首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Extrapolation of local abundance–environment relationships to broader scales provides species distribution models used for conservation planning. We investigated the importance of environmental heterogeneity and geographic distance on pteridophyte species spatial distribution on 38 plots of 250 × 2.5 m distributed over 90 km2 in Central Amazon. Inclusion of canopy openness in our models increased the capacity of predicting community composition even under the narrow range of canopy openness found in our plots. Nevertheless, there was still a large amount of unexplained variance (55–65%). The response of the community to the light gradient was hierarchical and we did not find evidences of light partitioning. Most species were concentrated in low light plots but a few common and abundant occurred along the entire gradient. Soil properties were the major determinants of community composition. Contrary to similar studies, slope was not a good predictor of pteridophyte community composition, indicating that this relationship may be site-specific. There was no correlation between floristic distances and geographic distances. We concluded that mesoscale turnover is low, although locally environmental variation determines high turnover of species. Studies among different Amazonian physiognomies tend to find high levels of beta-diversity. However, coarse comparisons can not reveal subtle patterns that are relevant for biodiversity conservation planning. This study found some important changes on pteridophyte community within the same type of forest, mainly related to environmental heterogeneity, even in narrow ranges of environmental variation.  相似文献   

2.
The degree to which variation in plant community composition (beta-diversity) is predictable from environmental variation, relative to other spatial processes, is of considerable current interest. We addressed this question in Costa Rican rain forest pteridophytes (1,045 plots, 127 species). We also tested the effect of data quality on the results, which has largely been overlooked in earlier studies. To do so, we compared two alternative spatial models [polynomial vs. principal coordinates of neighbour matrices (PCNM)] and ten alternative environmental models (all available environmental variables vs. four subsets, and including their polynomials vs. not). Of the environmental data types, soil chemistry contributed most to explaining pteridophyte community variation, followed in decreasing order of contribution by topography, soil type and forest structure. Environmentally explained variation increased moderately when polynomials of the environmental variables were included. Spatially explained variation increased substantially when the multi-scale PCNM spatial model was used instead of the traditional, broad-scale polynomial spatial model. The best model combination (PCNM spatial model and full environmental model including polynomials) explained 32% of pteridophyte community variation, after correcting for the number of sampling sites and explanatory variables. Overall evidence for environmental control of beta-diversity was strong, and the main floristic gradients detected were correlated with environmental variation at all scales encompassed by the study (c. 100–2,000 m). Depending on model choice, however, total explained variation differed more than fourfold, and the apparent relative importance of space and environment could be reversed. Therefore, we advocate a broader recognition of the impacts that data quality has on analysis results. A general understanding of the relative contributions of spatial and environmental processes to species distributions and beta-diversity requires that methodological artefacts are separated from real ecological differences.  相似文献   

3.
4.
5.
Patterns in substrate, canopy openness, tree species composition and structure were studied in a swamp forest in southeastern Brazil (Itirapina, SP), using a fine spatial scale (∼0.05 km2). Sixty quadrats of 10 m × 10 m were divided into three sample plots, located in the centre and at both ends of the forest remnant (upstream and downstream), encompassing different environmental conditions. In each quadrat we quantified and identified individuals with CBH (circumference at breast height) ≥ 10 cm, the chemical properties of the soil, the drainage (flooded area) and the percentage of canopy openness. We keep 5124 individuals distributed over 37 species and 25 families. The downstream site presented a lower frequency of flooding, canopy openness, species richness (15 species) and density of individuals. In the central site we found different patterns of drainage and light incidence, the greatest species richness (31 species) and density of individuals, but smaller trees both in height and in diameter. The upstream site was subject to higher frequency of flooding, with intermediate values for density and species richness (27 species). Floristic and structural variation between and within sites reflects the different environmental conditions related to substrate and canopy openness. However, a larger number of species were correlated with drainage pattern (21 species) rather than with canopy openness (14 species), suggesting that the main factor responsible for the spatial organization of the plant community in swamp forests is soil drainage.  相似文献   

6.
7.
Gary Brown 《Plant Ecology》2003,165(1):53-68
Two blocks, each consisting of twelve 0.25 m2permanent plots, were established in a community dominated by desert annuals inan area of Kuwait protected from grazing, and community attributes wereinvestigated over three growth seasons. A linear relationship was found betweenestimated desert annual cover and biomass production. Species frequency wasassessed by the number of 100 cm2 subplots occupied byaspecies in a block (block incidence). Over the three seasons,vegetation features varied considerably. The first season (spring 1997) wascharacterised by very sparse vegetation cover, low vegetation block incidence(sum of individual block incidences of each species present in a block) and lowspecies richness. The second season (spring 1998) had high vegetation cover,relatively low vegetation block incidence, but high species richness. In thethird season (spring 2000), vegetation cover was very sparse (as in 1997), butboth blocks had the highest vegetation block incidence of the three years andspecies richness was moderately high, although individual plants were verysmall. The growth period was much shorter in the very productive andspecies-rich 1998 season than in 2000. Fluctuations in biomass and speciesincidence coincided with pronounced variation in key meteorological variables,in particular the onset of the first rains, the amount of rainfall during thegrowing season and its temporal distribution. Species composition, however,appears mainly to be determined by the amount and possibly the timing of thefirst rainfalls of the season to trigger germination. There was little evidenceto suggest that particularly favourable or unfavourable microsites existed inplots for more than one vegetation period, either for individual species or fordiversity in general. Despite substantial between-season fluctuations inincidence, the relative abundances of the more frequent species to each otherremained broadly similar over the three seasons, with Plantagoboissieri being the predominant species and accounting for thelargest proportion of biomass.  相似文献   

8.
Michael P. Perring  Markus Bernhardt‐Römermann  Lander Baeten  Gabriele Midolo  Haben Blondeel  Leen Depauw  Dries Landuyt  Sybryn L. Maes  Emiel De Lombaerde  Maria Mercedes Carón  Mark Vellend  Jörg Brunet  Markéta Chudomelová  Guillaume Decocq  Martin Diekmann  Thomas Dirnböck  Inken Dörfler  Tomasz Durak  Pieter De Frenne  Frank S. Gilliam  Radim Hédl  Thilo Heinken  Patrick Hommel  Bogdan Jaroszewicz  Keith J. Kirby  Martin Kopecký  Jonathan Lenoir  Daijiang Li  František Máliš  Fraser J.G. Mitchell  Tobias Naaf  Miles Newman  Petr Petřík  Kamila Reczyńska  Wolfgang Schmidt  Tibor Standovár  Krzysztof Świerkosz  Hans Van Calster  Ondřej Vild  Eva Rosa Wagner  Monika Wulf  Kris Verheyen 《Global Change Biology》2018,24(4):1722-1740
The contemporary state of functional traits and species richness in plant communities depends on legacy effects of past disturbances. Whether temporal responses of community properties to current environmental changes are altered by such legacies is, however, unknown. We expect global environmental changes to interact with land‐use legacies given different community trajectories initiated by prior management, and subsequent responses to altered resources and conditions. We tested this expectation for species richness and functional traits using 1814 survey‐resurvey plot pairs of understorey communities from 40 European temperate forest datasets, syntheses of management transitions since the year 1800, and a trait database. We also examined how plant community indicators of resources and conditions changed in response to management legacies and environmental change. Community trajectories were clearly influenced by interactions between management legacies from over 200 years ago and environmental change. Importantly, higher rates of nitrogen deposition led to increased species richness and plant height in forests managed less intensively in 1800 (i.e., high forests), and to decreases in forests with a more intensive historical management in 1800 (i.e., coppiced forests). There was evidence that these declines in community variables in formerly coppiced forests were ameliorated by increased rates of temperature change between surveys. Responses were generally apparent regardless of sites’ contemporary management classifications, although sometimes the management transition itself, rather than historic or contemporary management types, better explained understorey responses. Main effects of environmental change were rare, although higher rates of precipitation change increased plant height, accompanied by increases in fertility indicator values. Analysis of indicator values suggested the importance of directly characterising resources and conditions to better understand legacy and environmental change effects. Accounting for legacies of past disturbance can reconcile contradictory literature results and appears crucial to anticipating future responses to global environmental change.  相似文献   

9.
10.
Semiarid grassland responses to short-term variation in water availability   总被引:1,自引:0,他引:1  
Köchy  Martin  Wilson  Scott D. 《Plant Ecology》2004,174(2):197-203
Standing crop and species composition in semiarid grassland are linked to long-term patterns of water availability, but grasslands are characterized by large single-season variability in rainfall. We tested whether a single season of altered water availability influenced the proportions of grasses and shrubs in a semiarid grassland near the northern edge of the North American Great Plains. We studied stands of the clonal shrub snowberry (Symphoricarpos occidentalis) and adjacent grassland dominated by the native grasses Stipa spartea and Bouteloua gracilis. Rain was excluded and water supplied in amounts corresponding to years of low, medium, and high rainfall, producing a 2 − 4-fold range in monthly precipitation among water supply treatments. There were ten replicate plots of each water treatment in both snowberry stands and grassland. Grass standing crop increased significantly with water availability in grassland but not inside snowberry stands. Total standing crop and shrub stem density increased significantly with water supply, averaged across both communities. In contrast, water had no effect on shrub standing crop or light penetration. In summary, our finding that water has significant effects on a subset of components of grassland vegetation is consistent with long-term, correlational studies, but we also found that a single season of altered water supply had no effect on other important aspects of the ecosystem. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Tiunov AV  Scheu S 《Oecologia》2005,142(4):636-642
The functioning of the plant-mycorrhiza system depends on interactions with other organisms, including saprotrophic (ST) soil fungi. The interactions between mycorrhizal and ST fungi are likely affected by fungivorous soil animals, such as Collembola. In a two-factorial laboratory experiment lasting for 30 weeks we assessed the effects of an arbuscular mycorrhizal fungus (Glomus mosseae) and Collembola (Protaphorura fimata, Heteromurus nitidus and Folsomia candida) on the community composition of ST microfungi in soil planted with the invasive grass Cynodon dactylon. The presence of mycorrhiza substantially reduced total plant biomass and reduced N and P availability to the soil microflora, though these effects were less pronounced in the presence of Collembola. The density of Collembola was high (corresponding to about 2×105 individuals m–2) and was not affected by the presence of G. mosseae. In spite of the large amount of mycorrhizal mycelium in soil, it contributed little to Collembola nutrition. The presence of mycorrhiza strongly affected the community structure of ST soil fungi. In particular, mycorrhiza reduced the relative abundance of Trichoderma harzianum and Exophiala sp., but increased the abundance of Ramichloridium schulzeri and several sterile forms. However, the difference between fungal communities in mycorrhizal and non-mycorrhizal treatments was much more pronounced in the presence of Collembola. Presumably, the intense grazing by Collembola destabilized the ST fungal community, thereby making it more susceptible to the influence of G. mosseae. These results document for the first time that fungal feeding soil invertebrates can significantly affect the interactions between mycorrhizal fungi and ST soil microorganisms.  相似文献   

12.
《Flora》2014,209(12):687-692
We examined how environmental factors combined with the diverse ways of the extensive management of mesic mountain grasslands affect species composition and diversity in the Polish part of Central Sudetes Mts. Based on the data from 100 research plots altitude, organic matter content and exchangeable magnesium in the soil, as well as the maximum soil water capacity and amount of sand fraction significantly affected species composition. Among the management methods, a significant effect on the differentiation of species composition was observed following the cessation of usage and mowing. Mown meadows had the highest share of forbs in the biomass, whereas those abandoned ones were dominated by tall and expansive grasses, mainly Calamagrostis epigejos. The species richest grasslands occurred in areas with soils of high water capacity, containing high concentrations of calcium and low amounts of total nitrogen. No significant effect of management methods on the total number of species as well as on the number of forb species was observed. Mown pastures had the highest mean value of the Shannon–Wiener diversity index.  相似文献   

13.
Abstract. A distinctive feature of Australian vegetational history is the abruptness of change since European settlement, involving the influx of exotic species and the imposition of exogenous disturbances which are novel in both intensity and character. This can produce two sources of habitat variability: the natural patterns arising from environmental variation, as well as an overlying effect of disturbance. The relative importance of these two types of variables were compared in temperate herbaceous vegetation. Canonical Correspondence Analysis showed that environment and disturbance had similar contributions to floristic variability. Individually, lithology, altitude and soil disturbance were the strongest variables while slope position, grazing and water enrichment were slightly less important. Despite generally low levels of site specificity, groups of species associated with lithology, slope position, altitude and different disturbance regimes were identified. Exotic species were associated with higher levels of disturbance, but showed levels of environmental specialization similar to the native component. Through combination of this analysis with a previous analysis of species richness for the same data set, it became evident that environmental variation mostly resulted in species substitutions while disturbances led to losses of species, with partial replacement by exotics. Synthesizing these results, we identified three broad groups in relation to tolerance of levels of exogenous disturbance: (1) intolerant species - native taxa intolerant of severe disturbances and constituting the species - rich component of the vegetation; (2) tolerant species - exotic and native taxa occurring at both disturbed and undisturbed habitats and (3) disturbance specialists - predominantly exotic species, correlated with high levels of disturbance.  相似文献   

14.
Knowledge of biofouling typical of marine structures is essential for engineers to define appropriate loading criteria in addition to informing other stakeholders about the ecological implications of creating novel artificial environments. There is a lack of information regarding biofouling community composition (including weight and density characteristics) on floating structures associated with future marine renewable energy generation technologies. A network of navigation buoys were identified across a range of geographical areas, environmental conditions (tidal flow speed, temperature and salinity), and deployment durations suitable for future developments. Despite the perceived importance of environmental and temporal factors, geographical location explained the greatest proportion of the observed variation in community composition, emphasising the importance of considering geography when assessing the impact of biofouling on device functioning and associated ecology. The principal taxa associated with variation in biofouling community composition were mussels (Mytilus edulis), which were also important when determining loading criteria.  相似文献   

15.
In riparian meadows, narrow zonation of the dominant vegetation frequently occurs along the elevational gradient from the stream edge to the floodplain terrace. We measured plant species composition and above- and belowground biomass in three riparian plant communities—a priori defined as wet, moist, and dry meadow—along short streamside topographic gradients in two montane meadows in northeast Oregon. The objectives were to: (1) compare above- and belowground biomass in the three meadow communities; (2) examine relations among plant species richness, biomass distribution, water table depth, and soil redox potential along the streamside elevational gradients. We installed wells and platinum electrodes along transects (perpendicular to the stream; n=5 per site) through the three plant communities, and monitored water table depth and soil redox potential (10 and 25 cm depth) from July 1997 to August 1999. Mean water table depth and soil redox potential differed significantly along the transects, and characterized a strong environmental gradient. Community differences in plant species composition were reflected in biomass distribution. Highest total biomass (live+dead) occurred in the sedge-dominated wet meadows (4,311±289 g/m2), intermediate biomass (2,236±221 g/m2) was seen in the moist meadow communities, dominated by grasses and sedges, and lowest biomass (1,403±113 g/m2) was observed in the more diverse dry meadows, dominated by grasses and forbs. In the wet and moist communities, belowground biomass (live+dead) comprised 68–81% of the totals. Rhizome-to-root ratios and distinctive vertical profiles of belowground biomass reflected characteristics of the dominant graminoid species within each community. Total biomass was positively correlated with mean water table depth, and negatively correlated with mean redox potential (10 cm and 25 cm depths; P <0.01) and species richness (P <0.05), indicating that the distribution of biomass coincided with the streamside edaphic gradient in these riparian meadows.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

16.
17.
Community structure is of major interest when aquatic fungi are studied, particularly in leaf decomposition experiments. Although such studies are often conducted as laboratory experiments with microbial communities taken from the field, it remains unclear to what extent natural fungal communities can be sustained under experimental conditions. Here, we used DNA metabarcoding to investigate the development of fungal communities on alder leaves both under laboratory and field conditions. Five leaf conditioning treatments were compared by colonizing leaves in a stream, exposing stream colonized leaves to a defined medium or filtered stream water and using stream colonized leaves to inoculate sterile leaves in the defined medium or stream water. Fewer species were found on leaves that were inoculated under laboratory conditions, whereas differences in fungal community composition were comparably low in the other treatments, irrespective of the chosen medium. Possible shifts in fungal communities should therefore be considered in laboratory experiments.  相似文献   

18.
19.
Fluctuating hydrochemistry, as a result of extreme hydrological regimes, imposes major physiological constraints on the biota of ephemeral saline lakes. While the inverse relationship between salinity and zooplankton species richness is well-known across salinity gradients, few studies have documented closely the response of zooplankton to seasonal changes in salinity. Weekly sampling during two flood seasons at Sua Pan, an intermittent saline lake in central Botswana demonstrated the importance of spatial and temporal salinity gradients for crustacean community composition, associated with a decline in species richness, from 11 to three species. Conductivity ranged between 320 and 125,800 μS cm−1 during seasonal flooding; changing from dominance by and , Ca2+ and Mg2+, at the beginning of the floods, to NaCl dominated waters as the lake dried out and salinities increased. pH estimates generally ranged between 8.6 and 10, with maximum values recorded during initial flooding. Crustaceans comprised mainly Branchinella spinosa, Moina belli, Lovenula africana and Limnocythere tudoranceai, all of which occurred across a wide range of salinities, while halotolerant freshwater species (Metadiaptomus transvaalensis, Leptestheria striatochonca and the ostracods Plesiocypridopsis aldabrae, Cypridopsis newtoni and a newly identified Potamocypris species) disappeared above conductivities of 1,500 μS cm−1. A unique crustacean composition in southern Africa was attributed to Sua Pans’ rare chemical composition among southern African saline lakes; flood waters on Sua Pan contained a higher proportion of Na+ and , and less K+, Mg2+ and than over 80% of records from salt pans elsewhere in southern African. The freshwater species of crustaceans in Sua Pan were similar to those found in other southern Africa lakes, and these similarities decreased in lakes with higher pH and proportions of Na, and less SO4 and Mg in their chemical composition. The predominant saline tolerant species on Sua Pan, however, showed a greater similarity to those in saline lakes in southern and East Africa with higher proportions of and, particularly, Mg2+ in their chemical composition. Handling editor: J. M. Melack  相似文献   

20.
O'Donnell  Anthony G.  Seasman  Melanie  Macrae  Andrew  Waite  Ian  Davies  John T. 《Plant and Soil》2001,232(1-2):135-145
Here we report on a range of studies designed to understand the link between diversity and function in soils and in particular how plants and fertilisers might interact with microbial community dynamics in soils. The data presented indicate that although plants and fertilisers do impact on microbial community structure, the relationship between diversity, community structure and function remains complex and difficult to interpret using currently available chemical and molecular fingerprinting techniques. The paper assesses plants and management practices as drivers of change in soil and argues that whilst understanding diversity per se is unlikely to contribute to our understanding of function, an appreciation of what causes communities to change and also the relative importance of such drivers, could lead to new insights into the sustainable management and conservation of soils and natural resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号