首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The distribution of dopamine-like immunoreactive neurons is described for the brain of the bee, Apis mellifera L., following the application of a pre-embedding technique on Vibratome sections. Immunoreactive somata are grouped into seven clusters, mainly situated in the protocerebrum. Immunoreactive interneurons have been detected in the different neuropilar compartments, except for the optic lobe neuropils. Strong immunoreactivity is found in the upper division of the central body, in parts of the stalk and in the -lobe layers of the mushroom bodies. A dense network of many immunoreactive fibres surrounds the mushroom bodies and the central body. It forms a number of interhemispheric commissures/chiasmata, projecting partly into the contralateral mushroom body and central body. The lateral protocerebral neuropil contains some large wide-field-neurons. The antennal-lobe glomeruli receive fine projections of multiglomerular dopamine-like immunoreactive interneurons.  相似文献   

2.
Summary Evidence of dopamine cells in the brain and the suboesophageal ganglion of the silkworm Bombyx mori was obtained immunohistologically in larvae and pupae. From six to eight and eight (two symmetrical groups of four) immunoreactive cells are present respectively in median and lateral protocerebral areas of the brain. In the suboesophageal ganglion, two cell clusters with dopamine immunoreactivity were observed. There was no clear difference in the nature of the immunohistochemical reaction and the number of cells between diapause- and non-diapause-egg producers, in both brains and suboesophageal ganglia. By examination of adjacent sections, it was possible to show that dopamine-immunoreactive cells in larval suboesophageal ganglia also contain an endorphin-like substance.  相似文献   

3.
The distribution of proctolin in the central nervous system of the hemipteran bug, Triatoma infestans, was studied by immunohistochemistry using the sensitive avidin‐biotin technique combined with nickel salt intensification of the reaction product. Proctolin was present in cells and fibers of the brain and ganglia. In the brain, protocerebral proctolin‐immunoreactive cell bodies were found in the pars intercerebralis, the optic lobes, and the lateral soma rind. The deutocerebrum showed positive somata in relation to the antennal motor center and the tritocerebrum had intense immunoreactive fibers but few positive cells. Proctolin‐immunoreactive cell bodies of different sizes were observed in the subesophageal ganglion. Large cell bodies were found mainly rostrally and beaded positive processes were present around the ventral border of the esophageal foramen and in the rostrolateral neuropil of this ganglion. Small‐ to medium‐sized positive somata were found in the posterior part of the prothoracic ganglion; some of these cells were sending immunoreactive processes to the central neuropil. The meso‐metathoracic‐abdominal ganglionic mass showed positive cells in all the neuromeres, where some of them were large and had thick immunoreactive granules. The results show that the labeling pattern of proctolin‐like immunoreactivity in Triatoma i. appears to be widespread and unique for its central nervous system. It is suggested that proctolin may serve neuroendocrine, integrative, and motor functions in the brain of T. infestans. J. Morphol. 240:39–47, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

4.
In this work, the presence and distribution of serotonin in the cyprid of the barnacle Balanus amphitrite were investigated by immunohistochemical methods. Serotonin-like immuno-reactive neuronal cell bodies were detected in the central nervous system only. Various clusters of immunoreactive neuronal cell bodies are distributed in the brain (protocerebrum, deutocerebrum, optical lobes), and at least, four pairs of neuronal cell bodies were detected in the centrally positioned neuropil of the posterior ganglion. Rich plexuses of immunoreactive nerve fibers in the neuropil area were also observed. Furthermore, bundles of strongly immunoreactive nerve fibers surrounding the gut wall were localized, and immunoreactive nerve terminals in the antennules and compound eyes were observed. These data demonstrate the presence of a serotonin-like immunoreactive substance in the barnacle cyprids; furthermore, its immunolocalization in the cephalic nerve terminals allows us to postulate the involvement of this bioactive molecule in substrate recognition during the settlement process.  相似文献   

5.
Histamine serves a neurotransmitter role in arthropod photoreceptor neurons, but is also present in a small number of interneurons throughout the nervous system. In search of a suitable model system for the analysis of histaminergic neurotransmission in insects, we mapped the distribution of histamine in the brain of the desert locust Schistocerca gregaria by immunocytochemistry. In the optic lobe, apparently all photoreceptor cells of the compound eye with projections to the lamina and medulla showed intense immunostaining. Photoreceptors of the dorsal rim area of the eye had particularly large fiber diameters and gave rise to uniform varicose immunostaining throughout dorsal rim areas of the lamina and medulla. In the locust midbrain 21 bilateral pairs of histamine-immunoreactive interneurons were found, and 13 of these were reconstructed in detail. While most neuropil areas contained a dense meshwork of immunoreactive processes, immunostaining in the antennal lobe and in the calyces of the mushroom body was sparse and no staining occurred in the pedunculus and lobes of the mushroom body, in the protocerebral bridge, and in the lower division of the central body. A prominent group of four immunostained neurons had large cell bodies near the median ocellar nerve root and descending axonal fibers. These neurons are probably identical to previously identified primary commissure pioneer neurons of the locust brain. The apparent lack in the desert locust of certain histamine-immunoreactive neurons which were reported in the migratory locust may be responsible for differences in the physiological role of histamine between both species.The study was supported by the Deutsche Forschungsgemeinschaft, grants Ho 950/13 and 950/14  相似文献   

6.
The giant freshwater prawn, Macrobrachium rosenbergii, is an economically important crustacean species which has also been extensively used as a model in neuroscience research. The crustacean central nervous system is a highly complex structure, especially the brain. However, little information is available on the brain structure, especially the three-dimensional organization. In this study, we demonstrated the three-dimensional structure and histology of the brain of M. rosenbergii together with the distribution of serotonin (5-HT) in the brain and ovary as well as its effects on ovarian steroidogenesis. The brain of M. rosenbergii consists of three parts: protocerebrum, deutocerebrum and tritocerebrum. Histologically, protocerebrum comprises of neuronal clusters 6–8 and prominent anterior and posterior medial protocerebral neuropils (AMPN/PMPN). The protocerebrum is connected posteriorly to the deutocerebrum which consists of neuronal clusters 9–13, medial antenna I neuropil, a paired lateral antenna I neuropils and olfactory neuropils (ON). Tritocerebrum comprises of neuronal clusters 14–17 with prominent pairs of antenna II (AnN), tegumentary and columnar neuropils (CN). All neuronal clusters are paired structures except numbers 7, 13 and 17 which are single clusters located at the median zone. These neuronal clusters and neuropils are clearly shown in three-dimensional structure of the brain. 5-HT immunoreactivity (-ir) was mostly detected in the medium-sized neurons and neuronal fibers of clusters 6/7, 8, 9, 10 and 14/15 and in many neuropils of the brain including anterior/posterior medial protocerebral neuropils (AMPN/PMPN), protocerebral tract, protocerebral bridge, central body, olfactory neuropil (ON), antennal II neuropil (Ann) and columnar neuropil (CN). In the ovary, the 5-HT-ir was light in the oocyte step 1(Oc1) and very intense in Oc2–Oc4. Using an in vitro assay of an explant of mature ovary, it was shown that 5-HT was able to enhance ovarian estradiol-17β (E2) and progesterone (P4) secretions. We suggest that 5-HT is specifically localized in specific brain areas and ovary of this prawn and it plays a pivotal role in ovarian maturation via the induction of female sex steroid secretions, in turn these steroids may enhance vitellogenesis resulting in oocyte growth and maturation.  相似文献   

7.
The distribution of FMRFamide (FMRFa)-like immunoreactivity (LI) was studied in the brain and subesophageal ganglion of Triatoma infestans, the insect vector of Chagas disease. The neuropeptide displayed a widespread distribution with immunostained somata in the optic lobe, in the anterior, lateral, and posterior soma rinds of the protocerebrum, and around the antennal sensory and mechanosensory and motor neuropils of the deutocerebrum. FMRFa-immunoreactive profiles of the subesophageal ganglion were seen in the mandibular, maxillary, and labial neuromeres. Immunostained neurites were detected in the medulla and lobula of the optic lobe, the lateral protocerebral neuropil, the median bundle, the calyces and the stalk of the mushroom bodies, and the central body. In the deutocerebrum, the sensory glomeruli showed a higher density of immunoreactive processes than the mechanosensory and motor neuropil, whereas the neuropils of each neuromere of the subesophageal ganglion displayed a moderate density of immunoreactive neurites. Colocalization of FMRFa-LI and crustacean pigment-dispersing hormone-LI was found in perikarya of the proximal optic lobe, the lobula, the sensory deutocerebrum, and the labial neuromere of the subesophageal ganglion. The distribution pattern of small cardioactive peptide B (SCPB)-LI was also widespread, with immunolabeled somata surrounding every neuropil region of the brain and subesophageal ganglion, except for the optic lobe. FMRFa- and SCPB-LIs showed extensive colocalization in the brain of this triatomine species. The presence of immunolabeled perikarya displaying either FMRFa- or SCPB-LI confirmed that each antisera identified different peptide molecules. The distribution of FMRFa immunostaining in T. infestans raises the possibility that FMRFa plays a role in the regulation of circadian rhythmicity. The finding of immunolabeling in neurosecretory somata of the protocerebrum suggests that this neuropeptide may also act as a neurohormone.This work was sponsored by the Facultad de Ciencias Biomédicas, Universidad Austral. Part of this work was performed at the Division of Neurobiology, Arizona Research Laboratories (Tucson, Arizona) with the support of a Fulbright Research Award to B.P.S.  相似文献   

8.
Antisera against corazonin were used to investigate distribution of immunoreactive cells in the central nervous system (CNS) of representatives of six insect orders: Ctenolepisma lineata (Zygentoma), Locusta migratoria (Orthoptera), Oxya yezoensis (Orthoptera), Gryllus bimaculatus (Orthoptera), Pyrrhocoris apterus (Hemiptera), Arge nigrinodosa (Hymenoptera), Athalia rosae (Hymenoptera), Bombyx mori (Lepidoptera) and Anomala cuprea (Coleoptera). Corazonin-like immunoreactive (CLI) cells were detected in the brain and ventral ganglia of all insects studied except for the albino strain of L. migratoria and the beetle A. cuprea. Implantation of the brain or different ganglia from insects with detected immunoreactivity induced dark coloration in the albino locust, providing further evidence for the presence of authentic corazonins [His(7)- and Arg(7)-isoforms] in these insects. The protocerebral lateral neurosecretory cells projecting into the ipsilateral retrocerebral neurohemal organs and bilateral longitudinal tracts extending and branching throughout the entire CNS seem to be a well-conserved part of the corazonin system in insects. The bilateral longitudinal tracts were formed by species-specific numbers of bilateral interneurons segmentally distributed in the ventral ganglia. Additional immunoreactive somata, mostly interneurons, were detected in the CNS of various insects. The distribution of corazonin in the cephalic neurosecretory system and in the bilateral interneurons suggests that corazonin acts as a hormone as well as a neurotransmitter or a neuromodulator. An ancient origin of corazonin is suggested by the presence of a corazonin-like substance in the primitive insect, C. lineata. These results support previous findings on the common occurrence of corazonin among insects, except for the albino strain of L. migratoria and the Coleoptera.  相似文献   

9.
Seidel C  Bicker G 《Tissue & cell》1996,28(6):663-672
The biogenic amine serotonin is a neurotransmitter and modulator in both vertebrates and invertebrates. In the CNS of insects, serotonin is expressed by identifiable subsets of neurons. In this paper, we characterize the onset of expression in the brain and suboesophageal ganglion of the honeybee during pupal development. Several identified serotonin-immunoreactive neurons are present in the three neuromeres of the suboesophageal ganglion the dorsal protocerebrum, and the deutocerebrum at pupal ecdysis. Further immunoreactive neurons are incorporated into the developing pupal brain in two characteristic developmental phases. During the first phase, 5 days after pupal ecdysis, serotonin immunoreactivity is formed in the protocerebral central body, the lamina and lobula, and the deutocerebral antennal lobe. During the second phase, 2 days later, immunoreactivity appears in neurons of the protocerebral noduli of the central complex, the medulla, and the pedunculi and lobes of the mushroom bodies. Three novel serotonin-immunoreactive neurons that innervate the central complex and the mushroom bodies can be individually identified.  相似文献   

10.
The distribution of the NPY-like substances in the nervous system and the midgut of the migratory locust, Locusta migratoria and in the brain of the grey fleshfly, Sarcophaga bullata was determined by immunocytochemistry using an antiserum directed against synthetic porcine NPY. The peroxidase-antiperoxidase procedure revealed that NPY immunoreactive cell bodies and nerve fibers were observed in the brain, optic lobes, corpora cardiaca, suboesophageal ganglion and ventral nerve cord of the locust and in the brain, optic lobes and suboesophageal ganglion of the fleshfly. In the locust midgut, numerous endocrine cells and nerve fibers penetrating the outer musculature contained NPY-like immunoreactivity. The concentrations of NPY immunoreactive material in acetic acid extracts of locust brain, optic lobes, thoracic ganglia, ovaries and midguts was measured using a specific radioimmunoassay technique. The dilution curves of the crude tissue extracts were parallel to the standard curve. The highest amount of NPY-like immunoreactivity was found in the locust ovary and midgut. Reverse-phase high-performance liquid chromatography (RP-HPLC) and radioimmunoassay were used to characterize the NPY-like substances in the locust brain and midgut. HPLC-analysis revealed that NPY-immunoreactivity in the locust brain eluted as three separate peaks. The major peak corresponded to a peptide less hydrophobic than synthetic porcine NPY. RP-HPLC analysis of midgut extracts revealed the presence of an additional NPY-immunoreactive peak which had a retention time similar to the porcine NPY standard. The present data show the existence of a widespread network of NPY immunoreactive neurons in the nervous system of the locust and the fleshfly. Characterization of the immunoreactive substances indicates that peptides similar but not identical to porcine NPY are present in the central nervous system and midgut of insects.  相似文献   

11.
Locustatachykinin I is one of four closely related myotropic neuropeptides isolated from brain and corpora-cardiaca complexes of the locust Locusta migratoria. Antiserum was raised against locustatachykinin I for use in immunocytochemistry. It was found that the antiserum recognizes also locustatachykinin II and hence probably also the other two locustatachykinins due to their similarities in primary structure. Locustatachykinin-like immunoreactive (LomTK-LI) neurons were mapped in the brain of the locust, L. migratoria. A total of approximately 800 Lom TK-LI neurons were found with cell bodies distributed in the proto-, deutoand tritocerebrum, in the optic lobes and in the frontal ganglion. Processes of these neurons innervate most of the synaptic neuropils of the brain and optic lobes, as well as the frontal ganglion and hypocerebral ganglion. The widespread distribution of LomTK-LI neurons in the locust brain indicates an important role of the locustatachykinins in signal transfer or regulation thereof. As a comparison neurons were mapped with an antiserum against the cockroach myotropic peptide leucokinin I. This antiserum, which probably recognizes the native peptide locustakinin, labels a population of about 140 neurons distinct from the LomTK-LI neurons (no colocalized immunoreactivity). These neurons have cell bodics that are distributed in the proto- and tritocerebrum and in the optic lobe. The processes of the leucokinin-like immunoreactive (LK-LI) neurons do not invade as large areas in neuropil as the Lom TK-LI neurons do and some neuropils, e.g. the mushroom bodies, totally lack innervation by LK-LI fibers. In some regions, however, the processes of the Lom TK-LI and LK-LI neurons are superimposed: most notably in the central body and optic lobes. A functinal relation between the two types of neuropeptide in the locust brain can, however, not be inferred from the present findings.  相似文献   

12.
Summary The central projections of the lateral ocellar neurons of the dragonfly were examined using whole nerve cobalt iontophoresis, supplemented by sectioning of the nerve and brain for inspection in the light and electron microscopes. At E.M. level the presence of cobalt in filled axon profiles and cell bodies was confirmed by analysis of X-ray energy spectra in the microscope.The pathways, cell body sites and terminal arborizations of four large (7–25 m diameter) lateral ocellar neurons are described. Two of these fibers arborize in the ipsilateral posterior neuropil of the protocerebrum and two cross the brain and arborize in the contralateral posterior neuropil. Within each half of the posterior neuropil, two spatially separated regions of ocellar input have been identified. These regions receive median ocellar input plus input from either the ipsi- or contralateral ocellus, but not both. The arborizations of the contralateral fibers are more extensive than those of the ipsilateral fibers.One of the contralateral neurons crosses the brain in the region of the protocerebral bridge giving off a collateral in that region before descending to the posterior neuropil. This collateral arborizes almost immediately in a region receiving input from arborizations of a number of small ocellar neurons (those less than 5 m in diameter) from the ipsilateral ocellar nerve, together with small neurons from the median ocellar nerve, forming a region in each half of the brain which receives input from all three ocelli. The small lateral ocellar neurons associated with these arborizations have cell bodies adjacent to the lateral ocellar tracts.This work was supported in part by National Institute of Health Grants 2 RO1 EY-00777 and 1 KO4 EY-00040  相似文献   

13.
Summary Neuronal pathways immunoreactive to antisera against the extended-enkephalins, Met-enkephalin-Arg6-Phe7 (Met-7) and Met-enkephalin-Arg6-Gly7-Leu8 (Met-8), have been identified in the brain of the blowfly Calliphora vomitoria. Co-localisation with other enkephalins in certain neurons suggests that a precursor similar to preproenkephalin A exists in insects and that differential enzymatic processing occurs as in vertebrates. Co-localisations of the extended-enkephalin-like peptides with other vertebrate-type peptides, including cholecystokinin and pancreatic polypeptide, also occur. The enkephalinergic pathways are specific, comprising a few groups of highly characteristic neurons and areas of neuropil. Of special interest is the finding that parts of the antennal chemosensory and the optic lobe visual systems contain Met-8 immunoreactive neurons. Within the median neurosecretory cell groups, some of the giant neurons show immunoreactivity to Met-8 and others to both Met-8 and Met-7. Fibres from these cells project to the corpus cardiacum and also to the suboesophageal ganglion, where arborisations occur in the tritocerebral neuropil. Co-localisation studies of these cells have shown that at certain terminals, one particular type of peptide is the dominant neuroregulator, whilst at other terminals, within the same cell, a different co-synthesised peptide predominates. Several groups of lateral neurosecretory cells show clearly defined enkephalinergic pathways, most of which have connections with the central body. The complex patterns of immunoreactivity seen in terminals in the different parts of the central body, suggest an important role for the enkephalin-like peptides in the integration of multimodal sensory inputs. The physiological functions of the extended-enkephalin-like peptides in the brain of Calliphora is still unknown, but the anatomical evidence suggests they may have a role similar to that in mammals, where they are thought to control aspects of feeding behaviour.  相似文献   

14.
ABSTRACT: BACKGROUND: Remipedia, a group of homonomously segmented, cave-dwelling, eyeless arthropods have been regarded as basal crustaceans in most early morphological and taxonomic studies. However, molecular sequence information together with the discovery of a highly differentiated brain led to a reconsideration of their phylogenetic position. Various conflicting hypotheses have been proposed including the claim for a basal position of Remipedia up to a close relationship with Malacostraca or Hexapoda. To provide new morphological characters that may allow phylogenetic insights, we have analyzed the architecture of the remipede brain in more detail using immunocytochemistry (serotonin, acetylated alpha-tubulin, synapsin) combined with confocal laser-scanning microscopy and image reconstruction techniques. This approach allows for a comprehensive neuroanatomical comparison with other crustacean and hexapod taxa. RESULTS: The dominant structures of the brain are the deutocerebral olfactory neuropils, which are linked by the olfactory globular tracts to the protocerebral hemiellipsoid bodies. The olfactory globular tracts form a characteristic chiasm in the center of the brain. In Speleonectes tulumensis, each brain hemisphere contains about 120 serotonin immunoreactive neurons, which are distributed in distinct cell groups supplying fine, profusely branching neurites to 16 neuropilar domains. The olfactory neuropil comprises more than 300 spherical olfactory glomeruli arranged in sublobes. Eight serotonin immunoreactive neurons homogeneously innervate the olfactory glomeruli. In the protocerebrum, serotonin immunoreactivity revealed several structures, which, based on their position and connectivity resemble a central complex comprising a central body, a protocerebral bridge, W-, X-, Y-, Z-tracts, and lateral accessory lobes. CONCLUSIONS: The brain of Remipedia shows several plesiomorphic features shared with other Mandibulata, such as deutocerebral olfactory neuropils with a glomerular organization, innervations by serotonin immunoreactive interneurons, and connections to protocerebral neuropils. Also, we provided tentative evidence for W-, X-, Y-, Z-tracts in the remipedian central complex like in the brain of Malacostraca, and Hexapoda. Furthermore, Remipedia display several synapomorphies with Malacostraca supporting a sister group relationship between both taxa. These homologies include a chiasm of the olfactory globular tract, which connects the olfactory neuropils with the lateral protocerebrum and the presence of hemiellipsoid bodies. Even though a growing number of molecular investigations unites Remipedia and Cephalocarida, our neuroanatomical comparison does not provide support for such a sister group relationship.  相似文献   

15.
Summary The distribution of -aminobutyric acid (GABA) immunoreactivity was studied in the brain of two amphibian species (Triturus cristatus carnifex, Urodela; Rana esculenta, Anura) by employing a specific GABA antiserum. A noteworthy immunoreactive neuronal system was found in the telencephalic dorsal and medial pallium (primordium pallii dorsalis and primordium hippocampi) and in the olfactory bulbs. In the diencephalic habenular nuclei there was a rich GABAergic innervation, and immunoreactive neurons were observed in the dorsal thalamus. In the hypothalamus the GABA immunoreactivity was found in the preoptic area, the paraventricular organ and in the hypothalamo-hypophysial complex. In the preoptic area of the frog some GABA-immunoreactive CSF-contacting cells were shown. In the optic tectum immunolabeled neurons were present in all the cellular layers. A rich GABAergic innervation characterized both the fibrous layers of the tectum and the neuropil of the tegmentum and interpeduncular nucleus. In the cerebellum, in addition to the Purkinje cells showing a variable immunopositivity, some immunoreactive cell bodies appeared in the central grey. Abundant immunolabeled nerve fibers in the acoustico-lateral area and some immunopositive neurons in the region of the raphe nucleus were observed. In conclusion, the GABAergic central systems, well-developed in the amphibian species studied, were generally characterized by close similarities to the pattern described in mammals.Dedicated to Professor Valdo Mazzi (Dipartimento di Biologia Animale, Università di Torino), in honor of his 70th birthday  相似文献   

16.
Summary Serotonin-immunoreactive neurons in the median protocerebrum and suboesophageal ganglion of the sphinx moth Manduca sexta were individually reconstructed. Serotonin immunoreactivity was detected in 19–20 bilaterally symmetrical pairs of interneurons in the midbrain and 10 pairs in the suboesophageal ganglion. These neurons were also immunoreactive with antisera against DOPA decarboxylase. All major neuropil regions except the protocerebral bridge are innervated by these neurons. In addition, efferent cells are serotonin-immunoreactive in the frontal ganglion (5 neurons) and the suboesophageal ganglion (2 pairs of neurons). The latter cells probably give rise to an extensive network of immunoreactive terminals on the surface of the suboesophageal ganglion and suboesophageal nerves. Most of the serotonin-immunoreactive neurons show a gradient in the intensity of immunoreactive staining, suggesting low levels of serotonin in cell bodies and dendritic arbors and highest concentrations in axonal terminals. Serotonin-immunoreactive cells often occur in pairs with similar morphological features. With one exception, all serotonin-immunoreactive neurons have bilateral projections with at least some arborizations in identical neuropil areas in both hemispheres. The morphology of several neurons suggests that they are part of neuronal feedback circuits. The similarity in the arborization patterns of serotonin-immunoreactive neurons raises the possibility that their outgrowing neurites experienced similar forces during embryonic development. The morphological similarities further suggest that serotonin-immunoreactive interneurons in the midbrain and suboesophageal ganglion share physiological characteristics.Abbreviations CNS central nervous system - DDC DOPA decarboxylase - LAL lateral accessory lobe - SLI serotonin-like immunoreactivity - SOG suboesophageal ganglion - VLP ventro-lateral protocerebrum  相似文献   

17.
Summary The distribution of enkephalin-like immunoreactive material has been studied in the CNS of C. vomitoria. The presence of both Met- and Leu-enkephalin-related peptides is suggested by differential immunostaining with a variety of antisera. Comparisons made between certain of the enkephalin-immunoreactive perikarya, nerve fibres and terminals with cells in corresponding positions as evidenced in previously published neuroanatomical studies of the dipteran brain have suggested specific enkephalinergic pathways. As examples, one Met-enkephalin-immunoreactive neuron appears to link the lobula with the dorsal protocerebrum, and a group of Leu-enkephalin cells in the pars intercerebralis appear to have arborisations in both the central body (fan-shaped body) and the tritocerebral neuropil around the oesophageal foramen. Neuronal pathways of this type indicate that the enkephalin-like peptides of the fly brain are functioning as neurotransmitters and/or neuromodulators. In the thoracic ganglia, symmetrically arranged cells, immunoreactive to both Met- and Leu-enkephalin antisera, are positioned ventrally in pairs on either side of the mid-line in a sagittal plane. Very little immunoreactive material is observed in the neuropil, however, and the source of the accumulation of Leu-enkephalin-immunoreactivity in the dorsal neural sheath is not certain. It is suggested that this material, in contrast to that present in areas of the brain, acts as a neurohormone and that it may have a physiological role following its release into the haemolymph. The enkephalin-like immunoreactive material of certain neurons identified within the brain and thoracic ganglion shows a complex pattern of co-existence with pancreatic polypeptide- and gastrin/cholecystokinin-like peptides.  相似文献   

18.
Summary We examined the parietal eye visual system of the iguanid lizard Uta stansburiana for the presence of substance P-like immunoreactivity by use of both immunofluorescence and peroxidase-antiperoxidase techniques. In the parietal eye no substance P-containing somata were found; however, its plexiform layer contained small (ca. 1 m diam) immunoreactive fibers. These fibers apparently originate outside the parietal eye. Immunoreactive fibers also were found in the parietal nerve, the dorsal sac, and the leptomeninx of the pineal gland. No labeled somata were observed in any of these regions in either normal or colchicine treated animals. Previously we demonstrated that a system of centrifugal fibers to the parietal eye originates from neurons in the dorsal sac (Engbretson et al. 1981). The apparent absence of substance P-containing neurons in the dorsal sac suggests that the substance P-containing fibers in the parietal eye are not the previously observed centrifugal fibers. The source of the substance P-containing fibers in the parietal eye is unknown. The pars dorsolateralis of the left medial habenular nucleus receives a dense substance P-positive projection. No such projection was seen in the right habenula. Simultaneous visualization of the terminals of ganglion cells of the parietal eye (labeled with orthograde intraaxonally transported horseradish peroxidase) and substance P-like immunofluorescence showed that the locus of habenular immunoreactivity is distinct from the projection field of the parietal eye. Thus the substance P-positive terminals in the habenula do not originate in the parietal eye. Transection of the parietal nerve confirmed this conclusion.  相似文献   

19.
Summary The distribution of FMRFamide-like immunoreactive neurons in the nervous system of the slug Limax maximus was studied using immunohistochemical methods. Approximately one thousand FMRFamide-like immunoreactive cell bodies were found in the central nervous system. Ranging between 15 m and 200 m in diameter, they were found in all 11 ganglia of the central nervous system. FMRFamide-like immunoreactive cell bodies were also found at peripheral locations on buccal nerve roots. FMRFamide-like immunoreactive nerve fibres were present in peripheral nerve roots and were distributed extensively throughout the neuropil and cell body regions of the central ganglia. They were also present in the connective tissue of the perineurium, forming an extensive network of varicose fibres. The large number, extensive distribution and great range in size of FMRFamide-like immunoreactive cell bodies and the wide distribution of immunoreactive fibres suggest that FMRFamide-like peptides might serve several different functions in the nervous system of the slug.  相似文献   

20.
Modular midline neuropils, termed arcuate body (Chelicerata, Onychophora) or central body (Myriapoda, Crustacea, Insecta), are a prominent feature of the arthropod brain. In insects and crayfish, the central body is connected to a second midline-spanning neuropil, the protocerebral bridge. Both structures are collectively termed central complex. While some investigators have assumed that central and arcuate bodies are homologous, others have questioned this view. Stimulated by recent evidence for a role of the central complex in polarization vision and object recognition, the architectures of midline neuropils and their associations with the visual system were compared across panarthropods. In chelicerates and onychophorans, second-order neuropils subserving the median eyes are associated with the arcuate body. The central complex of decapods and insects, instead, receives indirect input from the lateral (compound) eye visual system, and connections with median eye (ocellar) projections are present. Together with other characters these data are consistent with a common origin of arcuate bodies and central complexes from an ancestral modular midline neuropil but, depending on the choice of characters, the protocerebral bridge or the central body shows closer affinity with the arcuate body. A possible common role of midline neuropils in azimuth-dependent sensory and motor tasks is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号