首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant defensins are small, highly stable, cysteine-rich peptides that constitute a part of the innate immune system primarily directed against fungal pathogens. Biological activities reported for plant defensins include antifungal activity, antibacterial activity, proteinase inhibitory activity and insect amylase inhibitory activity. Plant defensins have been shown to inhibit infectious diseases of humans and to induce apoptosis in a human pathogen. Transgenic plants overexpressing defensins are strongly resistant to fungal pathogens. Based on recent studies, some plant defensins are not merely toxic to microbes but also have roles in regulating plant growth and development.Key words: defensin, antifungal, antimicrobial peptide, development, innate immunityDefensins are diverse members of a large family of cationic host defence peptides (HDP), widely distributed throughout the plant and animal kingdoms.13 Defensins and defensin-like peptides are functionally diverse, disrupting microbial membranes and acting as ligands for cellular recognition and signaling.4 In the early 1990s, the first members of the family of plant defensins were isolated from wheat and barley grains.5,6 Those proteins were originally called γ-thionins because their size (∼5 kDa, 45 to 54 amino acids) and cysteine content (typically 4, 6 or 8 cysteine residues) were found to be similar to the thionins.7 Subsequent “γ-thionins” homologous proteins were indentified and cDNAs were cloned from various monocot or dicot seeds.8 Terras and his colleagues9 isolated two antifungal peptides, Rs-AFP1 and Rs-AFP2, noticed that the plant peptides'' structural and functional properties resemble those of insect and mammalian defensins, and therefore termed the family of peptides “plant defensins” in 1995. Sequences of more than 80 different plant defensin genes from different plant species were analyzed.10 A query of the UniProt database (www.uniprot.org/) currently reveals publications of 371 plant defensins available for review. The Arabidopsis genome alone contains more than 300 defensin-like (DEFL) peptides, 78% of which have a cysteine-stabilized α-helix β-sheet (CSαβ) motif common to plant and invertebrate defensins.11 In addition, over 1,000 DEFL genes have been identified from plant EST projects.12Unlike the insect and mammalian defensins, which are mainly active against bacteria,2,3,10,13 plant defensins, with a few exceptions, do not have antibacterial activity.14 Most plant defensins are involved in defense against a broad range of fungi.2,3,10,15 They are not only active against phytopathogenic fungi (such as Fusarium culmorum and Botrytis cinerea), but also against baker''s yeast and human pathogenic fungi (such as Candida albicans).2 Plant defensins have also been shown to inhibit the growth of roots and root hairs in Arabidopsis thaliana16 and alter growth of various tomato organs which can assume multiple functions related to defense and development.4  相似文献   

2.
The pathogenicity of Clostridium difficile (C. difficile) is mediated by the release of two toxins, A and B. Both toxins contain large clusters of repeats known as cell wall binding (CWB) domains responsible for binding epithelial cell surfaces. Several murine monoclonal antibodies were generated against the CWB domain of toxin A and screened for their ability to neutralize the toxin individually and in combination. Three antibodies capable of neutralizing toxin A all recognized multiple sites on toxin A, suggesting that the extent of surface coverage may contribute to neutralization. Combination of two noncompeting antibodies, denoted 3358 and 3359, enhanced toxin A neutralization over saturating levels of single antibodies. Antibody 3358 increased the level of detectable CWB domain on the surface of cells, while 3359 inhibited CWB domain cell surface association. These results suggest that antibody combinations that cover a broader epitope space on the CWB repeat domains of toxin A (and potentially toxin B) and utilize multiple mechanisms to reduce toxin internalization may provide enhanced protection against C. difficile-associated diarrhea.Key words: Clostridium difficile, toxin neutralization, therapeutic antibody, cell wall binding domains, repeat proteins, CROPs, mAb combinationThe most common cause of nosocomial antibiotic-associated diarrhea is the gram-positive, spore-forming anaerobic bacillus Clostridium difficile (C. difficile). Infection can be asymptomatic or lead to acute diarrhea, colitis, and in severe instances, pseudomembranous colitis and toxic megacolon.1,2The pathological effects of C. difficile have long been linked to two secreted toxins, A and B.3,4 Some strains, particularly the virulent and antibiotic-resistant strain 027 with toxinotype III, also produce a binary toxin whose significance in the pathogenicity and severity of disease is still unclear.5 Early studies including in vitro cell-killing assays and ex vivo models indicated that toxin A is more toxigenic than toxin B; however, recent gene manipulation studies and the emergence of virulent C. difficile strains that do not express significant levels of toxin A (termed “A B+”) suggest a critical role for toxin B in pathogenicity.6,7Toxins A and B are large multidomain proteins with high homology to one another. The N-terminal region of both toxins enzymatically glucosylates small GTP binding proteins including Rho, Rac and CDC42,8,9 leading to altered actin expression and the disruption of cytoskeletal integrity.9,10 The C-terminal region of both toxins is composed of 20 to 30 residue repeats known as the clostridial repetitive oligopeptides (CROPs) or cell wall binding (CWB) domains due to their homology to the repeats of Streptococcus pneumoniae LytA,1114 and is responsible for cell surface recognition and endocytosis.12,1517C. difficile-associated diarrhea is often, but not always, induced by antibiotic clearance of the normal intestinal flora followed by mucosal C. difficile colonization resulting from preexisting antibiotic resistant C. difficile or concomitant exposure to C. difficile spores, particularly in hospitals. Treatments for C. difficile include administration of metronidazole or vancomycin.2,18 These agents are effective; however, approximately 20% of patients relapse. Resistance of C. difficile to these antibiotics is also an emerging issue19,20 and various non-antibiotic treatments are under investigation.2025Because hospital patients who contract C. difficile and remain asymptomatic have generally mounted strong antibody responses to the toxins,26,27 active or passive immunization approaches are considered hopeful avenues of treatment for the disease. Toxins A and B have been the primary targets for immunization approaches.20,2833 Polyclonal antibodies against toxins A and B, particularly those that recognize the CWB domains, have been shown to effectively neutralize the toxins and inhibit morbidity in rodent infection models.31 Monoclonal antibodies (mAbs) against the CWB domains of the toxins have also demonstrated neutralizing capabilities; however, their activity in cell-based assays is significantly weaker than that observed for polyclonal antibody mixtures.3336We investigated the possibility of creating a cocktail of two or more neutralizing mAbs that target the CWB domain of toxin A with the goal of synthetically re-creating the superior neutralization properties of polyclonal antibody mixtures. Using the entire CWB domain of toxin A, antibodies were raised in rodents and screened for their ability to neutralize toxin A in a cell-based assay. Two mAbs, 3358 and 3359, that (1) both independently demonstrated marginal neutralization behavior and (2) did not cross-block one another from binding toxin A were identified. We report here that 3358 and 3359 use differing mechanisms to modify CWB-domain association with CHO cell surfaces and combine favorably to reduce toxin A-mediated cell lysis.  相似文献   

3.
4.
VERNALIZATION INSENSITIVE 3 (VIN3) encodes a PHD domain chromatin remodelling protein that is induced in response to cold and is required for the establishment of the vernalization response in Arabidopsis thaliana.1 Vernalization is the acquisition of the competence to flower after exposure to prolonged low temperatures, which in Arabidopsis is associated with the epigenetic repression of the floral repressor FLOWERING LOCUS C (FLC).2,3 During vernalization VIN3 binds to the chromatin of the FLC locus,1 and interacts with conserved components of Polycomb-group Repressive Complex 2 (PRC2).4,5 This complex catalyses the tri-methylation of histone H3 lysine 27 (H3K27me3),4,6,7 a repressive chromatin mark that increases at the FLC locus as a result of vernalization.4,710 In our recent paper11 we found that VIN3 is also induced by hypoxic conditions, and as is the case with low temperatures, induction occurs in a quantitative manner. Our experiments indicated that VIN3 is required for the survival of Arabidopsis seedlings exposed to low oxygen conditions. We suggested that the function of VIN3 during low oxygen conditions is likely to involve the mediation of chromatin modifications at certain loci that help the survival of Arabidopsis in response to prolonged hypoxia. Here we discuss the implications of our observations and hypotheses in terms of epigenetic mechanisms controlling gene regulation in response to hypoxia.Key words: arabidopsis, VIN3, FLC, hypoxia, vernalization, chromatin remodelling, survival  相似文献   

5.
6.
A role for SR proteins in plant stress responses   总被引:1,自引:0,他引:1  
  相似文献   

7.
Here we announce the complete genome sequence of Croceibacter atlanticus HTCC2559T, which was isolated by high-throughput dilution-to-extinction culturing from the Bermuda Atlantic Time Series station in the Western Sargasso Sea. Strain HTCC2559T contained genes for carotenoid biosynthesis, flavonoid biosynthesis, and several macromolecule-degrading enzymes. The genome confirmed physiological observations of cultivated Croceibacter atlanticus strain HTCC2559T, which identified it as an obligate chemoheterotroph.The phylum Bacteroidetes comprises 6 to ∼30% of total bacterial communities in the ocean by fluorescence in situ hybridization (8-10). Most marine Bacteroidetes are in the family Flavobacteriaceae, most of which are aerobic respiratory heterotrophs that form a well-defined clade by 16S rRNA phylogenetic analyses (4). The members of this family are well known for degrading macromolecules, including chitin, DNA, cellulose, starch, and pectin (17), suggesting their environmental roles as detritus decomposers in the ocean (6). Marine Polaribacter and Dokdonia species in the Flavobacteriaceae have also shown to have photoheterotrophic metabolism mediated by proteorhodopsins (11, 12).Several strains of the family Flavobacteriaceae were isolated from the Sargasso Sea and Oregon coast, using high-throughput culturing approaches (7). Croceibacter atlanticus HTCC2559T was cultivated from seawater collected at a depth of 250 m from the Sargasso Sea and was identified as a new genus in the family Flavobacteriaceae based on its 16S rRNA gene sequence similarities (6). Strain HTCC2559T met the minimal standards for genera of the family Flavobacteriaceae (3) on the basis of phenotypic characteristics (6).Here we report the complete genome sequence of Croceibacter atlanticus HTCC2559T. The genome sequencing was initiated by the J. Craig Venter Institute as a part of the Moore Foundation Microbial Genome Sequencing Project and completed in the current announcement. Gaps among contigs were closed by Genotech Co., Ltd. (Daejeon, Korea), using direct sequencing of combinatorial PCR products (16). The HTCC2559T genome was analyzed with a genome annotation system based on GenDB (14) at Oregon State University and with the NCBI Prokaryotic Genomes Automatic Annotation Pipeline (15, 16).The HTCC2559T genome is 2,952,962 bp long, with 33.9 mol% G+C content, and there was no evidence of plasmids. The number of protein-coding genes was 2,715; there were two copies of the 16S-23S-5S rRNA operon and 36 tRNA genes. The HTCC2559T genome contained genes for a complete tricarboxylic acid cycle, glycolysis, and a pentose phosphate pathway. The genome also contained sets of genes for metabolic enzymes involved in carotenoid biosynthesis and also a serine/glycine hydroxymethyltransferase, which is often associated with the assimilatory serine cycle (13). The potential for HTCC2559T to use bacterial type III polyketide synthase (PKS) needs to be confirmed because this organism had a naringenin-chalcone synthase (CHS) or chalcone synthase (EC 2.3.1.74), a key enzyme in flavonoid biosynthesis. CHS initiates the addition of three molecules of malonyl coenzyme A (malonyl-CoA) to a starter CoA ester (e.g., 4-coumaroyl-CoA) (1) and takes part in a few bacterial type III polyketide synthase systems (1, 2, 5, 18).The complete genome sequence confirmed that strain HTCC2559T is an obligate chemoheterotroph because no genes for phototrophy were found. As expected from physiological characteristics (6), the HTCC2559T genome contained a set of genes coding for enzymes required to degrade high-molecular-weight compounds, including peptidases, metallo-/serine proteases, pectinase, alginate lyases, and α-amylase.  相似文献   

8.
Organelle movement in plants is dependent on actin filaments with most of the organelles being transported along the actin cables by class XI myosins. Although chloroplast movement is also actin filament-dependent, a potential role of myosin motors in this process is poorly understood. Interestingly, chloroplasts can move in any direction and change the direction within short time periods, suggesting that chloroplasts use the newly formed actin filaments rather than preexisting actin cables. Furthermore, the data on myosin gene knockouts and knockdowns in Arabidopsis and tobacco do not support myosins'' XI role in chloroplast movement. Our recent studies revealed that chloroplast movement and positioning are mediated by the short actin filaments localized at chloroplast periphery (cp-actin filaments) rather than cytoplasmic actin cables. The accumulation of cp-actin filaments depends on kinesin-like proteins, KAC1 and KAC2, as well as on a chloroplast outer membrane protein CHUP1. We propose that plants evolved a myosin XI-independent mechanism of the actin-based chloroplast movement that is distinct from the mechanism used by other organelles.Key words: actin, Arabidopsis, blue light, kinesin, myosin, organelle movement, phototropinOrganelle movement and positioning are pivotal aspects of the intracellular dynamics in most eukaryotes. Although plants are sessile organisms, their organelles are quickly repositioned in response to fluctuating environmental conditions and certain endogenous signals. By and large, plant organelle movements and positioning are dependent on actin filaments, although microtubules play certain accessory roles in organelle dynamics.1,2 Actin inhibitors effectively retard the movements of mitochondria,36 peroxisomes,5,711 Golgi stacks,12,13 endoplasmic reticulum (ER),14,15 and nuclei.1618 These organelles are co-aligned and associated with actin filaments.5,7,8,1012,15,18 Recent progress in this field started to reveal the molecular motility system responsible for the organelle transport in plants.19Chloroplast movement is among the most fascinating models of organelle movement in plants because it is precisely controlled by ambient light conditions.20,21 Weak light induces chloroplast accumulation response so that chloroplasts can capture photosynthetic light efficiently (Fig. 1A). Strong light induces chloroplast avoidance response to escape from photodamage (Fig. 1B).22 The blue light-induced chloroplast movement is mediated by the blue light receptor phototropin (phot). In some cryptogam plants, the red light-induced chloroplast movement is regulated by a chimeric phytochrome/phototropin photoreceptor neochrome.2325 In a model plant Arabidopsis, phot1 and phot2 function redundantly to regulate the accumulation response,26 whereas phot2 alone is essential for the avoidance response.27,28 Several additional factors regulating chloroplast movement were identified by analyses of Arabidopsis mutants deficient in chloroplast photorelocation.2932 In particular, identification of CHUP1 (chloroplast unusual positioning 1) revealed the connection between chloroplasts and actin filaments at the molecular level.29 CHUP1 is a chloroplast outer membrane protein capable of interacting with F-actin, G-actin and profilin in vitro.29,33,34 The chup1 mutant plants are defective in both the chloroplast movement and chloroplast anchorage to the plasma membrane,22,29,33 suggesting that CHUP1 plays an important role in linking chloroplasts to the plasma membrane through the actin filaments. However, how chloroplasts move using the actin filaments and whether chloroplast movement utilizes the actin-based motility system similar to other organelle movements remained to be determined.Open in a separate windowFigure 1Schematic distribution patterns of chloroplasts in a palisade cell under different light conditions, weak (A) and strong (B) lights. Shown as a side view of mid-part of the cell and a top view with three different levels (i.e., top, middle and bottom of the cell). The cell was irradiated from the leaf surface shown as arrows. Weak light induces chloroplast accumulation response (A) and strong light induces the avoidance response (B).Here, we review the recent findings pointing to existence of a novel actin-based mechanisms for chloroplast movement and discuss the differences between the mechanism responsible for movement of chloroplasts and other organelles.  相似文献   

9.
In young Arabidopsis seedlings, retrograde signaling from plastids regulates the expression of photosynthesis-associated nuclear genes in response to the developmental and functional state of the chloroplasts. The chloroplast-located PPR protein GUN1 is required for signalling following disruption of plastid protein synthesis early in seedling development before full photosynthetic competence has been achieved. Recently we showed that sucrose repression and the correct temporal expression of LHCB1, encoding a light-harvesting chlorophyll protein associated with photosystem II, are perturbed in gun1 mutant seedlings.1 Additionally, we demonstrated that in gun1 seedlings anthocyanin accumulation and the expression of the “early” anthocyanin-biosynthesis genes is perturbed. Early seedling development, predominantly at the stage of hypocotyl elongation and cotyledon expansion, is also affected in gun1 seedlings in response to sucrose, ABA and disruption of plastid protein synthesis by lincomycin. These findings indicate a central role for GUN1 in plastid, sucrose and ABA signalling in early seedling development.Key words: ABA, ABI4, anthocyanin, chloroplast, GUN1, retrograde signalling, sucroseArabidopsis seedlings develop in response to light and other environmental cues. In young seedlings, development is fuelled by mobilization of lipid reserves until chloroplast biogenesis is complete and the seedlings can make the transition to phototrophic growth. The majority of proteins with functions related to photosynthesis are encoded by the nuclear genome, and their expression is coordinated with the expression of genes in the chloroplast genome. In developing seedlings, retrograde signaling from chloroplasts to the nucleus regulates the expression of these nuclear genes and is dependent on the developmental and functional status of the chloroplast. Two classes of gun (genomes uncoupled) mutants defective in retrograde signalling have been identified in Arabidopsis: the first, which comprises gun2–gun5, involves mutations in genes encoding components of tetrapyrrole biosynthesis.2,3 The other comprises gun1, which has mutations in a nuclear gene encoding a plastid-located pentatricopeptide repeat (PPR) protein with an SMR (small MutS-related) domain near the C-terminus.4,5 PPR proteins are known to have roles in RNA processing6 and the SMR domain of GUN1 has been shown to bind DNA,4 but the specific functions of these domains in GUN1 are not yet established. However, GUN1 has been shown to be involved in plastid gene expression-dependent,7 redox,4 ABA1,4 and sucrose signaling,1,4,8 as well as light quality and intensity sensing pathways.911 In addition, GUN1 has been shown to influence anthocyanin biosynthesis, hypocotyl extension and cotyledon expansion.1,11  相似文献   

10.
Cell surface receptors of the integrin family are pivotal to cell adhesion and migration. The activation state of heterodimeric αβ integrins is correlated to the association state of the single-pass α and β transmembrane domains. The association of integrin αIIbβ3 transmembrane domains, resulting in an inactive receptor, is characterized by the asymmetric arrangement of a straight (αIIb) and tilted (β3) helix relative to the membrane in congruence to the dissociated structures. This allows for a continuous association interface centered on helix-helix glycine-packing and an unusual αIIb(GFF) structural motif that packs the conserved Phe-Phe residues against the β3 transmembrane helix, enabling αIIb(D723)β3(R995) electrostatic interactions. The transmembrane complex is further stabilized by the inactive ectodomain, thereby coupling its association state to the ectodomain conformation. In combination with recently determined structures of an inactive integrin ectodomain and an activating talin/β complex that overlap with the αβ transmembrane complex, a comprehensive picture of integrin bi-directional transmembrane signaling has emerged.Key words: cell adhesion, membrane protein, integrin, platelet, transmembrane complex, transmembrane signalingThe communication of biological signals across the plasma membrane is fundamental to cellular function. The ubiquitous family of integrin adhesion receptors exhibits the unusual ability to convey signals bi-directionally (outside-in and inside-out signaling), thereby controlling cell adhesion, migration and differentiation.15 Integrins are Type I heterodimeric receptors that consist of large extracellular domains (>700 residues), single-pass transmembrane (TM) domains, and mostly short cytosolic tails (<70 residues). The activation state of heterodimeric integrins is correlated to the association state of the TM domains of their α and β subunits.610 TM dissociation initiated from the outside results in the transmittal of a signal into the cell, whereas dissociation originating on the inside results in activation of the integrin to bind ligands such as extracellular matrix proteins. The elucidation of the role of the TM domains in integrin-mediated adhesion and signaling has been the subject of extensive research efforts, perhaps commencing with the demonstration that the highly conserved GFFKR sequence motif of α subunits (Fig. 1), which closely follows the first charged residue on the intracellular face, αIIb(K989), constrains the receptor to a default low affinity state.11 Despite these efforts, an understanding of this sequence motif had not been reached until such time as the structure of the αIIb TM segment was determined.12 In combination with the structure of the β3 TM segment13 and available mutagenesis data,6,9,10,14,15 this has allowed the first correct prediction of the overall association of an integrin αβ TM complex.12 The predicted association was subsequently confirmed by the αIIbβ3 complex structure determined in phospholipid bicelles,16 as well as by the report of a similar structure based on molecular modeling using disulfide-based structural constraints.17 In addition to the structures of the dissociated and associated αβ TM domains, their membrane embedding was defined12,13,16,18,19 and it was experimentally recognized that, in the context of the native receptor, the TM complex is stabilized by the inactive, resting ectodomain.16 These advances in integrin membrane structural biology are complemented by the recent structures of a resting integrin ectodomain and an activating talin/β cytosolic tail complex that overlap with the αβ TM complex,20,21 allowing detailed insight into integrin bi-directional TM signaling.Open in a separate windowFigure 1Amino acid sequence of integrin αIIb and β3 transmembrane segments and flanking regions. Membrane-embedded residues12,13,16,18,19 are enclosed by a gray box. Residues 991–995 constitute the highly conserved GFFKR sequence motif of integrin α subunits.  相似文献   

11.
12.
Protein kinase C (PKC)-ε, a component of the serine/threo-nine PKC family, has been shown to influence the survival and differentiation pathways of normal hematopoietic cells. Here, we have modulated the activity of PKC-ε with specific small molecule activator or inhibitor peptides. PKC-ε inhibitor and activator peptides showed modest effects on HL-60 maturation when added alone, but PKC-ε activator peptide significantly counteracted the pro-maturative activity of tumor necrosis factor (TNF)-α towards the monocytic/macrophagic lineage, as evaluated in terms of CD14 surface expression and morphological analyses. Moreover, while PKC-ε inhibitor peptide showed a reproducible increase of TNF-related apoptosis inducing ligand (TRAIL)-induced apoptosis, PKC-ε activator peptide potently counteracted the pro-apoptotic activity of TRAIL. Taken together, the anti-maturative and anti-apoptotic activities of PKC-ε envision a potentially important proleukemic role of this PKC family member.Key words: acute myeloid leukemia, surface antigens, HL-60 cells, apoptosis, maturation.Activation of all protein kinase C (PKC) family of serine and threonine isoenzymes is associated with binding to the negatively charged phospholipids, phosphatidylserine, while different PKC isozymes have varying sensitivities to Ca2+ and lipid-derived second messengers such as diacylglycerol (Gonelli et al., 2009). Upon activation, PKC isozymes translocate from the soluble to the particulate cell fraction, including cell membrane, nucleus and mitochondria (Gonelli et al., 2009). PKC primary sequence can be broadly separated into two domains: the N-terminal regulatory domain and the conserved C-terminal catalytic domain.The regulatory domain of PKC is composed of the C1 and C2 domains that mediate PKC interactions with second messengers, phospholipids, as well as inter and intramolecular protein-protein interactions. Differences in the order and number of copies of signaling domains, as well as sequence differences that affect binding affinities, result in the distinct activity of each PKC isozyme (Gonelli et al., 2009).In recent years, a series of peptides derived from PKC have been shown to modulate its activity by interfering with critical protein-protein interactions within PKC and between PKC and PKC-binding proteins (Brandman et al., 2007, Souroujon and Mochly-Rosen, 1998). Focusing on PKC-ε isozyme and using a rational approach, one C2-derived peptide that acts as an isozyme-selective activator (Dorn et al., 1999) and another that acts as a selective inhibitor (Johnson et al., 1996) of PKC-ε, have been identified.These findings are particularly interesting since besides being involved in the physiology of normal cardiac (Braun and Mochly-Rosen, 2003, Johnson et al., 1996, Li et al., 2006), hematopoietic (Gobbi et al., 2009, Mirandola et al., 2006, Racke et al., 2001), and neuronal (Borgatti et al., 1996) cell models, mounting experimental evidences have linked altered PKC-ε functions to solid tumor development (Okhrimenko et al., 2005, Gillespie et al., 2005, Lu et al., 2006). Therefore, taking advantage of the recent availability of small molecule peptides able to activate or inhibit specifically PKC-ε by disrupting protein/protein interactions (Dorn et al., 1999, Johnson et al., 1996), which open important therapeutic perspectives, we have investigated the effects of both PKC-ε activator and PKC-ε inhibitor peptides on the maturation and survival of leukemic cells, using as a model system the HL-60 myeloblastic leukemia cell line, which can be induced to undergo terminal differentiation or apoptotic cell death by a variety of chemical and biological agents (Breitman et al., 1980, Zauli et al., 1996).  相似文献   

13.
Callose in polypodiaceous ferns performs multiple roles during stomatal development and function. This highly dynamic (1→3)-β-D-glucan, in cooperation with the cytoskeleton, is involved in: (a) stomatal pore formation, (b) deposition of local GC wall thickenings and (c) the mechanism of stomatal pore opening and closure. This behavior of callose, among others, probably relies on the particular mechanical properties as well as on the ability to form and degrade rapidly, to create a scaffold or to serve as a matrix for deposition of other cell wall materials and to produce fibrillar deposits in the periclinal GC walls, radially arranged around the stomatal pore. The local callose deposition in closing stomata is an immediate response of the external periclinal GC walls experiencing strong mechanical forces induced by the neighboring cells. The radial callose fibrils transiently co-exist with radial cellulose microfibrils and, like the latter, seem to be oriented via cortical MTs.Key words: callose, cytoskeleton, fern stomata, guard cell wall thickening, stomatal function, stomatal pore formationCallose represents a hemicellulosic matrix cell wall component, usually of temporal appearance, which is synthesized by callose synthases, enzymes localized in the plasmalemma and degraded by (1→3)-β-glucanases.14 It consists of triple helices of a linear homopolymer of (1→3)-β-glucose residues.57 The plant cell is able to form and degrade callose in a short time. On the surface of the plasmolyzed protoplast a thin callose surface film may arise within seconds.8 Callose is the only cell wall component that is implicated in a great variety of developmental plant processes, like cell plate formation,911 microspore development,1214 trafficking through plasmodesmata,15,16 formation and closure of sieve pores,16 response of the plant cells to multiple biotic and abiotic stresses,4,5 establishment of distinct “cell cortex domains”,17 etc.Despite the widespread occurrence of callose, its general function(s) is (are) not well understood (reviewed in refs. 4 and 5). It may serve as: a matrix for deposition of other cell wall materials, as in developing cell plates;9 a cell wall-strengthening material, as in cotton seed hairs and growing pollen tubes;18 a sealing or plugging material at the plasma membrane of pit fields, plasmodesmata and sieve plate pores;16 a mechanical obstruction to growth of fungal hyphae or a special permeability barrier, as in pollen mother cell walls and muskmelon endosperm envelopes.4,19,20 The degree of polymerization, age and thickness of callose deposits may cause variation in its physical properties.5Evidence accumulated so far showed that a significant number of ferns belonging to Polypodiales and some other fern classes forms intense callose deposits in the developing GC wall thickenings.2128 This phenomenon has not been observed in angiosperm stomata, although callose is deposited along the whole surface of the young VW and in the VW ends of differentiating and mature stomata (our unpublished data; reviewed in refs 29 and 30).Stomata are specialized epidermal bicellular structures (Fig. 1A) regulating gas exchange between the aerial plant organs and the external environment. Their appearance in the first land plants was crucial for their adaptation and survival in the terrestrial environment. The constituent GCs have the ability to undergo reversible changes in shape, leading to opening and closure of the stomatal pore (stomatal movement). The mechanism by which GCs change shape is based on: (a) the particular mechanical properties of GC walls owed to their particular shape, thickening, fine structure and chemical composition and (b) the reversible changes in vacuole volume, in response to environmental factors, through fairly complicated biochemical pathways.3033Open in a separate windowFigure 1(A) Diagrammatic representation of an elliptical stoma. (B–E) Diagram to show the process of stomatal pore formation in angiosperms (B and C) and Polypodiales ferns (D and E). The arrows in (B) indicate the forming stomatal pore. DW, dorsal wall; EPW, external periclinal wall; GC, guard cell; IPW, internal periclinal wall; ISP, internal stomatal pore; PE polar ventral wall end; VW, ventral wall.The present review is focused on the multiple-role of callose in differentiating and functioning fern stomata, as they are substantiated by the available information, including some unpublished data, and in particular in: stomatal pore formation, deposition of GC wall thickenings and opening and closure of the stomatal pore. The mode of deposition of fibrillar callose deposits in GC walls and the mechanism of their alignment are also considered.  相似文献   

14.
The accumulation of silicon (Si) differs greatly with plant species and cultivars due to different ability of the roots to take up Si. In Si accumulating plants such as rice, barley and maize, Si uptake is mediated by the influx (Lsi1) and efflux (Lsi2) transporters. Here we report isolation and functional analysis of two Si efflux transporters (CmLsi2-1 and CmLsi2-2) from two pumpkin (Cucurbita moschata Duch.) cultivars contrasting in Si uptake. These cultivars are used for rootstocks of bloom and bloomless cucumber, respectively. Different from mutations in the Si influx transporter CmLsi1, there was no difference in the sequence of either CmLsi2 between two cultivars. Both CmLsi2-1 and CmLsi2-2 showed an efflux transport activity for Si and they were expressed in both the roots and shoots. These results confirm our previous finding that mutation in CmLsi1, but not in CmLsi2-1 and CmLsi2-2 are responsible for bloomless phenotype resulting from low Si uptake.Key words: silicon, efflux transporter, pumpkin, cucumber, bloomSilicon (Si) is the second most abundant elements in earth''s crust.1 Therefore, all plants rooting in soils contain Si in their tissues. However Si accumulation in the shoot differs greatly among plant species, ranging for 0.1 to 10% of dry weight.13 In higher plants, only Poaceae, Equisetaceae and Cyperaceae show a high Si accumulation.2,3 Si accumulation also differs with cultivars within a species.4,5 These differences in Si accumulation have been attributed to the ability of the roots to take up Si.6,7Genotypic difference in Si accumulation has been used to produce bloomless cucumber (Cucumis sativus L.).8 Bloom (white and fine powders) on the surface of cucumber fruits is primarily composed of silica (SiO2).9 However, nowadays, cucumber without bloom (bloomless cucumber) is more popular in Japan due to its more attractive and distinctly shiny appearance. Bloomless cucumber is produced by grafting cucumber on some specific pumpkin (Cucurbita moschata Duch.) cultivars. These pumpkin cultivars used for bloomless cucumber rootstocks have lower silicon accumulation compared with the rootstocks used for producing bloom cucumber.9Our study showed that the difference in Si accumulation between bloom and bloomless root stocks of pumpkin cultivars results from different Si uptake by the roots.10 Si uptake has been demonstrated to be mediated by two different types of transporters (Lsi1 and Lsi2) in rice, barley and maize.1115 Lsi1 is an influx transporter of Si, belonging to a NIP subfamily of aquaporin family.10,11,13,14 This transporter is responsible for transport of Si from external solution to the root cells.11 On the other hand, Lsi2 is an efflux transporter of Si, belonging to putative anion transporter.12 Lsi2 releases Si from the root cells towards the xylem. Both Lsi1 and Lsi2 are required for Si uptake by the roots.11,12 To understand the mechanism underlying genotypic difference in Si uptake, we have isolated and functionally characterized an influx Si transporter CmLsi1 from two pumpkin cultivars used for rootstocks of bloomless and bloom cucumber.10 Sequence analysis showed only two amino acids difference of CmLsi1 between two pumpkin cultivars. However, CmLsi1 from bloom rootstock [CmLsi1(B+)] showed transport activity for Si, whereas that from bloomless rootstock [CmLsi1(B)] did not.10 Furthermore, we found that loss of Si transport activity was caused by one amino acid mutation at the position of 242 (from proline to leucine).10 This mutation resulted in failure to be localized at the plasma membrane, which is necessary for functioning as an influx transporter. The mutated protein was localized at the ER.10 Here, we report isolation and expression analysis of Si efflux transporters from two pumpkin cultivars contrasting in Si uptake and accumulation to examine whether Si efflux transporter is also involved in the bloom and bloomless phenotypes.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号