首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
In this work, we propose a distance-based atom-type topological index (DAI) for quantitative structure-property/activity relationship (QSPR/QSAR) studies. The newly constructed index, which codes the structural environment of each atom type in a molecule, can be calculated simply. These atom-type topological indices, along with our recently proposed Lu index, were used to construct QSPR/QSAR models for several representative physical properties and biological activities of several data sets of alcohols with a range of non-hydrogen atoms by using multiple linear regression (MLR) analysis. The efficiency of these indices is verified by high quality QSPR models. The results indicate that the combined use of Lu and DAI indices promises to be a useful method for QSPR/QSAR analysis of complex compounds.   相似文献   

3.
4.
5.
6.
7.
8.
9.
In neural networks the activation process controls the output as a nonlinear function of the input; and, this output remains bounded between limits as decided by a logistic function known as the sigmoid (S-shaped). Presently, by applying the considerations of Maxwell-Boltzmann statistics, the Langevin function is shown as the appropriate and justifiable sigmoid (instead of the conventional hyperbolic tangent function) to depict the bipolar nonlinear logic-operation enunciated by the collective stochastical response of artificial neurons under activation. That is, the graded response of a large network of neurons such as Hopfield's can be stochastically justified via the proposed model. The model is consistent with the established link between the Hopfield model and the statistical mechanics. The possible outcomes and implications of using the Langevin function (in lieu of conventional hyperbolic tangent and/or exponential sigmoids) in determining nonlinear decision boundaries, in characterizing the neural networks by the Langevin machine versus the Boltzmann machine, in sharpening and annealing schedules and in the optimization of nonlinear detector performance are discussed.  相似文献   

10.
11.

Background

Few studies of laparoscopic cholecystectomy (LC) outcome have used longitudinal data for more than two years. Moreover, no studies have considered group differences in factors other than outcome such as age and nonsurgical treatment. Additionally, almost all published articles agree that the essential issue of the internal validity (reproducibility) of the artificial neural network (ANN), support vector machine (SVM), Gaussian process regression (GPR) and multiple linear regression (MLR) models has not been adequately addressed. This study proposed to validate the use of these models for predicting quality of life (QOL) after LC and to compare the predictive capability of ANNs with that of SVM, GPR and MLR.

Methodology/Principal Findings

A total of 400 LC patients completed the SF-36 and the Gastrointestinal Quality of Life Index at baseline and at 2 years postoperatively. The criteria for evaluating the accuracy of the system models were mean square error (MSE) and mean absolute percentage error (MAPE). A global sensitivity analysis was also performed to assess the relative significance of input parameters in the system model and to rank the variables in order of importance. Compared to SVM, GPR and MLR models, the ANN model generally had smaller MSE and MAPE values in the training data set and test data set. Most ANN models had MAPE values ranging from 4.20% to 8.60%, and most had high prediction accuracy. The global sensitivity analysis also showed that preoperative functional status was the best parameter for predicting QOL after LC.

Conclusions/Significance

Compared with SVM, GPR and MLR models, the ANN model in this study was more accurate in predicting patient-reported QOL and had higher overall performance indices. Further studies of this model may consider the effect of a more detailed database that includes complications and clinical examination findings as well as more detailed outcome data.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号