首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2.
The congenital muscular dystrophies (CMD) are a heterogeneous group of autosomal recessive disorders presenting in infancy with muscle weakness, contractures, and dystrophic changes on skeletal-muscle biopsy. Structural brain defects, with or without mental retardation, are additional features of several CMD syndromes. Approximately 40% of patients with CMD have a primary deficiency (MDC1A) of the laminin alpha2 chain of merosin (laminin-2) due to mutations in the LAMA2 gene. In addition, a secondary deficiency of laminin alpha2 is apparent in some CMD syndromes, including MDC1B, which is mapped to chromosome 1q42, and both muscle-eye-brain disease (MEB) and Fukuyama CMD (FCMD), two forms with severe brain involvement. The FCMD gene encodes a protein of unknown function, fukutin, though sequence analysis predicts it to be a phosphoryl-ligand transferase. Here we identify the gene for a new member of the fukutin protein family (fukutin related protein [FKRP]), mapping to human chromosome 19q13.3. We report the genomic organization of the FKRP gene and its pattern of tissue expression. Mutations in the FKRP gene have been identified in seven families with CMD characterized by disease onset in the first weeks of life and a severe phenotype with inability to walk, muscle hypertrophy, marked elevation of serum creatine kinase, and normal brain structure and function. Affected individuals had a secondary deficiency of laminin alpha2 expression. In addition, they had both a marked decrease in immunostaining of muscle alpha-dystroglycan and a reduction in its molecular weight on western blot analysis. We suggest these abnormalities of alpha-dystroglycan are caused by its defective glycosylation and are integral to the pathology seen in MDC1C.  相似文献   

3.
《The Journal of cell biology》1996,134(6):1483-1497
Laminin (laminin-1; alpha 1-beta 1-gamma 1) is known to promote myoblast proliferation, fusion, and myotube formation. Merosin (laminin- 2 and -4; alpha 2-beta 1/beta 2-gamma 1) is the predominant laminin variant in skeletal muscle basement membranes; genetic defects affecting its structure or expression are the causes of some types of congenital muscular dystrophy. However, the precise nature of the functions of merosin in muscle remain unknown. We have developed an in vitro system that exploits human RD and mouse C2C12 myoblastic cell lines and their clonal variants to study the roles of merosin and laminin in myogenesis. In the parental cells, which fuse efficiently to multinucleated myotubes, merosin expression is upregulated as a function of differentiation while laminin expression is downregulated. Cells from fusion-deficient clones do not express either protein, but laminin or merosin added to the culture medium induced their fusion. Clonal variants which fuse, but form unstable myotubes, express laminin but not merosin. Exogenous merosin converted these myotubes to a stable phenotype, while laminin had no effect. Myotube instability was corrected most efficiently by transfection of the merosin-deficient cells with the merosin alpha 2 chain cDNA. Finally, merosin appears to promote myotube stability by preventing apoptosis. Hence, these studies identify novel biological functions for merosin in myoblast fusion and muscle cell survival; furthermore, these explain some of the pathogenic events observed in congenital muscular dystrophy caused by merosin deficiency and provide in vitro models to further investigate the molecular mechanisms of this disease.  相似文献   

4.
Summary The laminin variant of adult skeletal muscle fibres and Schwann cells is known as merosin, and is composed of M-B1-B2 chains. Blood vessels and immature fibres express the A chain in association with B1 or S, and B2. The importance of merosin has recently been shown by its absence in one form of congenital muscular dystrophy and in the mutantdy/dy mouse, and by its partial deficiency in Fukuyama congenital muscular dystrophy. We have examined the immunocytochemical localization of the M, A, B1 and B2 laminin chains in human fetal muscle from 7 to 40 weeks' gestation to ascertain their developmental expression. The B1 and B2 chains were detected on muscle fibres at 7 weeks, but only traces of the A or M chain were seen. By 21 weeks maximal levels of all four subunits were observed on all fibres. This suggests that the basement membrane is still being assembled until this stage of development. Expression of the A chain on muscle fibres was not reduced until 34 weeks and low levels persisted at birth. The concomitant expression of the M and A chains at early stages may indicate a laminin variant, in addition to merosin, that is highly expressed in fetal muscle. Merosin was seen in intramuscular nerves at 11 weeks. B1 and B2 subunits were detected in blood vessels from 7 weeks' gestation and the A chain from 11 weeks. The capillary network, however, is not fully established in fetal muscle. Merosin is therefore detected early during human fetal muscle development, and this should be taken into account when assessing aborted fetuses at risk for congenital muscular dystrophy.  相似文献   

5.
Congenital muscular dystrophies (CMDs) are autosomal recessive muscle disorders of early onset. Approximately half of CMD patients present laminin alpha2-chain (merosin) deficiency in muscle biopsies, and the disease locus has been mapped to the region of the LAMA2 gene (6q22-23) in several families. Recently, two nonsense mutations in the laminin alpha2-chain gene were identified in CMD patients exhibiting complete deficiency of the laminin alpha2-chain in muscle biopsies. However, a subset of CMD patients with linkage to LAMA2 show only partial absence of the laminin alpha2-chain around muscle fibers, by immunocytochemical analysis. In the present study we have identified a homozygous missense mutation in the alpha2-chain gene of a consanguineous Turkish family with partial laminin alpha2-chain deficiency. The T-->C transition at position 3035 in the cDNA sequence results in a Cys996-->Arg substitution. The mutation that affects one of the conserved cysteine-rich repeats in the short arm of the laminin alpha2-chain should result in normal synthesis of the chain and in formation and secretion of a heterotrimeric laminin molecule. Muscular dysfunction is possibly caused either by abnormal disulfide cross-links and folding of the laminin repeat, leading to the disturbance of an as yet unknown binding function of the laminin alpha2-chain and to shorter half-life of the muscle-specific laminin-2 and laminin-4 isoforms, or by increased proteolytic sensitivity, leading to truncation of the short arm.  相似文献   

6.

Background

Alpha-dystroglycan (αDG) is an extracellular peripheral glycoprotein that acts as a receptor for both extracellular matrix proteins containing laminin globular domains and certain arenaviruses. An important enzyme, known as Like-acetylglucosaminyltransferase (LARGE), has been shown to transfer repeating units of -glucuronic acid-β1,3-xylose-α1,3- (matriglycan) to αDG that is required for functional receptor as an extracellular matrix protein scaffold. The reduction in the amount of LARGE-dependent matriglycan result in heterogeneous forms of dystroglycanopathy that is associated with hypoglycosylation of αDG and a consequent lack of ligand-binding activity. Our aim was to investigate whether LARGE expression showed correlation with glycosylation of αDG and histopathological parameters in different types of muscular dystrophies, except for dystroglycanopathies.

Methods

The expression level of LARGE and glycosylation status of αDG were examined in skeletal muscle biopsies from 26 patients with various forms of muscular dystrophy [Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), sarcoglycanopathy, dysferlinopathy, calpainopathy, and merosin and collagen VI deficient congenital muscular dystrophies (CMDs)] and correlation of results with different histopathological features was investigated.

Results

Despite the fact that these diseases are not caused by defects of glycosyltransferases, decreased expression of LARGE was detected in many patient samples, partly correlating with the type of muscular dystrophy. Although immunolabelling of fully glycosylated αDG with VIA4–1 was reduced in dystrophinopathy patients, no significant relationship between reduction of LARGE expression and αDG hypoglycosylation was detected. Also, Merosin deficient CMD patients showed normal immunostaining with αDG despite severe reduction of LARGE expression.

Conclusions

Our data shows that it is not always possible to correlate LARGE expression and αDG glycosylation in different types of muscular dystrophies and suggests that there might be differences in αDG processing by LARGE which could be regulated under different pathological conditions.
  相似文献   

7.
Congenital muscular dystrophy (CMD) is a clinically and genetically heterogeneous group of inherited muscle disorders. In patients, muscle weakness is usually present at or shortly after birth and is progressive in nature. Merosin deficient congenital muscular dystrophy (MDC1A) is a form of CMD caused by a defect in the laminin-α2 gene (LAMA2). Laminin-α2 is an extracellular matrix protein that interacts with the dystrophin-dystroglycan (DGC) complex in membranes providing stability to muscle fibers. In an N-ethyl-N-nitrosourea mutagenesis screen to develop zebrafish models of neuromuscular diseases, we identified a mutant fish that exhibits severe muscular dystrophy early in development. Genetic mapping identified a splice site mutation in the lama2 gene. This splice site is highly conserved in humans and this mutation results in mis-splicing of RNA and a loss of protein function. Homozygous lama2 mutant zebrafish, designated lama2(cl501/cl501), exhibited reduced motor function and progressive degeneration of skeletal muscles and died at 8-15 days post fertilization. The skeletal muscles exhibited damaged myosepta and detachment of myofibers in the affected fish. Laminin-α2 deficiency also resulted in growth defects in the brain and eye of the mutant fish. This laminin-α2 deficient mutant fish represents a novel disease model to develop therapies for modulating splicing defects in congenital muscular dystrophies and to restore the muscle function in human patients with CMD.  相似文献   

8.
The aims of our study were: to present cases of congenital muscular dystrophy (CMD) with deficiency in merosin and the importance of immunohistochemistry in the diagnosis of merosin-deficient CMD. In four years (1997-2000), we found three patients with merosin-deficient CMD, one of them having an unusual clinical and pathological manifestation of the disease. Muscle biopsies of gastrocnemius or quadriceps muscles were investigated. In addition with the conventional HE staining, indirect immunohistochemistry for merosin, dystrophin, utrophin and for the proteins of the dystrophin associated complex (α,β, γ- sarcoglycans; β-dystroglycan) was performed on cryosections. The findings suggest that there is no correlation between the clinical and histological picture of the disease and the expression of merosin in skeletal muscles. The degree of muscle involvment (assessed by histology) is parallel with the clinical neuromotor deficiency, but not with expression of merosin, which can be absent even in mild cases. The clinical investigations as well as current morphological techniques, only together with immunohistochemistry can differentiate between merosin - deficient CMD and other muscular dystrophy forms.  相似文献   

9.
We recently described a novel congenital muscular dystrophy (CMD) syndrome characterized by mental retardation, microcephaly, and partial merosin deficiency on muscle biopsy. Linkage analysis excluded involvement of the known CMD loci. We now report on a study performed on the differentiation of cultured myoblasts from one patient affected by this condition to evaluate the potential to form myotubes and merosin processing in these cells. The differentiation rate was comparable to controls and myotubes were stable in culture. Biochemical analysis showed the expected 80-kDa merosin subunit in myoblasts. However, a shifted 60-kDa protein was detected in myotubes. Matrix-metalloproteinases (MMPs) zymography showed increased gelatinolytic activity, and immunoblotting identified an increased amount of membrane-type 1 matrix-metalloproteinase in pathological myotube preparations. Our results show that these CMD-derived myotubes contain a low molecular weight merosin. They further suggest that an altered regulation of MMPs can be involved in basal lamina damage.  相似文献   

10.
The congenital muscular dystrophies (CMDs) are a clinically and genetically heterogeneous group of muscle disorders. Clinically hypotonia is present from birth, with progressive muscle weakness and wasting through development. For the most part, CMDs can mechanistically be attributed to failure of basement membrane protein laminin-α2 sufficiently binding with correctly glycosylated α-dystroglycan. The majority of CMDs therefore arise as the result of either a deficiency of laminin-α2 (MDC1A) or hypoglycosylation of α-dystroglycan (dystroglycanopathy). Here we consider whether by filling a regenerative medicine niche, the zebrafish model can address the present challenge of delivering novel therapeutic solutions for CMD. In the first instance the readiness and appropriateness of the zebrafish as a model organism for pioneering regenerative medicine therapies in CMD is analysed, in particular for MDC1A and the dystroglycanopathies. Despite the recent rapid progress made in gene editing technology, these approaches have yet to yield any novel zebrafish models of CMD. Currently the most genetically relevant zebrafish models to the field of CMD, have all been created by N-ethyl-N-nitrosourea (ENU) mutagenesis. Once genetically relevant models have been established the zebrafish has several important facets for investigating the mechanistic cause of CMD, including rapid ex vivo development, optical transparency up to the larval stages of development and relative ease in creating transgenic reporter lines. Together, these tools are well suited for use in live-imaging studies such as in vivo modelling of muscle fibre detachment. Secondly, the zebrafish's contribution to progress in effective treatment of CMD was analysed. Two approaches were identified in which zebrafish could potentially contribute to effective therapies. The first hinges on the augmentation of functional redundancy within the system, such as upregulating alternative laminin chains in the candyfloss fish, a model of MDC1A. Secondly high-throughput small molecule screens not only provide effective therapies, but also an alternative strategy for investigating CMD in zebrafish. In this instance insight into disease mechanism is derived in reverse. Zebrafish models are therefore clearly of critical importance in the advancement of regenerative medicine strategies in CMD.This article is part of a Directed Issue entitled: Regenerative Medicine: The challenge of translation.  相似文献   

11.
Merosin-deficient congenital muscular dystrophy is an autosomal recessive neuromuscular disorder caused by partial or total absence of laminin-2 (merosin) in the skeletal muscle. Affected children have severe weakness, hypotonia at birth, high creatine kinase (CK) levels (more than 10 times normal) and are not able to walk or stand unsupported. Linkage and mutation analysis demonstrated that the gene encoding for the laminin-alpha2 chain, mapped on chromosome 6q22-23, is invariably responsible for this form of congenital muscular dystrophy. We investigated the pattern of inheritance of the haplotypes associated with the mutated allele in 29 informative merosin-deficient families, using tightly linked informative polymorphic microsatellite markers. This allowed us to identify heterozygous individuals from normal homozygotes, who are clinically, pathologically and biochemically indistinguishable. By linkage analysis, we found a statistically significant increase in the number of heterozygous individuals carrying either the paternal or the maternal haplotypes associated with the mutated allele. This could suggest a selection in favour of the alleles carrying mutations at the laminin alpha2-chain locus.  相似文献   

12.
《Cytokine》2015,75(2):279-286
The purpose of this investigation was to identify if supplemental vitamin E (consisting of α- and γ-tocopherol’s) and C modulate serum cytokine and muscle strength following an ACL injury and surgery. Subjects were randomly assigned to one of two groups: (1) placebo (n = 14) or (2) vitamins E (α-[600 mg RRR-α-tocopherol, αT] and γ-[600 mg of RRR-γT]) and C (1000 mg ascorbic acid, AA) (EC; n = 15). Supplements were taken daily starting ∼2-wk prior to and concluding 16-wk after surgery. Fasting blood samples were obtained and single-leg peak isometric force measurements were performed at baseline (prior to supplementation), before surgery (∼120-min – blood draw only), and 8-wk, 12-wk, and 16-wk after surgery. αT, γT, AA, and cytokines were measured in each blood sample, and peak isometric force was measured on the injured and non-injured legs separately at each testing session. An exercise protocol consisting of repetitive knee and hip extension and flexion contractions to exhaustion was performed on the injured limb at 16-wk. Vitamin E and C supplementation significantly (all p < 0.05) increased plasma αT (∼40%), γT (∼160%), and AA (∼50%) concentrations. Serum cytokine concentrations, peak isometric force, and time to exhaustion during the exercise protocol were not significantly different between groups. Based on these findings, we conclude that vitamin E and C supplementation increases their endogenous levels without minimizing muscular weakness or modulating serum cytokine concentrations after ACL surgery.  相似文献   

13.
Uterine leiomyomas are characterized by an excessive extracellular matrix, increased mechanical stress, and increased active RhoA. Previously, we observed that mechanical signaling was attenuated in leiomyoma, but the mechanisms responsible remain unclear. Integrins, especially integrin β1, are transmembrane adhesion receptors that couple extracellular matrix stresses to the intracellular cytoskeleton to influence cell proliferation and differentiation. Here we characterized integrin and laminin to signaling in leiomyoma cells. We observed a 2.25 ± 0.32 fold increased expression of integrin β1 in leiomyoma cells, compared to myometrial cells. Antibody-mediated inhibition of integrin β1 led to significant growth inhibition in leiomyoma cells and a loss of cytoskeletal integrity. Specifically, polymerization of actin filaments and formation of focal adhesions were reduced by inhibition of integrin β1. Inhibition of integrin β1 in leiomyoma cells led to 0.81 ± 0.02 fold decrease in active RhoA, and resembled levels found in serum-starved cells. Likewise, inhibition of integrin β1 was accompanied by a decrease in phospho-ERK. Compared to myometrial cells, leiomyoma cells demonstrated increased expression of integrin α6 subunit to laminin receptor (1.91 ± 0.11 fold), and increased expression of laminin 5α (1.52 ± 0.02), laminin 5β (3.06 ± 0.92), and laminin 5γ (1.66 ± 0.06). Of note, leiomyoma cells grown on laminin matrix appear to realign themselves. Taken together, the findings reveal that the attenuated mechanical signaling in leiomyoma cells is accompanied by an increased expression and a dependence on integrin β1 signaling in leiomyoma cells, compared to myometrial cells.  相似文献   

14.
The congenital muscular dystrophies (CMD) are a heterogeneous group of autosomal recessive disorders, which present within the first 6 months of life with hypotonia, muscle weakness and contractures, associated with dystrophic changes on skeletal muscle biopsy. We have previously reported a large consanguineous family segregating merosin-positive congenital muscular dystrophy, in which involvement of known CMD loci was excluded. A genome-wide linkage search of the family conducted using microsatellite markers spaced at 10-Mb intervals failed to identify a disease locus. A second scan using a high-density SNP array, however, permitted a novel CMD locus on 4p16.3 to be identified (multipoint LOD score 3.4). Four additional consanguineous CMD families with a similar phenotype were evaluated for linkage to a 4.14-Mb interval on 4p16.3; however, none showed any evidence of linkage to the region. Our findings further illustrate the utility of highly informative SNP arrays compared with standard panels of microsatellite markers for the mapping of recessive disease loci.  相似文献   

15.
The distribution of subunits of the basement membrane proteins laminin and merosin in human and rabbit tissue was studied by immunofluorescence using monoclonal antibodies. The laminin A chain is present in epithelial, endothelial, and smooth muscle basement membranes. Merosin, as defined by its heavy chain M, is present in striated muscle and peripheral nerve. The A subunit colocalizes with at least two B subunits: B2 plus either B1 or the recently discovered B1 homologue S. The M subunit most often colocalizes with B1 and B2. Exceptions include the myotendinous junction, where M colocalizes with S, and the trophoblast basement membrane, where the M subunit colocalizes with S as well as B1. The presence of all five known subunits of the laminin family in placenta allowed isolation of their parent molecules in native form by the use of monoclonal antibodies in affinity chromatography. Four different heterotrimeric proteins could be identified: B1 chain-containing laminin (A-B1-B2), S chain-containing laminin (A-S-B2), B1-containing merosin (M-B1-B2), and S-containing merosin (M-S-B2). The data show that the proteins in the laminin family are heterotrimers composed of one heavy and two light chains; that most basement membranes contain predominantly one protein of the laminin family; and that laminin, as defined by the A subunit, has a much more restricted distribution than previously thought.  相似文献   

16.
BackgroundOnychomycosis affects between 2% to 30% of the world population. Nail biopsy may help in making a diagnosis and can distinguish between invasion and colonisation.AimsTo evaluate the diagnostic usefulness of nail biopsy with Periodic acid–Schiff (PAS) staining for onychomycosis, compared to direct KOH examination, culture and its combination in a reference laboratory in Colombia.MethodsThe study included 66 patients in whom a blind and independent reading of the three tests was performed. The usefulness was defined based on the validity (sensitivity, specificity, Youden's index, likelihood ratios), performance (predictive values) efficiency (proportion of correctly diagnosed patients), and reproducibility (kappa coefficient).ResultsThe mean age of the patients was 55 ± 16 years, and included 76% women. The direct tests with KOH were positive in 66.7% (n = 44), 62.1% (n = 41) were positive with culture, and 56.1% (n = 37) with the biopsy. The main causal agents were non-dermatophytes moulds in 36.4% (n = 24). The most frequent species were Neoscytalidium dimidiatum (n = 11), Trichophyton rubrum (n = 11), and Candida parapsilosis (n = 13). The sensitivity of nail biopsy, when compared to the standard (KOH and/or culture), was 71%, specificity 83%, Youden's index 0.54, positive likelihood ratio 4.25, negative likelihood ratio 0.35, positive predictive value 92%, negative predictive value 52%, efficiency 74% and kappa coefficient 0.45. When biopsy was evaluated only in patients with onycholysis of the nail plate greater than 50%, all the parameters of diagnostic usefulness increased.ConclusionsThe overall usefulness of the biopsy was moderate for patients with more severe symptomatology, which makes its use advisable in cases of extensive onycholysis, and when discriminating colonisation from invasion is required.  相似文献   

17.
The potential muscle regeneration after nutritional dystrophy caused by high dietary DHA contents in fish and the physiological pathways involved are still unknown. To better understand this process, an experiment was conducted for 3 weeks in 14 day-old European sea bass larvae using different DHA ratios (1 or 5%). After this period, part of the larvae fed 5% DHA diet was switched to 1% DHA diet (“wash-out”) for another 2 weeks. Larvae fed 5% DHA diet showed altered oxidative status as indicated by the highest TBARS values, antioxidant enzymes (AOE) expression and incidence of muscular lesions. Accordingly, “washed-out” larvae showed lower dry weight and α-TOH content. IGF-I gene expression was elevated in 5% DHA larvae at 35 dph, suggesting increased muscle mitogenesis that was corroborated by the increase in myosin heavy chain expression. It can be concluded that high dietary DHA contents alter the oxidative status and cause muscular lesions in European sea bass larvae, with morphological and molecular aspects of mammalians muscular degenerative disease.  相似文献   

18.
The aim of this exploratory study was to verify whether the evaluation of quadriceps muscle weakness is influenced by the testing modality (isometric vs. isokinetic vs. isoinertial) and by the calculation method (within-subject vs. between-subject comparisons) in patients 4–8 months after total knee arthroplasty (TKA, n = 29) and total hip arthroplasty (THA, n = 30), and in healthy controls (n = 19). Maximal quadriceps strength was evaluated as (1) the maximal voluntary contraction (MVC) torque during an isometric contraction, (2) the peak torque during an isokinetic contraction, and (3) the one repetition maximum (1-RM) load during an isoinertial contraction. Muscle weakness was calculated as the difference between the involved and the uninvolved side (within-subject comparison) and as the difference between the involved side of patients and controls (between-subject comparison). Muscle weakness estimates were not significantly affected by the calculation method (within-subject vs. between-subject; P > 0.05), whereas a significant main effect of testing modality (P < 0.05) was observed. Isometric MVC torque provided smaller weakness estimates than isokinetic peak torque (P = 0.06) and isoinertial 1-RM load (P = 0.008), and the clinical occurrence of weakness (proportion of patients with large strength deficits) was also lower for MVC torque. These results have important implications for the evaluation of quadriceps muscle weakness in TKA and THA patients 4–8 months after surgery.  相似文献   

19.
We hypothesized that zebrafish (Danio rerio) undergoing long-term vitamin E deficiency with marginal vitamin C status would develop myopathy resulting in impaired swimming. Zebrafish were fed for 1 y a defined diet without (E ?) and with (E +) vitamin E (500 mg α-tocopherol/kg diet). For the last 150 days, dietary ascorbic acid concentrations were decreased from 3500 to 50 mg/kg diet and the fish sampled periodically to assess ascorbic acid concentrations. The ascorbic acid depletion curves were faster in the E ? compared with E + fish (P < 0.0001); the estimated half-life of depletion in the E ? fish was 34 days, while in it was 55 days in the E + fish. To assess swimming behavior, zebrafish were monitored individually following a “startle-response” stimulus, using computer and video technology. Muscle histopathology was assessed using hematoxylin and eosin staining on paramedian sections of fixed zebrafish. At study end, E ? fish contained 300-fold less α-tocopherol (p < 0.0001), half the ascorbic acid (p = 0.0001) and 3-fold more malondialdehyde (p = 0.0005) than did E + fish. During the first minute following a tap stimulus (p < 0.05), E + fish swam twice as far as did E ? fish. In the E ? fish, the sluggish behavior was associated with a multifocal, polyphasic, degenerative myopathy of the skeletal muscle. The myopathy severity ranged from scattered acute necrosis to widespread fibrosis and was accompanied by increased anti-hydroxynonenal staining. Thus, vitamin E deficiency in zebrafish causes increased oxidative stress and a secondary depletion of ascorbic acid, resulting in severe damage to muscle tissue and impaired muscle function.  相似文献   

20.
AimsBesides their role in contraction, α1-adrenoceptors may be involved in prostate hyperplasia. This would require receptor signaling by growth-promoting pathways. Akt (syn. Protein kinase B) is an important regulator of growth and differentiation. Objective: To investigate whether α1-adrenoceptors in the human prostate activate Akt.Main methodsProstate tissue was obtained from patients undergoing radical prostatectomy. Akt expression was investigated by RT-PCR, Western blot, and immunohistochemistry. Akt activation by noradrenaline (30 μM) and phenylephrine (10 μM) was assessed by Western blot analyses with a phospho-specific antibody. The effects of the Akt inhibitors FPA-124 and 10-DEBC on phenylephrine-, noradrenaline- and electric field stimulation- (EFS-) induced contraction were studied in myographic measurements.Key findingsmRNA of all three Akt isoforms (Akt1, Akt2, Akt3) was detected by RT-PCR in all prostate samples (n = 6 patients). Protein expression was confirmed by Western blot analysis (n = 8 patients). Immunohistochemical staining for Akt revealed strong immunoreactivity in prostate smooth muscle cells (n = 5 patients). Stimulation of prostate tissues with noradrenaline (30 μM, n = 8 patients) or phenylephrine (10 μM, n = 7 patients) caused significant Akt phosphorylation at serine-473, indicating activation of Akt. FPA124 and 10-DEBC were without effects on noradrenaline-, phenylephrine-, or EFS-induced contraction of prostate strips.SignificanceProstate α1-adrenoceptors activate Akt. Consequently, Akt is a target of α1-blocker therapy, which has been unknown to date. Our findings point to functions of prostate α1-adrenoceptors besides contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号