sexual differentiation in nematodes. We also searched the lake sturgeon assembly for evidence of xenobiotic organisms that may exist as endosymbionts. Our results suggest that exogenous parasites (trematodes) and pathogens (protozoans) apparently have infected lake sturgeon gonads, and the trematodes have horizontally transferred some genes to the lake sturgeon genome.  相似文献   

9.
10.
11.
12.
While the primary sex determining switch varies between vertebrate species, a key downstream event in testicular development, namely the male-specific up-regulation of Sox9, is conserved. To date, only two sex determining switch genes have been identified, Sry in mammals and the Dmrt1-related gene Dmy (Dmrt1bY) in the medaka fish Oryzias latipes. In mice, Sox9 expression is evidently up-regulated by SRY and maintained by SOX9 both of which directly activate the core 1.3 kb testis-specific enhancer of Sox9 (TESCO). How Sox9 expression is up-regulated and maintained in species without Sry (i.e. non-mammalian species) is not understood. In this study, we have undertaken an in-depth comparative genomics approach and show that TESCO contains an evolutionarily conserved region (ECR) of 180 bp which is present in marsupials, monotremes, birds, reptiles and amphibians. The ECR contains highly conserved modules that predict regulatory roles for SOX, TCF/LEF, Forkhead, DMRT, and GATA proteins in vertebrate sex determination/differentiation. Our data suggest that tetrapods share common aspects of Sox9 regulation in the testis, despite having different sex determining switch mechanisms. They also suggest that Sox9 autoregulation is an ancient mechanism shared by all tetrapods, raising the possibility that in mammals, SRY evolved by mimicking this regulation. The validation of ECR regulatory sequences conserved from human to frogs will provide new insights into vertebrate sex determination.  相似文献   

13.
奥利亚罗非鱼DMRT1和DMRT4抗体制备及组织表达谱分析   总被引:1,自引:0,他引:1  
DMRT1和DMRT4是DMRT基因家族的成员,该家族成员与果蝇的性别决定基因和线虫性别决定基因一样,所编码的蛋白质都包含一个具有DNA结合能力的保守基序,即DM结构域,并以锌指结构与特异DNA序列相结合,在性别决定和分化发育中起调控作用。采用RT-PCR方法分别从奥利亚罗非鱼卵巢和精巢中扩增克隆出DMRT1和DMRT4全长cDNA片段,构建表达载体,在大肠杆菌中表达了BMP-DMRT4和BMP-DMRT1蛋白。经Xa切割、Amylose-sepharose柱层析纯化后作为抗原免疫新西兰白兔制备了DMRT1和DMRT4多克隆抗体,并进行纯化。对纯化多抗进行Western blot分析,结果表明获得了高特异性的DMRT1和DMRT4抗体。为了观察DMRT1和DMRT4在组织中的表达谱,首先,我们通过实时荧光定量RT-PCR检测雌雄奥利亚罗非鱼多种组织mRNA的表达,仅在卵巢和脑中检测到DMRT4,在精巢中检测到DMRT1;其次,制备了多种组织匀浆蛋白,使用纯化的抗体进行Western blot分析,仅分别在卵巢和精巢中检测到DMRT4和DMRT1蛋白的表达;制备多种奥利亚罗非鱼组织切片,使用纯化的DMRT4和DMRT1多抗进行免疫组织化学分析,发现DMRT4仅在卵巢表达,而DMRT1仅在精巢表达。这些结果有助于阐明DMRT4和DMRT1的功能及在鱼类性别调控中的作用。  相似文献   

14.
15.
16.
17.
Tissue-specific patterns of microRNA (miRNA) expression contribute to organogenesis during embryonic development. Using the embryonic chicken gonads as a model for vertebrate gonadogenesis, we previously reported that miRNAs are expressed in a sexually dimorphic manner during gonadal sex differentiation. Being male biased, we hypothesised that up-regulation of microRNA 202* (MIR202*) is characteristic of testicular differentiation. To address this hypothesis, we used estrogen modulation to induce gonadal sex reversal in embryonic chicken gonads and analyzed changes in MIR202* expression. In ovo injection of estradiol-17beta at Embryonic Day 4.5 (E4.5) caused feminization of male gonads at E9.5 and reduced MIR202* expression to female levels. Female gonads treated at E3.5 with an aromatase inhibitor, which blocks estrogen synthesis, were masculinized by E9.5, and MIR202* expression was increased. Reduced MIR202* expression correlated with reduced expression of the testis-associated genes DMRT1 and SOX9, and up-regulation of ovary-associated genes FOXL2 and CYP19A1 (aromatase). Increased MIR202* expression correlated with down-regulation of FOXL2 and aromatase and up-regulation of DMRT1 and SOX9. These results confirm that up-regulation of MIR202* coincides with testicular differentiation in embryonic chicken gonads.  相似文献   

18.
The chicken embryo has long been a useful model organism for studying development, including sex determination and gonadal differentiation. However, manipulating gene expression specifically in the embryonic avian gonad has been difficult. The viral vector RCASBP can be readily used for embryo-wide transgene expression; however global mis-expression using this method can cause deleterious off-target effects and embryo-lethality. In an attempt to develop vectors for the over-expression of sequences in chicken embryonic urogenital tissues, the viral vector RCANBP was engineered to contain predicted promoter sequences of gonadal-expressed genes. Several promoters were analysed and it was found that although the SF1 promoter produced a tissue-restricted expression pattern that was highest in the mesonephros and liver, it was also higher in the gonads compared to the rest of the body. The location of EGFP expression from the SF1 promoter overlapped with several key gonad-expressed sex development genes; however expression was generally low-level and was not seen in all gonadal cells. To further validate this sequence the key testis determinant DMRT1 was over-expressed in female embryos, which due to insufficient levels had no effect on gonad development. The female gene aromatase was then over-expressed in male embryos, which disrupted the testis pathway as demonstrated by a reduction in AMH protein. Taken together, although these data showed that the SF1 promoter can be used for functional studies in ovo, a stronger promoter sequence would likely be required for the functional analysis of gonad genes that require high-level expression.  相似文献   

19.
The molecular mechanisms that underlie sex determination and differentiation are conserved and diversified. In fish species, temperature-dependent sex determination and differentiation seem to be ubiquitous and molecular players involved in these mechanisms may be conserved. Although how the ambient temperature transduces signals to the undifferentiated gonads remains to be elucidated, the genes downstream in the sex differentiation pathway are shared between sex-determining mechanisms. In this paper, we review recent advances on the molecular players that participate in the sex determination and differentiation in fish species, by putting emphasis on temperature-dependent sex determination and differentiation, which include temperature-dependent sex determination and genetic sex determination plus temperature effects. Application of temperature-dependent sex differentiation in farmed fish and the consequences of temperature-induced sex reversal are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号