首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objective

A positive family history (FH) is a risk factor for late-onset Alzheimer’s disease (AD). Our aim was to examine the effects of FH on pathological and neuronal loss biomarkers across the cognitive spectrum.

Design

Cross-sectional analyses of data from a national biomarker study.

Setting

The Alzheimer’s Disease Neuroimaging Initiative national study.

Patients

257 subjects (ages 55–89), divided into cognitively normal (CN), mild cognitive impairment (MCI), and AD groups, with CSF and FH data.

Outcome Measures

Cerebrospinal fluid (CSF) Aβ42, tau, and tau/Aβ42 ratio, MRI-measured hippocampal volumes.

Statistics

Univariate and multivariate analyses.

Results

In MCI, CSF Aβ42 was lower (p = .005), t-tau was higher (p = 0.02) and t-tau/Aβ42 ratio was higher (p = 0.002) in FH+ than FH− subjects. A significant residual effect of FH on pathologic markers in MCI remained after adjusting for ApoE4 (p<0.05). Among CN, 47% of FH+ exhibited “pathologic signature of AD” (CSF t-tau/Aβ42 ratio >0.39) versus 21% of FH− controls (p = 0.03). The FH effect was not significant in AD subjects. Hippocampal and intracranial volumes did not differ between FH+ and FH− subjects in any group.

Conclusions

A positive family history of late-onset AD is associated with a higher prevalence of an abnormal cerebral beta-amyloid and tau protein phenotype in MCI. The unexplained genetic heritability in family history is about the half the size of the ApoE4 effect. Longitudinal studies are warranted to more definitively examine this issue.  相似文献   

2.

Objectives

To understand the relation between risk genes for Alzheimer’s disease (AD) and their influence on biomarkers for AD, we examined the association of AD in the Finnish cohort with single nucleotide polymorphisms (SNPs) from top AlzGene loci, genome-wide association studies (GWAS), and candidate gene studies; and tested the correlation between these SNPs and AD markers Aβ1–42, total tau (t-tau), and phosphorylated tau (p-tau) in cerebrospinal fluid (CSF).

Methods

We tested 25 SNPs for genetic association with clinical AD in our cohort comprised of 890 AD patients and 701-age matched healthy controls using logistic regression. For the correlational study with biomarkers, we tested 36 SNPs in a subset of 222 AD patients with available CSF using mixed models. Statistical analyses were adjusted for age, gender and APOE status. False discovery rate for multiple testing was applied. All participants were from academic hospital and research institutions in Finland.

Results

APOE-ε4, CLU rs11136000, and MS4A4A rs2304933 correlated with significantly decreased Aβ1–42 (corrected p<0.05). At an uncorrected p<0.05, PPP3R1 rs1868402 and MAPT rs2435211 were related with increased t-tau; while SORL1 rs73595277 and MAPT rs16940758, with increased p-tau. Only TOMM40 rs2075650 showed association with clinical AD after adjusting for APOE-ε4 (p = 0.007), but not after multiple test correction (p>0.05).

Conclusions

We provide evidence that APOE-ε4, CLU and MS4A4A, which have been identified in GWAS to be associated with AD, also significantly reduced CSF Aβ1–42 in AD. None of the other AlzGene and GWAS loci showed significant effects on CSF tau. The effects of other SNPs on CSF biomarkers and clinical AD diagnosis did not reach statistical significance. Our findings suggest that APOE-ε4, CLU and MS4A4A influence both AD risk and CSF Aβ1–42.  相似文献   

3.

Background

Brain-derived neurotrophic factor (BDNF) is an activity-dependent secreted protein that is critical to organization of neuronal networks and synaptic plasticity, especially in the hippocampus. We tested hypothesis that reduced CSF BDNF is associated with age-related cognitive decline.

Methodology/Principal Findings, and Conclusions/Significance

CSF concentration of BDNF, Aβ42 and total tau were measured in 128 cognitively normal adults (Normals), 21 patients with Alzheimer''s disease (AD), and nine patients with Mild Cognitive Impairment. Apolipoprotein E and BDNF SNP rs6265 genotype were determined. Neuropsychological tests were performed at baseline for all subjects and at follow-up visits in 50 Normals. CSF BDNF level was lower in AD patients compared to age-matched Normals (p = 0.02). CSF BDNF concentration decreased with age among Normals and was higher in women than men (both p<0.001). After adjusting for age, gender, education, CSF Aβ42 and total tau, and APOE and BDNF genotypes, lower CSF BDNF concentration was associated poorer immediate and delayed recall at baseline (both p<0.05) and in follow up of approximately 3 years duration (both p<0.01).

Conclusions/Significance

Reduced CSF BDNF was associated with age-related cognitive decline, suggesting a potential mechanism that may contribute in part to cognitive decline in older individuals.  相似文献   

4.

Introduction

Diagnosis of mild TBI is hampered by the lack of imaging or biochemical measurements for identifying or quantifying mild TBI in a clinical setting. We have previously shown increased biomarker levels of protein reflecting axonal (neurofilament light protein and tau) and glial (GFAP and S-100B) damage in cerebrospinal fluid (CSF) after a boxing bout. The aims of this study were to find other biomarkers of mild TBI, which may help clinicians diagnose and monitor mild TBI, and to calculate the role of APOE ε4 allele genotype which has been associated with poor outcome after TBI.

Materials and Methods

Thirty amateur boxers with a minimum of 45 bouts and 25 non-boxing matched controls were included in a prospective cohort study. CSF and blood were collected at one occasion between 1 and 6 days after a bout, and after a rest period for at least 14 days (follow up). The controls were tested once. CSF levels of neurofilament heavy (pNFH), amyloid precursor proteins (sAPPα and sAPPβ), ApoE and ApoA1 were analyzed. In blood, plasma levels of Aβ42 and ApoE genotype were analyzed.

Results

CSF levels of pNFH were significantly increased between 1 and 6 days after boxing as compared with controls (p<0.001). The concentrations decreased at follow up but were still significantly increased compared to controls (p = 0.018). CSF pNFH concentrations correlated with NFL (r =  0.57 after bout and 0.64 at follow up, p<0.001). No significant change was found in the other biomarkers, as compared to controls. Boxers carrying the APOE ε4 allele had similar biomarker concentrations as non-carriers.

Conclusions

Subconcussive repetitive trauma in amateur boxing causes a mild TBI that may be diagnosed by CSF analysis of pNFH, even without unconsciousness or concussion symptoms. Possession of the APOE ε4 allele was not found to influence biomarker levels after acute TBI.  相似文献   

5.
The purpose of the present study was to investigate if cerebrospinal fluid (CSF) biomarkers of neurodegeneration are associated with cognition in bipolar disorder and healthy controls, respectively. CSF concentrations of total and phosphorylated tau, amyloid beta (Aβ)1-42, ratios of Aβ42/40 and Aβ42/38, soluble amyloid precursor protein α and β, and neurofilament light chain protein were analyzed in relation to neuropsychological performance in 82 euthymic bipolar disorder patients and 71 healthy controls. Linear regression models were applied to account for performance in five cognitive domains using the CSF biomarkers. In patients, the CSF biomarkers explained a significant proportion of the variance (15–36%, p=.002 - <.0005) in all cognitive domains independently of age, medication, disease status, and bipolar subtype I or II. However, the CSF biomarkers specifically mirroring Alzheimer-type brain changes, i.e., P-tau and Aβ1-42, did not contribute significantly. In healthy controls, CSF biomarkers did not explain the variance in cognitive performance. Selected CSF biomarkers of neurodegenerative processes accounted for cognitive performance in persons with bipolar disorder, but not for healthy controls. Specifically, the ratios of Aβ42/40 and Aβ42/38 were consistently associated with altered cognitive performance.  相似文献   

6.
Alzheimer''s disease (AD) is a progressive neurodegenerative disease that is pathologically characterized by extracellular deposition of β-amyloid peptide (Aβ) and intraneuronal accumulation of hyperphosphorylated tau protein. Because cerebrospinal fluid (CSF) is in direct contact with the extracellular space of the brain, it provides a reflection of the biochemical changes in the brain in response to pathological processes. CSF from AD patients shows a decrease in the 42 amino-acid form of Aβ (Aβ42), and increases in total tau and hyperphosphorylated tau, though the mechanisms responsible for these changes are still not fully understood. Transgenic (Tg) mouse models of AD provide an excellent opportunity to investigate how and why Aβ or tau levels in CSF change as the disease progresses. Here, we demonstrate a refined cisterna magna puncture technique for CSF sampling from the mouse. This extremely gentle sampling technique allows serial CSF samples to be obtained from the same mouse at 2-3 month intervals which greatly minimizes the confounding effect of between-mouse variability in Aβ or tau levels, making it possible to detect subtle alterations over time. In combination with Aβ and tau ELISA, this technique will be useful for studies designed to investigate the relationship between the levels of CSF Aβ42 and tau, and their metabolism in the brain in AD mouse models. Studies in Tg mice could provide important validation as to the potential of CSF Aβ or tau levels to be used as biological markers for monitoring disease progression, and to monitor the effect of therapeutic interventions. As the mice can be sacrificed and the brains can be examined for biochemical or histological changes, the mechanisms underlying the CSF changes can be better assessed. These data are likely to be informative for interpretation of human AD CSF changes.Open in a separate windowClick here to view.(49M, flv)  相似文献   

7.

Purpose

To compare the accuracies of predicting AD conversion by using a decision support system (PredictAD tool) and current research criteria of prodromal AD as identified by combinations of episodic memory impairment of hippocampal type and visual assessment of medial temporal lobe atrophy (MTA) on MRI and CSF biomarkers.

Methods

Altogether 391 MCI cases (158 AD converters) were selected from the ADNI cohort. All the cases had baseline cognitive tests, MRI and/or CSF levels of Aβ1–42 and Tau. Using baseline data, the status of MCI patients (AD or MCI) three years later was predicted using current diagnostic research guidelines and the PredictAD software tool designed for supporting clinical diagnostics. The data used were 1) clinical criteria for episodic memory loss of the hippocampal type, 2) visual MTA, 3) positive CSF markers, 4) their combinations, and 5) when the PredictAD tool was applied, automatically computed MRI measures were used instead of the visual MTA results. The accuracies of diagnosis were evaluated with the diagnosis made 3 years later.

Results

The PredictAD tool achieved the overall accuracy of 72% (sensitivity 73%, specificity 71%) in predicting the AD diagnosis. The corresponding number for a clinician’s prediction with the assistance of the PredictAD tool was 71% (sensitivity 75%, specificity 68%). Diagnosis with the PredictAD tool was significantly better than diagnosis by biomarkers alone or the combinations of clinical diagnosis of hippocampal pattern for the memory loss and biomarkers (p≤0.037).

Conclusion

With the assistance of PredictAD tool, the clinician can predict AD conversion more accurately than the current diagnostic criteria.  相似文献   

8.

Background

Transthyretin (TTR), an abundant protein in cerebrospinal fluid (CSF), contains a free, oxidation-prone cysteine residue that gives rise to TTR isoforms. These isoforms may reflect conditions in vivo. Since increased oxidative stress has been linked to neurodegenerative disorders such as Alzheimer’s disease (AD) it is of interest to characterize CSF-TTR isoform distribution in AD patients and controls. Here, TTR isoforms are profiled directly from CSF by an optimized immunoaffinity-mass spectrometry method in 76 samples from patients with AD (n = 37), mild cognitive impairment (MCI, n = 17)), and normal pressure hydrocephalus (NPH, n = 15), as well as healthy controls (HC, n = 7). Fractions of three specific oxidative modifications (S-cysteinylation, S-cysteinylglycinylation, and S-glutathionylation) were quantitated relative to the total TTR protein. Results were correlated with diagnostic information and with levels of CSF AD biomarkers tau, phosphorylated tau, and amyloid β1-42 peptide.

Results

Preliminary data highlighted the high risk of artifactual TTR modification due to ex vivo oxidation and thus the samples for this study were all collected using strict and uniform guidelines. The results show that TTR is significantly more modified on Cys(10) in the AD and MCI groups than in controls (NPH and HC) (p ≤ 0.0012). Furthermore, the NPH group, while having normal TTR isoform distribution, had significantly decreased amyloid β peptide but normal tau values. No obvious correlations between levels of routine CSF biomarkers for AD and the degree of TTR modification were found.

Conclusions

AD and MCI patients display a significantly higher fraction of oxidatively modified TTR in CSF than the control groups of NPH patients and HC. Quantitation of CSF-TTR isoforms thus may provide diagnostic information in patients with dementia symptoms but this should be explored in larger studies including prospective studies of MCI patients. The development of methods for simple, robust, and reproducible inhibition of in vitro oxidation during CSF sampling and sample handling is highly warranted. In addition to the diagnostic information the possibility of using TTR as a CSF oxymeter is of potential value in studies monitoring disease activity and developing new drugs for neurodegenerative diseases.  相似文献   

9.

Background

Clinicopathological studies suggest that Alzheimer''s disease (AD) pathology begins ∼10–15 years before the resulting cognitive impairment draws medical attention. Biomarkers that can detect AD pathology in its early stages and predict dementia onset would, therefore, be invaluable for patient care and efficient clinical trial design. We utilized a targeted proteomics approach to discover novel cerebrospinal fluid (CSF) biomarkers that can augment the diagnostic and prognostic accuracy of current leading CSF biomarkers (Aβ42, tau, p-tau181).

Methods and Findings

Using a multiplexed Luminex platform, 190 analytes were measured in 333 CSF samples from cognitively normal (Clinical Dementia Rating [CDR] 0), very mildly demented (CDR 0.5), and mildly demented (CDR 1) individuals. Mean levels of 37 analytes (12 after Bonferroni correction) were found to differ between CDR 0 and CDR>0 groups. Receiver-operating characteristic curve analyses revealed that small combinations of a subset of these markers (cystatin C, VEGF, TRAIL-R3, PAI-1, PP, NT-proBNP, MMP-10, MIF, GRO-α, fibrinogen, FAS, eotaxin-3) enhanced the ability of the best-performing established CSF biomarker, the tau/Aβ42 ratio, to discriminate CDR>0 from CDR 0 individuals. Multiple machine learning algorithms likewise showed that the novel biomarker panels improved the diagnostic performance of the current leading biomarkers. Importantly, most of the markers that best discriminated CDR 0 from CDR>0 individuals in the more targeted ROC analyses were also identified as top predictors in the machine learning models, reconfirming their potential as biomarkers for early-stage AD. Cox proportional hazards models demonstrated that an optimal panel of markers for predicting risk of developing cognitive impairment (CDR 0 to CDR>0 conversion) consisted of calbindin, Aβ42, and age.

Conclusions/Significance

Using a targeted proteomic screen, we identified novel candidate biomarkers that complement the best current CSF biomarkers for distinguishing very mildly/mildly demented from cognitively normal individuals. Additionally, we identified a novel biomarker (calbindin) with significant prognostic potential.  相似文献   

10.
Plasma β-amyloid protein (Aβ) isoforms are considered potential biomarkers for Alzheimer's disease (AD) and dementia. The relation between plasma and cerebrospinal fluid (CSF) levels of Aβ isoforms remains unclear. In order to identify possible correlations between Aβ levels in plasma and CSF we determined Aβ levels in time-linked plasma and CSF samples. Aβ concentrations in plasma (Aβ1–42 and AβN–42) and CSF (Aβ1–42) samples from 49 AD patients, 47 non-Alzheimer's disease dementia (NONAD) patients, 39 MCI patients and 29 controls were determined using a multi-parameter fluorimetric bead-based immunoassay using xMAP® technology (for plasma) and a conventional single-parameter ELISA (for CSF). Plasma Aβ1–42 concentrations did not correlate with CSF Aβ1–42 concentrations in the total study population, or in the different diagnostic groups. No correlations between plasma AβN–42 and CSF Aβ1–42 levels were found either. The CSF/serum albumin index did not show any significant differences between AD, NONAD, MCI and controls.These results suggest that the Aβ levels in plasma are independent of the Aβ levels in CSF both in dementia and controls. The fact that CSF and plasma Aβ do not correlate in patients as well as controls and no significant differences in plasma Aβ1–42 or AβN–42 between patients and controls can be detected hampers the diagnostic utility of the plasma Aβ levels as biomarkers for dementia.  相似文献   

11.
Amyloid beta (aβ) protein assembles into larger protein aggregates during the pathogenesis of Alzheimer’s disease (AD) and there is increasing evidence that soluble aβ oligomers are a critical pathologic species. Diagnostic evaluations rely on the measurement of increased tau and decreased aβ42 in the cerebrospinal fluid (CSF) from AD patients and evidence for oligomeric aβ in patient CSF is conflicting. In this study, we have adapted a monoclonal single antibody sandwich ELISA assay to a Luminex platform and found that this assay can detect oligomerized aβ42 and sAPPα fragments. We evaluated oligomeric aβ reactivity in 20 patients with AD relative to 19 age matched controls and compared these values with a commercially available Alzbio3 kit that detects tau, phosphorylated tau and aβ42 on the same diagnostic platform. We found that CSF samples of patients with AD had elevated aβ oligomers compared to control subjects (p < 0.05) and the ratio of aβ oligomers to aβ42 was also significantly elevated (p < 0.0001). Further research to develop high sensitivity analytical platforms and rigorous methods of developing stable assay standards will be needed before the analysis of oligomeric aβ becomes a routine diagnostic assay for the evaluation of late onset AD patients.  相似文献   

12.

Background

Ideally, disease modifying therapies for Alzheimer disease (AD) will be applied during the ‘preclinical’ stage (pathology present with cognition intact) before severe neuronal damage occurs, or upon recognizing very mild cognitive impairment. Developing and judiciously administering such therapies will require biomarker panels to identify early AD pathology, classify disease stage, monitor pathological progression, and predict cognitive decline. To discover such biomarkers, we measured AD-associated changes in the cerebrospinal fluid (CSF) proteome.

Methods and Findings

CSF samples from individuals with mild AD (Clinical Dementia Rating [CDR] 1) (n = 24) and cognitively normal controls (CDR 0) (n = 24) were subjected to two-dimensional difference-in-gel electrophoresis. Within 119 differentially-abundant gel features, mass spectrometry (LC-MS/MS) identified 47 proteins. For validation, eleven proteins were re-evaluated by enzyme-linked immunosorbent assays (ELISA). Six of these assays (NrCAM, YKL-40, chromogranin A, carnosinase I, transthyretin, cystatin C) distinguished CDR 1 and CDR 0 groups and were subsequently applied (with tau, p-tau181 and Aβ42 ELISAs) to a larger independent cohort (n = 292) that included individuals with very mild dementia (CDR 0.5). Receiver-operating characteristic curve analyses using stepwise logistic regression yielded optimal biomarker combinations to distinguish CDR 0 from CDR>0 (tau, YKL-40, NrCAM) and CDR 1 from CDR<1 (tau, chromogranin A, carnosinase I) with areas under the curve of 0.90 (0.85–0.94 95% confidence interval [CI]) and 0.88 (0.81–0.94 CI), respectively.

Conclusions

Four novel CSF biomarkers for AD (NrCAM, YKL-40, chromogranin A, carnosinase I) can improve the diagnostic accuracy of Aβ42 and tau. Together, these six markers describe six clinicopathological stages from cognitive normalcy to mild dementia, including stages defined by increased risk of cognitive decline. Such a panel might improve clinical trial efficiency by guiding subject enrollment and monitoring disease progression. Further studies will be required to validate this panel and evaluate its potential for distinguishing AD from other dementing conditions.  相似文献   

13.
The cerebrospinal fluid (CSF) levels of the proapoptotic kinase R (PKR) and its phosphorylated PKR (pPKR) are increased in Alzheimer’s disease (AD), but whether CSF PKR concentrations are associated with cognitive decline in AD patients remain unknown. In this study, 41 consecutive patients with AD and 11 patients with amnestic mild cognitive impairment (aMCI) from our Memory Clinic were included. A lumbar puncture was performed during the following month of the clinical diagnosis and Mini-Mental State Examination (MMSE) evaluations were repeated every 6 months during a mean follow-up of 2 years. In AD patients, linear mixed models adjusted for age and sex were used to assess the cross-sectional and longitudinal associations between MMSE scores and baseline CSF levels of Aβ peptide (Aβ 1-42), Tau, phosphorylated Tau (p-Tau 181), PKR and pPKR. The mean (SD) MMSE at baseline was 20.5 (6.1) and MMSE scores declined over the follow-up (-0.12 point/month, standard error [SE] = 0.03). A lower MMSE at baseline was associated with lower levels of CSF Aβ 1–42 and p-Tau 181/Tau ratio. pPKR level was associated with longitudinal MMSE changes over the follow-up, higher pPKR levels being related with an exacerbated cognitive deterioration. Other CSF biomarkers were not associated with MMSE changes over time. In aMCI patients, mean CSF biomarker levels were not different in patients who converted to AD from those who did not convert.These results suggest that at the time of AD diagnosis, a higher level of CSF pPKR can predict a faster rate of cognitive decline.  相似文献   

14.
Human apolipoprotein E (apoE) isoforms may differentially modulate amyloid-β (Aβ) levels. Evidence suggests physical interactions between apoE and Aβ are partially responsible for these functional effects. However, the apoE/Aβ complex is not a single static structure; rather, it is defined by detection methods. Thus, literature results are inconsistent and difficult to interpret. An ELISA was developed to measure soluble apoE/Aβ in a single, quantitative method and was used to address the hypothesis that reduced levels of soluble apoE/Aβ and an increase in soluble Aβ, specifically oligomeric Aβ (oAβ), are associated with APOE4 and AD. Previously, soluble Aβ42 and oAβ levels were greater with APOE4 compared with APOE2/APOE3 in hippocampal homogenates from EFAD transgenic mice (expressing five familial AD mutations and human apoE isoforms). In this study, soluble apoE/Aβ levels were lower in E4FAD mice compared with E2FAD and E3FAD mice, thus providing evidence that apoE/Aβ levels isoform-specifically modulate soluble oAβ clearance. Similar results were observed in soluble preparations of human cortical synaptosomes; apoE/Aβ levels were lower in AD patients compared with controls and lower with APOE4 in the AD cohort. In human CSF, apoE/Aβ levels were also lower in AD patients and with APOE4 in the AD cohort. Importantly, although total Aβ42 levels decreased in AD patients compared with controls, oAβ levels increased and were greater with APOE4 in the AD cohort. Overall, apoE isoform-specific formation of soluble apoE/Aβ modulates oAβ levels, suggesting a basis for APOE4-induced AD risk and a mechanistic approach to AD biomarkers.  相似文献   

15.

Background and Purpose

The present study was designed to examine the effects of ginsenoside Rg1 on expression of peroxisome proliferator-activated receptor γ (PPARγ) and insulin-degrading enzyme (IDE) in the hippocampus of rat model of Alzheimer''s disease (AD) to determine how ginsenoside Rg1 (Rg1) decreases Aβ levels in AD.

Experimental Approach

Experimental AD was induced in rats by a bilateral injection of 10 µg soluble beta-amyloid peptide 1–42 (Aβ1–42) into the CA1 region of the hippocampus, and the rats were treated with Rg1 (10 mg·kg−1, intraperitoneally) for 28 days. The Morris water maze was used to test spatial learning and memory performance. Hematoxylin-eosin staining was performed to analyze the hippocampal histopathological damage. Immunohistochemistry, western blotting, and real-time PCR were used to detect Aβ1–42, PPARγ, and insulin-degrading enzyme (IDE) expression in the hippocampus.

Key Results

Injection of soluble Aβ1–42 into the hippocampus led to significant dysfunction of learning and memory, hippocampal histopathological abnormalities and increased Aβ1–42 levels in the hippocampus. Rg1 treatment significantly improved learning and memory function, attenuated hippocampal histopathological abnormalities, reduced Aβ1–42 levels and increased PPARγ and IDE expression in the hippocampus; these effects of Rg1 could be effectively inhibited by GW9662, a PPARγ antagonist.

Conclusions and Implications

Given that PPARγ can upregulate IDE expression and IDE can degrade Aβ1–42, these results indicate that Rg1 can increase IDE expression in the hippocampus by upregulating PPARγ, leading to decreased Aβ levels, attenuated hippocampal histopathological abnormalities and improved learning and memory in a rat model of AD.  相似文献   

16.
Cerebral spinal fluid (CSF) Aβ42, tau and p181tau are widely accepted biomarkers of Alzheimer’s disease (AD). Numerous studies show that CSF tau and p181tau levels are elevated in mild-to-moderate AD compared to age-matched controls. In addition, these increases might predict preclinical AD in cognitively normal elderly. Despite their importance as biomarkers, the molecular nature of CSF tau and ptau is not known. In the current study, reverse-phase high performance liquid chromatography was used to enrich and concentrate tau prior to western-blot analysis. Multiple N-terminal and mid-domain fragments of tau were detected in pooled CSF with apparent sizes ranging from <20 kDa to ~40 kDa. The pattern of tau fragments in AD and control samples were similar. In contrast, full-length tau and C-terminal-containing fragments were not detected. To quantify levels, five tau ELISAs and three ptau ELISAs were developed to detect different overlapping regions of the protein. The discriminatory potential of each assay was determined using 20 AD and 20 age-matched control CSF samples. Of the tau ELISAs, the two assays specific for tau containing N-terminal sequences, amino acids 9-198 (numbering based on tau 441) and 9-163, exhibited the most significant differences between AD and control samples. In contrast, CSF tau was not detected with an ELISA specific for a more C-terminal region (amino acids 159-335). Significant discrimination was also observed with ptau assays measuring amino acids 159-p181 and 159-p231. Interestingly, the discriminatory potential of p181 was reduced when measured in the context of tau species containing amino acids 9-p181. Taken together, these results demonstrate that tau in CSF occurs as a series of fragments and that discrimination of AD from control is dependent on the subset of tau species measured. These assays provide novel tools to investigate CSF tau and ptau as biomarkers for other neurodegenerative diseases.  相似文献   

17.

Background

Alzheimer’s disease (AD) is the most common type of dementia affecting people over 65 years of age. The hallmarks of AD are the extracellular deposits known as amyloid β plaques and the intracellular neurofibrillary tangles, both of which are the principal players involved in synaptic loss and neuronal cell death. Tau protein and Aβ fragment 1–42 have been investigated so far in cerebrospinal fluid as a potential AD biomarkers. However, an urgent need to identify novel biomarkers which will capture disease in the early stages and with better specificity remains. High-throughput proteomic and pathway analysis of hippocampal tissue provides a valuable source of disease-related proteins and biomarker candidates, since it represents one of the earliest affected brain regions in AD.

Results

In this study 2954 proteins were identified (with at least 2 peptides for 1203 proteins) from both control and AD brain tissues. Overall, 204 proteins were exclusively detected in AD and 600 proteins in control samples. Comparing AD and control exclusive proteins with cerebrospinal fluid (CSF) literature-based proteome, 40 out of 204 AD related proteins and 106 out of 600 control related proteins were also present in CSF. As most of these proteins were extracellular/secretory origin, we consider them as a potential source of candidate biomarkers that need to be further studied and verified in CSF samples.

Conclusions

Our semiquantitative proteomic analysis provides one of the largest human hippocampal proteome databases. The lists of AD and control related proteins represent a panel of proteins potentially involved in AD pathogenesis and could also serve as prospective AD diagnostic biomarkers.  相似文献   

18.

Background

Little is known of vitamin D concentration in cerebrospinal fluid (CSF) in Alzheimer´s disease (AD) and its relation with CSF acetylcholinesterase (AChE) activity, a marker of cholinergic function.

Methods

A cross-sectional study of 52 consecutive patients under primary evaluation of cognitive impairment and 17 healthy controls. The patients had AD dementia or mild cognitive impairment (MCI) diagnosed with AD dementia upon follow-up (n = 28), other dementias (n = 12), and stable MCI (SMCI, n = 12). We determined serum and CSF concentrations of calcium, parathyroid hormone (PTH), 25-hydroxyvitamin D (25OHD), and CSF activities of AChE and butyrylcholinesterase (BuChE).

Findings

CSF 25OHD level was reduced in AD patients (P < 0.05), and CSF AChE activity was decreased both in patients with AD (P < 0.05) and other dementias (P < 0.01) compared to healthy controls. None of the measured variables differed between BuChE K-variant genotypes whereas the participants that were homozygous in terms of the apolipoprotein E (APOE) ε4 allele had decreased CSF AChE activity compared to subjects lacking the APOE ε4 allele (P = 0.01). In AD patients (n=28), CSF AChE activity correlated positively with CSF levels of total tau (T-tau) (r = 0.44, P < 0.05) and phosphorylated tau protein (P-tau) (r = 0.50, P < 0.01), but CSF activities of AChE or BuChE did not correlate with serum or CSF levels of 25OHD.

Conclusions

In this pilot study, both CSF 25OHD level and CSF AChE activity were reduced in AD patients. However, the lack of correlations between 25OHD levels and CSF activities of AChE or BuChE might suggest different mechanisms of action, which could have implications for treatment trials.  相似文献   

19.
A major difference in the revised diagnostic criteria for Alzheimer’s disease (AD) is the incorporation of biomarkers to support a clinical diagnosis and allow the identification of preclinical AD due to AD neuropathological processes. However, AD-specific fluid biomarkers which specifically distinguish clinical AD dementia from other dementia disorders are still missing. Here we aimed to evaluate the disease-specificity of increased YKL-40 levels in cerebrospinal fluid (CSF) from AD patients with mild to moderate dementia (n = 49) versus Parkinson’s disease (PD) (n = 61) and dementia with Lewy bodies (DLB) patients (n = 36), and non-demented controls (n = 44). Second we aimed to investigate whether altered YKL-40 levels are associated with CSF levels of other inflammation-associated molecules. When correcting for age, AD patients exhibited 21.3%, 27.7% and 38.8% higher YKL-40 levels compared to non-demented controls (p = 0.0283), DLB (p = 0.0027) and PD patients (p<0.0001). The AD-associated increase in YKL-40 was not associated with CSF P-tau, T-tau or Aβ42. No relationship between increased YKL-40 and levels of the astrocytic marker glial-fibrillary acidic protein (GFAP), interleukin-8 (IL-8), monocyte chemoattractant protein-1 (MCP-1) and interferon gamma-induced protein 10 (IP-10) could be identified. Our results confirm previous reports of an age-associated increased in CSF YKL-40 levels and further demonstrate increased CSF YKL-40 in AD patients versus non-demented controls and patients with DLB or PD. The increase in YKL-40 levels in the AD patients was unrelated to the established CSF AD biomarkers and the inflammatory markers GFAP, MCP-1, IP-10 and IL-8, proposing YKL-40 as a marker of yet to be identified AD-related pathological processes.  相似文献   

20.
The aim of this study was to determine whether the improvement of cerebrospinal fluid (CSF) flow dynamics by CSF shunting, can suppress the oligomerization of amyloid β-peptide (Aβ), by measuring the levels of Alzheimer’s disease (AD)-related proteins in the CSF before and after lumboperitoneal shunting. Lumbar CSF from 32 patients with idiopathic normal pressure hydrocephalus (iNPH) (samples were obtained before and 1 year after shunting), 15 patients with AD, and 12 normal controls was analyzed for AD-related proteins and APLP1-derived Aβ-like peptides (APL1β) (a surrogate marker for Aβ). We found that before shunting, individuals with iNPH had significantly lower levels of soluble amyloid precursor proteins (sAPP) and Aβ38 compared to patients with AD and normal controls. We divided the patients with iNPH into patients with favorable (improvement ≥ 1 on the modified Rankin Scale) and unfavorable (no improvement on the modified Rankin Scale) outcomes. Compared to the unfavorable outcome group, the favorable outcome group showed significant increases in Aβ38, 40, 42, and phosphorylated-tau levels after shunting. In contrast, there were no significant changes in the levels of APL1β25, 27, and 28 after shunting. After shunting, we observed positive correlations between sAPPα and sAPPβ, Aβ38 and 42, and APL1β25 and 28, with shifts from sAPPβ to sAPPα, from APL1β28 to 25, and from Aβ42 to 38 in all patients with iNPH. Our results suggest that Aβ production remained unchanged by the shunt procedure because the levels of sAPP and APL1β were unchanged. Moreover, the shift of Aβ from oligomer to monomer due to the shift of Aβ42 (easy to aggregate) to Aβ38 (difficult to aggregate), and the improvement of interstitial-fluid flow, could lead to increased Aβ levels in the CSF. Our findings suggest that the shunting procedure can delay intracerebral deposition of Aβ in patients with iNPH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号