首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Interactions of protein kinase CK2 subunits   总被引:3,自引:0,他引:3  
Several approaches have been used to study the interactions of the subunits of protein kinase CK2. The inactive mutant of CK2 that has Asp 156 mutated to Ala (CK2A156) is able to bind the CK2 subunit and to compete effectively in this binding with wild-type subunits and . The interaction between CK2A156 and CK2 was also demonstrated by transfection of epitope-tagged cDNA constructs into COS-7 cells. Immunoprecipitation of epitope-tagged CK2A156 coprecipitated the subunit and vice-versa. The assay of the CK2 activity of the extracts obtained from cells transiently transfected with these different subunits yielded some surprising results: The CK2 specific phosphorylating activity of these cells transfected with the inactive CK2A156 was considerably higher than the control cells transfected with vectors alone. Assays of the immunoprecipitated CK2A156 expressed in these cells, however, demonstrated that the mutant was indeed inactive. It can be concluded that transfection of the inactive CK2A156 affects the endogenous activity of CK2. Transfection experiments with CK2 and subunits and CK2A156 were also used to confirm the interaction of CK2 with the general CDK inhibitor p21WAF1/CIP1 co-transfected into these cells. Finally a search in the SwissProt databank for proteins with properties similar to those derived from the amino acid composition of CK2 indicated that CK2 is related to protein phosphatase 2A and to other phosphatases as well as to a subunit of some ion-transport ATPases.  相似文献   

2.
The protein kinase CK2 is composed of two catalytic - or - and two regulatory -subunits. In mammalian cells there is ample evidence for the presence of individual CK2 subunits beside the holoenzyme. By immunofluorescence studies using peptide antibodies which allow us to detect the CK2-, - and -subunits we found all three subunits to be co-localized with a 58 KDa Golgi protein which is specific for the Golgi complex. Subfractionation studies using dog pancreas cells revealed the presence of all three subunits of CK2 at the smooth endoplasmic reticulum (sER)/Golgi fraction whereas the rough endoplasmic reticulum (rER) harboured only the catalytic - and -subunits. We found that the microsomal preparation from dog pancreas cells contained CK2 which phosphorylated a CK2 specific synthetic peptide and which was heparin sensitive. Furthermore, we could immunoprecipitate the CK2-subunit that exhibited a kinase activity which phosphorylated a CK2 specific substrate and which was heparin sensitive. Protease digestion experiments revealed that the CK2 subunits were located on the cytosolic side of the rER and the sER/Golgi complex. Thus, we could demonstrate an asymmetric distribution of the CK2 subunits at the rER and sER/Golgi complex. Since the CK2- and -subunits exhibit a substrate specificity which is different from the CK2 holoenzyme one might speculate that the asymmetric distribution of the CK2 holoenzyme and the CK2 catalytic subunits may have regulatory functions.  相似文献   

3.
Human recombinant CK2 subunits were incubated for different times with the two main cytosolic proteases m-calpain and 20 S proteasome. Both, m-calpain in a calcium dependent manner and the 20 S proteasome, were able to degrade CK2 subunits in vitro. In both cases, CK2 was more resistant to these proteases than CK2. When these proteases were assayed on the reconstituted (22 holoenzyme, a 37 kDa -band, analogous to that observed in AML extracts, was generated which was resistant to further degradation. No degradation was observed when the 26 S proteasome was assayed on free subunits. Studies with CK2 deletion mutants showed that m-calpain and the 20 S proteasome acted on the C-terminus end of CK2. These results pointed to cytosolic proteases as agents involved in the control of the amount of free CK2 subunits within the cell, which becomes evident when CK2 is overexpressed as in AML cells.  相似文献   

4.
In order to aid in an understanding of the cellular functions of protein kinase CK2, a search for interacting proteins was carried out using a 32P-labeled CK2 overlay method. Several proteins were found to associate with CK2 by this assay; among them, one protein of 110 kDa appeared to be the most prominent one. The possible association of CK2 with p110 was suggested by experiments involving the co-immunoprecipitation using anti-CK2 antibodies. Further analysis using GST-CK2 fusion proteins demonstrated that the CK2-p110 interaction occurred through the CK2/ subunits. To identify p110, it was purified using a GST-CK2 affinity column, and internal amino acid sequencing was then performed. p110 was found to be nucleolin, a nucleolar protein that may be important for rRNA synthesis; a possible role of CK2 in the control of this process is suggested. Using the same CK2 overlay technique, another interacting protein, insulin receptor substrate 1 (IRS-1), was also identified. By applying a modified overlay method using individual 35S-labeled CK2 subunits, obtained by in vitro translation in rabbit reticulate lysates, it was determined that CK2 associates with IRS-1 through its / subunits; i.e. in keeping with the fact that IRS-1 is a known substrate for CK2. However, further work is needed to examine the association of CK2 with IRS-1 in vivo in order to fully understand the significance of the interaction.  相似文献   

5.
Protein kinase CK2 is ubiquitous in eukaryotes and is known to phosphorylate many protein substrates. The enzyme is normally a heterotetramer composed of catalytic ( and ) and regulatory () subunits. The physiological regulation of the enzyme is still unknown but one of the factors that may play an important role in this regulation is the ratio of the catalytic and regulatory subunits present in cells. The possible existence of free CK2 subunits, not forming part of the holoenzyme, may be relevant to the physiological function of the enzyme in substrate selection or in the interaction of the subunits with other partners. The objective of this work was to study in COS-7 cells the effects of transient expression of CK2 subunits and mutants of the catalytic subunit on the CK2 phosphorylating activity of the extracts of these cells. Using pCEFL vectors that introduce hemaggutinin (HA) or a heptapeptide (AU5) tags in the expressed proteins, COS-7 cells were transfected with and subunits of Xenopus CK2, with the subunit of D. rerio, and with Xl CK2A156, which although inactive can bind tightly to CK2, and with Xl CK2E75E76, which is resistant to heparin and polyanion inhibition. The efficiency of transient transfection was of 10–20% of treated cells.Expression of CK2 or CK2E75E76 in COS-7 cells caused an increase of 5–7-fold of the CK2 activity in the soluble cell extracts. If these catalytic subunits were cotransfected with CK2, the activity increased further to 15–20-fold of the controls. Transfection of CK2 alone also increase the activity of the extracts about 2-fold. Transfection with the inactive CK2A156 yielded extracts with CK2 activities not significantly different from those transfected with the empty vectors. However, cotransfection of CK2 or CK2E75E76 with CK2A156 caused a 60–70% decrease in the CK2 activity as compared to those of cells transfected with only the active CK2 subunits. These results can be interpreted as meaning that CK2A156 is a dominant negative mutant that can compete with the other catalytic subunits for the CK2 subunit. Addition of recombinant CK2 to the assay system of extracts of cells transfected with catalytic subunits causes a very significant increase in their CK2 activity, demonstrating that CK2 subunit is limiting in the extracts and that an excess of free CK2 has been produced in the transfected cells. Transfection of cells with CK2E75E76 results in a CK2 activity of extracts that is 90% resistant to heparin demonstrating that a very large proportion of the CK2 activity is derived from the expression of the exogenous mutant. In both the in vivo and in vitro systems, the sensitivity of CK2E75E76 to heparin increases considerably when it forms part of the holoenzyme CK222.  相似文献   

6.
Response of cancer cells to molecular interruption of the CK2 signal   总被引:7,自引:0,他引:7  
Protein kinase CK2 is one of the key cellular signals for cell survival, growth, and proliferation. It is has been observed to be elevated in various cancers that have been examined. Various observations suggest that moderate dysregulation of CK2 may profoundly influence the cell response. We have examined the effects of interfering with the CK2 signal in various cancer cell lines by employing antisense oligodeoxynucleotides (ODN) against the and subunits of CK2. Our results demonstrate that antisense CK2- and antisense CK2- ODNs markedly influence cell viability of these cancer cells in a dose and time-dependent manner. Antisense CK2- was slightly more effective than antisense CK2- in most of the cells tested. The efficacy of the antisense ODN seemed to vary with the cell type; however, in all cases potent induction of apoptosis was observed. Significantly, the effects of the antisense ODN on the CK2 activity in the nuclear matrix were relatively small compared to the much stronger induction of apoptosis in cells. This suggests that modest down-regulation of CK2 can evoke a much greater apoptotic response in cancer cells.  相似文献   

7.
We have isolated and characterized the genomic clone of maize casein kinase 2 (CK2) subunit using the previously described CK2-1 cDNA clone as a probe. The genomic clone is 7.5 kb long and contains 10 exons, separated by 9 introns of different size, two larger than 1.5 kb and the others around 100–150 bp. The sequence of the exons is 100% homologous to the sequence of the CK2-1 cDNA. Southern hybridization of total genomic DNA from maize embryos with CK2 cDNA indicated that the CK2-1 gene is part of a multigenic family. We also isolated a new embryo cDNA clone coding for an CK2-2 subunit. We studied the regulation of the enzyme in embryos at the mRNA level, at the protein level and by activity testing. By using immunocytochemistry the CK2 protein was localized in several types of cells of mature embryos. Particularly strong signals were visible in the cytoplasm of epidermis and meristematic cells. Decoration of nuclei of root cortex and scutellum cells was also observed suggesting that CK2 can shift from the cytoplasm into nuclei in specific cell types. We examined whether CK2 contained specific protein domains which actively target the protein to the nucleus by using in-frame fusions of the maize CK2 subunit to the reporter gene encoding -glucuronidase (GUS) which were assayed in transiently transformed onion epidermal cells. Analysis of chimeric constructs identified one region containing a nuclear localization signal (NLS) that is highly conserved in other CK2 proteins.  相似文献   

8.
There are indications from genetic, biochemical and cell biological studies that protein kinase CK2 (formerly casein kinase II) has a variety of functions at different stages in the cell cycle. To further characterize CK2 and its potential roles during cell cycle progression, one of the objectives of this study was to systematically examine the expression of all three subunits of CK2 at different stages in the cell cycle. To achieve this objective, we examined levels of CK2, CK2 and CK2 on immunoblots as well as CK2 activity in samples prepared from: (i) elutriated populations of MANCA (Burkitt lymphoma) cells, (ii) serum-stimulated GL30-92/R (primary human fibroblasts) cells and (iii) drug-arrested chicken bursal lymphoma BK3A cells. On immunoblots, we observed a significant and co-ordinate increase in the expression of CK2 and CK2 following serum stimulation of quiescent human fibroblasts. By comparison, no major fluctuations in CK2 activity were detected during any other stages during the cell cycle. Furthermore, we did not observe any dramatic differences between the relative levels of CK2 to CK2 during different stages in the cell cycle. However, we observed a significant increase in the amount of CK2 relative to CK2 in cells arrested with nocodazole. We also examined the activity of CK2 in extracts or in immunoprecipitates prepared from drug-arrested cells. Of particular interest is the observation that the activity of CK2 is not changed in nocodazole-arrested cells. Since CK2 is maximally phosphorylated in these cells, this result suggests that the phosphorylation of CK2 by p34cdc2 does not affect the catalytic activity of CK2. However, the activity of CK2 was increased by incubation with p34cdc2 in vitro. Since this activation was independent of ATP we speculate that p34cdc2 may have an associated factor that stimulates CK2 activity. Collectively, the observations that relative levels of CK2 increase in mitotic cells, that CK2 and CK2 are phosphorylated in mitotic cells and that p34cdc2 affects CK2 activity in vitro suggest that CK2 does have regulatory functions associated with cell division.  相似文献   

9.
Neuronal morphogenesis depends on the organization of cytoskeletal elements among which microtubules play a very important role. The organization of microtubules is controlled by the presence of microtubule-associated proteins (MAPs), the activity of which is modulated by phosphorylation and dephosphorylation. One of these MAPs is MAP1B, which is very abundant within growing axons of developing neurons where it is found phosphorylated by several protein kinases including CK2. The expression of MAP1B is notably decreased after neuronal maturation in parallel with a change in the localization of the protein, which becomes largely concentrated in neuronal cell bodies and dendrites. Interestingly, MAP1B remains highly phosphorylated at sites targeted by protein kinase CK2 in mature neurons.We have analyzed the expression and localization of CK2 catalytic subunits along neuronal development. CK2 subunit appears early during development whereas CK2 subunit appears within mature neurons at the time of dendrite maturation and synaptogenesis, in parallel with the change in the localization of MAP1B. CK2 subunit is found associated with microtubule preparations obtained from either grey matter or white matter from adult bovine brain, whereas CK2 subunit is highly enriched in microtubules obtained from grey matter. These results lend support to the hypothesis that CK2 subunit is concentrated in neuronal cell bodies and dendrites, where it associates with microtubules, thus contributing to the increased phosphorylation of MAP1B in this localization in mature neurons.  相似文献   

10.
A human gene previously identified as a partial cDNA homologous to the gene of RET finger protein was characterized. Northern hybridization detected three messages of 3.3, 4.2, and 7.5kb. The coding sequences of the more abundant of the three messages, the 4.2 and the 3.3kb, were determined. The former encodes a 630 amino acid protein (TRIM41) and the latter a 518 amino acid protein (TRIM41). Green fluorescent protein (GFP) fusions of full-length TRIM41 and TRIM41 were both observed as speckles in the cytoplasm and the nucleus. The result was corroborated by Western analysis of cellular fractions. Results with GFP fusions of various segments of the TRIM41 proteins indicated that the nuclear transport of the proteins is mediated by an N-terminal segment common to both isoforms, but independent of a classical nuclear localization signal sequence.  相似文献   

11.
Summary 1. The use of antisense oligonucleotides to inhibit expression of the genes coding for the catalytic (/') and regulatory () subunits of protein kinase casein kinase 2 (CK2) has allowed study of the role of this enzyme in mouse neuroblastoma cells.2. Selective depletion of catalytic (/') subunits results in the blocking of neuritogenesis. The depletion of catalytic subunits also affects the sorting of the regulatory () subunit of CK2, as the absence of catalytic subunits prevents the translocation of the regulatory subunit to the nuclei. These results emphasize the existence of a control mechanism linking the expression and sorting of CK2 catalytic and regulatory subunits.3. Selective depletion of the regulatory () subunit of protein kinase CK2 by an specific antisense oligonucleotide causes partial inhibition of neurite extension.  相似文献   

12.
In mammals, protein kinase CK2 has two isozymic forms of its catalytic subunit, designated CK2gr; and CK2. CK2 and CK2 exhibit extensive similarity within their catalytic domains but have completely unrelated C-terminal sequences. To systematically examine the cellular functions of each CK2 isoform in mammalian cells, we have generated human osteosarcoma U2-OS cell lines with the expression of active or inactive versions of each CK2 isoform under the control of an inducible promoter [22]. Examination of these cell lines provides evidence for functional specialization of CK2 isoforms at the cellular level in mammals with indications that CK2 is involved in the control of proliferation and/or cell survival. To understand the molecular basis for functional differences between CK2 and CK2, we have undertaken studies to identify proteins that interact specifically with each isoform of CK2 and could contribute to the regulation of their independent functions. A novel pleckstrin-homology domain containing protein, designated CK2-interacting protein 1 (i.e. CKIP-1) was isolated using the yeast two hybrid system as a protein that interacts with CK2 but not CK2 [23]. When expressed in cells as a fusion with green fluorescent protein, CKIP-1 localizes to the cell membrane and to the nucleus. In this study, we present evidence from deletion analysis of CKIP-1 suggesting that a C-terminal region containing a putative leucine zipper has a role in regulating its nuclear localization. Collectively, our data supports a model whereby CKIP-1 is a non-enzymatic regulator of CK2 that regulates the cellular functions of CK2 by targeting or anchoring CK2 to specific cellular localization or by functioning as an adapter to integrate CK2-mediated signaling events with components of other signal transduction pathways.  相似文献   

13.
Chicken - and -lipovitellin are derived from parent vitellogenin proteins and contain four subunits (125, 80, 40, and 30 kDa) and two subunits (125 and 30 kDa), respectively. Metal analyses demonstrate both are zinc proteins containing 2.1 ± 0.2 mol of zinc/275 kDa per -lipovitellin and 1.4 ± 0.2 mol of zinc/155 kDa per -lipovitellin, respectively. The subunits of -lipovitellin, Lv 1 (MW 125 kDa) and Lv 2 (MW 30 kDa), are separated by gel exclusion chromatography in the presence of zwittergent 3–16. Zinc elutes with Lv 1, suggesting that this subunit binds zinc in the absence of Lv 2. The subunits of - and -lipovitellin were separated by SDS-PAGE, digested with trypsin, and mapped by reverse-phase HPLC. The peptide maps of the 125-kDa subunits from - and -lipovitellin are essentially identical. Similar results are obtained for the 30-kDa subunits of both lipovitellins. The sequences of five and four peptides of the 125-kDa subunit of - and -Lv, respectively, and two peptides of the 30-kDa subunit of - and -lipovitellin were determined and match those predicted from the gene for vitellogenin II, Vtg II. Comparison of the amino acid composition of the 125- and 30-kDa subunits of - and -lipovitellin support the conclusion that they originate from the same gene. The sequences of peptides from the 80- and 40-kDa subunits of -lipovitellin have not been found in the NCBI nonredundant data bank. The 27-amino acid N-terminal sequence of the 40-kDa protein is 56% similar to the last third of the Lv 1-coding region of the Vtg II gene, suggesting it may come from an analogous region of the Vtg I gene. We propose a scheme for the precursor—product relationship of Vtg I.  相似文献   

14.
Despite its wide range of known substrates, the signaling function of protein kinase CK2 is still enigmatic. Mounting evidence suggests that CK2, the catalytic subunit of holoenzymic CK2, may exist free of its usual regulatory partner CK2, raising the possibility that free CK2 has regulation and function distinct from those of the holoenzyme. We previously reported that CK2 could bind to the core dimer of protein phosphatase 2A, and indirectly cause down-regulation of the PP2A substrate MEK1, possibly via activation of PP2A and/or targeting of PP2A to some element of the Ras/Raf/MEK pathway. Here, these results are confirmed and extended. By using transfection experiments and immune kinase assays, we show that endogenous PP2Ac and CK2 are the only major substrates associating with epitope-tagged CK2, and that expression of activated Raf results in disruption of the CK2- PP2A association. Such disruption might be a necessary step for maximal activation of the MAP kinase pathway by Raf. In keeping with this idea, overexpression of CK2 dose-dependently inhibits the mitogen-induced activation of cotransfected, epitope-tagged MAP kinase. We suggest that the CK2 free form of CK2 is both a target and a regulator of Raf/MAPK signaling.  相似文献   

15.
Summary Ultrastructural localization of adenylate cyclase (AC) activity was investigated in suspensions of unfixed isolated rat thymocytes using a medium containing 0.6 mM 5-adenylylimidodiphosphate (AMP-PNP) as a substrate, 10 mM MgSO4 as an activator, 5 mM theophylline as an inhibitor of 3,5-AMP-phosphodiesterase and 2 mM lead nitrate as a capturing agent. AC activity was demonstrated in plasma membrane, perinuclear space, endoplasmic reticulum, Golgi complex, centriole microtubules and mitochondria. AC was activated with 10–4 M adrenalin in the presence of 5-guanylylimido-diphosphate (GMP-PNP) as well as with 10–2 M NaF. In the cells incubated in a medium devoid of theophylline and containing 5-AMP instead of AMP-PNP, 5-nucleotidase activity was observed in the same cell structures as AC activity. Hydrolysis of 5-AMP in the nucleus was much stronger than that of AMP-PNP. 10 mM NaF markedly inhibited hydrolysis of 5-AMP in all cell structures. No staining was observed with 2 mM -glycerophosphate as a substrate. Incubation of unfixed thymocytes in media containing AMP-PNP, 5-AMP or p-nitrophenyl phosphate, but not -glycerophosphate, induced both in the nucleus and in the cytoplasm in some cells an appearance of a transitory reticular formation consisting of about 30 nm thick strands which could penetrate the nuclear envelope and plasma membrane and form connections with adjacent cells. The transitory reticular formation seems to belong to the cytoskeleton and to be involved in cell aggregation.  相似文献   

16.
The contents of subunits I, II/III, and IV of cytochrome c oxidase and of subunits , and of FoF1 ATP synthase in inner mitochondrial membrane proteins purified from cerebral cortex of rat at 2, 6, 12, 18, 24, and 26 months of age were analyzed by western blot. Age-related changes in the content of subunits, either of mitochondrial or nuclear origin, were observed. All the cytochrome c oxidase (COX) subunits examined showed an age-related increase from 2-month-old rats up to 24 months with a decrease at the oldest age (26 months). The same pattern of age-dependent changes was observed for ATP synthase, while the and subunits increased progressively up to 26 months.  相似文献   

17.
Computer based sequence comparisons indicate partial sequence homology between human c-myc, Rous sarcoma virus, adenovirus 7, and simian sarcoma virus proteins and the cytoskeletal proteins desmin, keratin and vimentin. In addition, sections of the oncogene proteins showed partial but significant homology to and subunits of transducin, -II and -BP crystallins showed partial but significant homology to the cytoskeletal proteins keratin, vimentin, desmin, and -tubulin, and to adenovirus 7 and simian sarcoma virus transforming gene proteins. -BP crystallin showed partial but significant homology to Rous sarcoma virus protein, and to and y subunits of transducin. Both crystallins showed partial sequence homology to the GTP-binding protein elongation factor TU fromEscherichia coli . These sequence homologies suggest a link between the mechanisms of normal lens cell differentiation, involving modifications to the cytoskeleton and subsequent changes to the pattern of protein synthesis, and mechanisms of neoplastic transformation. Furthermore the transducin-like region on -crystallin may be important for its interaction with lens membranes and the maintenance of short-range order for lens transparency.  相似文献   

18.
Protein kinase CK2 is characterized by a number of features, including substrate specificity, inhibition by polyanionic compounds and intrasteric down-regulation by its -subunit, which denote a special aptitude to interact with negatively charged ligands. This situation may reflect the presence in CK2 catalytic subunits of several basic residues that are not conserved in the majority of other protein kinases. Some of these residues, notably K49 in the Gly rich loop, K74, K75, K76, K77, K79, R80, K83 in the Lys rich segment and R191, R195, K198 in the p+1 loop, have been shown by mutational studies to be implicated to various extents and with distinct roles in substrate recognition, inhibition by heparin and by pseudosubstrate and instrasteric regulation. Molecular modelization based on crystallographic data provide a rationale for the biochemical observations, showing that several of these basic residues are clustered around the active site where they make contact with individual acidic residues of the peptide substrate. They can also mediate the effect of polyanionic inhibitors (e.g. heparin) and of regulatory elements present in the b-subunit, in the N terminal segment of the catalytic subunit and possibly in other proteins interacting with CK2. Our data also disclose a unique mode of binding of the phosphoacceptor substrate which bridges across the catalytic cleft making contacts with both the lower and upper lobes of CK2.  相似文献   

19.
To shed light on the structural features underlying high constitutive activity of protein kinase CK2 a number of mutants of the human CK2 subunit altered in the interactions between the N-terminal segment and the activation loop have been generated and shown to be defective in catalytic activity. In particular the truncated mutant 2-12 displays under standard conditions an almost complete loss of catalytic activity accounted for by a dramatic rise in its Km for ATP (from 10 to 206 M) and a reduced Kcat. Such a drop in efficiency is paralleled by conformational disorganization, as judged from Superdex 75 gel filtration profile. Both catalytic properties and gel filtration behaviour similar to those of wild type CK2 were restored upon association with the regulatory -subunit, suggesting that constitutive activity is conferred to CK2 and to CK2 holoenzyme through different molecular mechanisms. In the holoenzyme an assumable release of tension at the backbone of Ala-193 (as seems to be indicated by a comparison of the crystal structures of maize CK2 alone vs. a CK2– peptide complex) may result in the ability of the activation loop to adopt its proper conformation independently of interactions with the N-terminal segment.  相似文献   

20.
Summary Contractile proteins have been co-localized by double-immunofluorescent staining in several types of cultured cells. Since freshly isolated smooth muscle cells are more representative of the organization within smooth muscle cells in the intact tissue than cultured cells, the present study was undertaken to determine the feasibility of using double-staining techniques in freshly isolated cells. A new method of purifying -actinin from chicken gizzards was used to provide antigen for raising anti--actinin. Fluorescein isothiocyanate-labelled anti--actinin (FAA) was used in conjunction with tetramethyl rhodamine isothiocyanate-labelled anti-myosin (TRAM) Ouchterlony gels against myosin, tropomyosin, actin, and -actinin showed that antimyosin reacted only with myosin, anti--actinin only with -actinin. Anti--actinin stained only the Z-line of isolated chicken skeletal muscle myofibrils. FAA stained bright, discrete patches or strips on the plasma membrane, while TRAM was excluded from these areas. FAA stained myofibrils faintly in a striated pattern, while TRAM stained myofibrils heavily with less evident striations. Evidence for extramyofibrillar localization of -actinin within the cytoplasm was inconclusive. Although antibodies were quite specific in their labelling, resolution with double-staining was subject to the same limitations described for single labelling of whole cells (Bagby and Pepe 1978). Double-staining of whole cells is just as feasible as single-staining. Indeed, having a definite marker for myofibrils (TRAM) makes the localization of -actinin much easier to interpret.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号