首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Progressing tumors in humans and mice are frequently infiltrated by a highly heterogeneous population of inflammatory myeloid cells that contribute to tumor growth. Among these cells, inflammatory Gr-1(+) monocytes display a high developmental plasticity in response to specific microenvironmental signals, leading to diverse immune functions. These observations raise the question of the immune mechanisms by which inflammatory monocytes may contribute to tumor development. In this study, we found that adoptive transfer of normal inflammatory Gr-1(+) monocytes in tumor-bearing mice promotes tumor growth. In this tumoral environment, these monocytes can differentiate into tolerogenic dendritic cells (DCs) that produce IL-10 and potently induce regulatory T cell responses in vivo. Moreover, diverting the differentiation of Gr-1(+) monocytes into tolerogenic DCs by forced expression of IL-10 soluble receptor and IL-3 in tumor cells improves host immunosurveillance by reducing the regulatory T cell frequency and by inducing immunogenic DCs in the tumor. As a consequence, tumor growth is strongly reduced. Our findings indicate that Gr-1(+) monocytes represent a valuable target for innovative immunotherapeutic strategies against cancer.  相似文献   

2.
The mechanism of tumor-associated T cell dysfunction remains an unresolved problem of tumor immunology. Development of T cell defects in tumor-bearing hosts are often associated with increased production of immature myeloid cells. In tumor-bearing mice, these immature myeloid cells are represented by a population of Gr-1(+) cells. In this study we investigated an effect of these cells on T cell function. Gr-1(+) cells were isolated from MethA sarcoma or C3 tumor-bearing mice using cell sorting. These Gr-1(+) cells expressed myeloid cell marker CD11b and MHC class I molecules, but they lacked expression of MHC class II molecules. Tumor-induced Gr-1(+) cells did not affect T cell responses to Con A and to a peptide presented by MHC class II. In sharp contrast, Gr-1(+) cells completely blocked T cell response to a peptide presented by MHC class I in vitro and in vivo. Block of the specific MHC class I molecules on the surface of Gr-1(+) cells completely abrogated the observed effects of these cells. Thus, immature myeloid cells specifically inhibited CD8-mediated Ag-specific T cell response, but not CD4-mediated T cell response. Differentiation of Gr-1(+) cells in the presence of growth factors and all-trans retinoic acid completely eliminated inhibitory potential of these cells. This may suggest a new approach to cancer treatment.  相似文献   

3.
We determined whether the absence of IL-10 in mice influenced protective and memory immunity to Histoplasma capsulatum. IL-10(-/-) mice cleared primary and secondary infection more rapidly than wild-type controls. Administration of mAb to TNF-alpha or IFN-gamma, but not GM-CSF, abrogated protection in naive IL-10(-/-) mice; mAb to TNF-alpha, but not IFN-gamma or GM-CSF, subverted protective immunity in secondary histoplasmosis. The inflammatory cell composition in IL-10(-/-) mice was altered in those given mAb to IFN-gamma or TNF-alpha. More Gr-1(+) and Mac-3(+) cells were present in lungs of IL-10(-/-) mice given mAb to IFN-gamma, and treatment with mAb to TNF-alpha sharply reduced the number of CD8(+) cells in lungs of IL-10(-/-) mice. We ascertained whether the lack of IL-10 modulated memory T cell generation or the protective function of cells. The percentage of CD3(+), CD44(high), CD62(low), and IFN-gamma(+) cells in IL-10(-/-) mice was higher than that of wild-type at day 7 but not day 21 or 49 after immunization. Fewer splenocytes from immunized IL-10(-/-) mice were required to mediate protection upon adoptive transfer into infected TCR alphabeta(-/-) mice. Hence, deficiency of IL-10 confers a salutary effect on the course of histoplasmosis, and the beneficial effects of IL-10 deficiency require endogenous TNF-alpha and/or IFN-gamma. Memory cell generation was transiently increased in IL-10(-/-) mice, but the protective function conferred by cells from these mice following immunization is strikingly more vigorous than that of wild-type.  相似文献   

4.
Infection with the parasitic nematode Nippostrongylus brasiliensis induces a potent Th2 response; however, little is known about early stages of the innate response that may contribute to protective immunity. To examine early events in this response, chemokine expression in the draining lymph node was examined after N. brasiliensis inoculation. Pronounced increases of several chemokines, including CCL2, were observed. Compared with wild-type mice, elevations in a Gr-1bright population in the draining lymph node was significantly decreased in CCL2-/- mice after N. brasiliensis inoculation. Further flow cytometric and immunofluorescent analysis showed that in wild-type mice, Gr-1+ cells transiently entered and exited the draining lymph node shortly after N. brasiliensis inoculation. The Gr-1bright population was comprised of neutrophils expressing TGF-beta and TNF-alpha. Following Gr-1+ cell depletion, N. brasiliensis infection resulted in transient, but significantly increased levels of IFN-gamma, increased serum IgG2a, reduced Th2 cytokines and serum IgE, greatly increased mortality, and delayed worm expulsion. Furthermore, bacteria were readily detected in vital organs. Infection of Gr-1+ cell-depleted mice with N. brasiliensis larvae that were pretreated with antibiotics prevented bacterial dissemination, Th1 inflammatory responses, and decreases in host survival. This study indicates that parasitic nematodes can be an important vector of potentially harmful bacteria, which is typically controlled by CCL2-dependent neutrophils that ensure the optimal development of Th2 immune responses and parasite resistance.  相似文献   

5.
We previously studied the lung Vbeta TCR repertoire of C57BL/6 mice during primary infection with the pathogen Histoplasma capsulatum. We observed a consistent oligoclonal expansion of Vbeta4(+) T cells during the peak of infection and early stages of resolution. The Vbeta4(+) family played a role in protective immunity against the fungus. Depletion of this subpopulation of T cells hindered optimal clearance of infection from tissues. In this report we analyze the flux of the Vbeta TCR repertoire in the lungs of C57BL/6 mice with reinfection histoplasmosis. We observed a significant increase in Vbeta6(+) T cells on days 7, 10, and 14, the peak and early resolution phases of infection. This skewing was preceded by an increased number of memory T cells within Vbeta6(+) cells. The VDJ sequences of Vbeta6 chains were oligoclonal during the early stages of the infection, suggesting that the expansion was driven by a small number of Ags. More than 96% of the expanded Vbeta6(+) cells were CD4(+). Depletion of Vbeta6(+) T cells but not Vbeta4(+) T cells induced a modest but significant delay in fungal clearance. Simultaneous depletion of Vbeta4(+) and Vbeta6(+) T cells induced a more pronounced impairment of host resistance. These studies illustrate the dynamic interactions between Vbeta families in the response to microbial challenge.  相似文献   

6.
Protective immunity against primary and secondary infection by the fungus Histoplasma capsulatum (HC) is multifactorial, requiring cells of the innate and adaptive immune response. Effector mechanisms that could mediate intracellular killing of HC include cytokines such as IFN-gamma and TNF-alpha and/or direct cytolytic activity by T and NK cells. In this regard, although previous work has clearly demonstrated a critical role for IFN-gamma and TNF-alpha in limiting fungal growth in primary HC infection, less is known regarding the role of cytolytic mechanisms. The studies reported here first address the role of perforin in mediating immunity to HC. Remarkably, perforin-deficient knockout (PfKO) mice were shown to have accelerated mortality and increased fungal burden following a lethal or sublethal primary challenge. These data established an essential role for perforin in primary immunity systemic HC infection. Interestingly, depletion of CD8(+) T cells in PfKO mice caused a further increase in fungal burden and accelerated mortality, suggesting a perforin-independent role for CD8(+) T cells. Moreover, adoptive transfer of CD8(+) T cells from PfKO mice into IFN-gamma(-/-) mice caused a reduction in fungal burden following infectious challenge compared with control IFN-gamma(-/-) mice. Together, these data suggest that CD8(+) T cells can mediate immunity to HC through both perforin-dependent and -independent mechanisms.  相似文献   

7.
It has long been recognized that some viral infections result in generalized immune suppression. In acute infections, this period of suppressed immunity is relatively short. However, chronic infections associated with a prolonged period of immune suppression present far greater risks. Here, we examined the role of CD8 T cell responses following viral infection in immunity to systemic histoplasmosis. Although wild-type mice with systemic histoplasmosis were able to control the infection, those simultaneously infected with lymphocytic choriomeningitis virus clone 13 showed reduced immunity with greater fungal burden and high mortality. The immune suppression was associated with loss of CD4 T cells and B cells, generalized splenic atrophy, and inability to mount a granulomatous response. Removing the anti-viral CD8 T cells in the coinfected mice enabled them to reduce the fungal burden and survive the infection. Their lymphoid organs were replenished with CD4 T and B cells. In contrast to wild-type mice, perforin-deficient mice infected with lymphocytic choriomeningitis virus clone 13 and Histoplasma showed an absence of immunopathology, but the animals still died. These results show that CD8 T cells can suppress immunity through different mechanisms; although immunopathology is perforin-dependent, lethality is perforin-independent.  相似文献   

8.
Administration of anti-CD25 mAb before an aggressive murine breast tumor inoculation provoked effective antitumor immunity. Compared with CD4(+) T cells purified from anti-CD25 mAb-pretreated mice that did not reject tumor, CD4(+) T cells purified from anti-CD25 mAb-pretreated mice that rejected tumor stimulated by dendritic cells (DCs) produced more IFN-gamma and IL-2, and less IL-17 in vitro, and ignited protective antitumor immunity in vivo in an adoptive transfer model. Tumor Ag-loaded DCs activated naive CD8(+) T cells in the presence of these CD4(+) T cells in vitro. Tumor Ag and adoptively transferred CD4(+) T cells were both required for inducing a long-term tumor-specific IFN-gamma-producing cellular response and potent protective antitumor activity. Although adoptively transferred CD4(+) T cells ignited effective tumor-specific antitumor immunity in wild-type mice, they failed to do so in endogenous NK cell-depleted, Gr-1(+) cell-depleted, CD40(-/-), CD11c(+) DC-depleted, B cell(-/-), CD8(+) T cell-depleted, or IFN-gamma(-/-) mice. Collectively, the data suggest that adoptively transferred CD4(+) T cells orchestrate both endogenous innate and adaptive immunity to generate effective tumor-specific long-term protective antitumor immunity. The data also demonstrate the pivotal role of endogenous DCs in the tumor-specific protection ignited by adoptively transferred CD4(+) T cells. Thus, these findings highlight the importance of adoptively transferred CD4(+) T cells, as well as host immune components, in generating effective tumor-specific long-term antitumor activity.  相似文献   

9.
CD11b(+)Gr-1(+) myeloid suppressor cells (MSC) accumulate in lymphoid organs under conditions of intense immune stress where they inhibit T and B cell function. We recently described the generation of immortalized MSC lines that provide a homogeneous source of suppressor cells for dissecting the mechanism of suppression. In this study we show that the MSC lines potently block in vitro proliferation of T cells stimulated with either mitogen or antigenic peptide, with as few as 3% of MSC cells causing complete suppression. Inhibition of mitogenic and peptide-specific responses is not associated with a loss in IL-2 production or inability to up-modulate the early activation markers, CD69 and CD25, but results in direct impairment of the three IL-2R signaling pathways, as demonstrated by the lack of Janus kinase 3, STAT5, extracellular signal-regulated kinase, and Akt phosphorylation in response to IL-2. Suppression is mediated by and requires NO, which is secreted by MSC in response to signals from activated T cells, including IFN-gamma and a contact-dependent stimulus. Experiments with inducible NO synthase knockout mice demonstrated that the inhibition of T cell proliferation by CD11b(+)Gr-1(+) cells in the spleens of immunosuppressed mice is also dependent upon NO, indicating that the MSC lines accurately represent their normal counterparts. The distinctive capacity of MSC to generate suppressive signals when encountering activated T cells defines a specialized subset of myeloid cells that most likely serve a regulatory function during times of heightened immune activity.  相似文献   

10.
The interaction of activated CD44 with its ligand, low m.w. hyaluronan, is involved in inflammation, but no role has been identified for this interaction in the regulation of an immune response to infection. In these studies, infection of C57BL/6 mice with Toxoplasma gondii resulted in increased expression of CD44 on T cells, B cells, NK cells, and macrophages, and a small percentage of CD4(+) T cells express an activated form of CD44. Administration of anti-CD44 to infected mice prevented the development of a CD4(+) T cell-dependent, infection-induced inflammatory response in the small intestine characterized by the overproduction of IFN-gamma. The protective effect of anti-CD44 treatment was associated with reduced production of IFN-gamma, but not IL-12, in vivo and in vitro. Furthermore, the addition of low m.w. hyaluronan to cultures of splenocytes or purified CD4(+) T cells from infected mice resulted in the production of high levels of IFN-gamma, which was dependent on IL-12 and TCR stimulation. Together, these results identify a novel role for CD44 in the regulation of IFN-gamma production by CD4(+) T cells during infection and demonstrate a role for CD44 in the regulation of infection-induced immune pathology.  相似文献   

11.
The binding of IL-18 to IL-18Rα induces both proinflammatory and protective functions during infection, depending on the context in which it occurs. IL-18 is highly expressed in the liver of wild-type (WT) C57BL/6 mice following lethal infection with highly virulent Ixodes ovatus ehrlichia (IOE), an obligate intracellular bacterium that causes acute fatal toxic shock-like syndrome. In this study, we found that IOE infection of IL-18Rα(-/-) mice resulted in significantly less host cell apoptosis, decreased hepatic leukocyte recruitment, enhanced bacterial clearance, and prolonged survival compared with infected WT mice, suggesting a pathogenic role for IL-18/IL-18Rα in Ehrlichia-induced toxic shock. Although lack of IL-18R decreased the magnitude of IFN-γ producing type-1 immune response, enhanced resistance of IL-18Rα(-/-) mice against Ehrlichia correlated with increased proinflammatory cytokines at sites of infection, decreased systemic IL-10 production, increased frequency of protective NKT cells producing TNF-α and IFN-γ, and decreased frequency of pathogenic TNF-α-producing CD8(+) T cells. Adoptive transfer of immune WT CD8(+) T cells increased bacterial burden in IL-18Rα(-/-) mice following IOE infection. Furthermore, rIL-18 treatment of WT mice infected with mildly virulent Ehrlichia muris impaired bacterial clearance and enhanced liver injury. Finally, lack of IL-18R signal reduced dendritic cell maturation and their TNF-α production, suggesting that IL-18 might promote the adaptive pathogenic immune responses against Ehrlichia by influencing T cell priming functions of dendritic cells. Together, these results suggested that the presence or absence of IL-18R signals governs the pathogenic versus protective immunity in a model of Ehrlichia-induced immunopathology.  相似文献   

12.
The inducible costimulator protein (ICOS) was recently identified as a costimulatory molecule for T cells. Here we analyze the role of ICOS for the acquired immune response of mice against the intracellular bacterium Listeria monocytogenes. During oral L. monocytogenes infection, low levels of ICOS expression were detected by extracellular and intracellular Ab staining of Listeria-specific CD4(+) and CD8(+) T cells. Blocking of ICOS signaling with a soluble ICOS-Ig fusion protein markedly impaired the Listeria-specific T cell responses. Compared with control mice, the ICOS-Ig treated mice generated significantly reduced numbers of Listeria-specific CD8(+) T cells in spleen and liver, as determined by tetramer and intracellular cytokine staining. In contrast, the specific CD8(+) T cell response in the intestinal mucosa did not appear to be impaired by the ICOS-Ig treatment. Analysis of the CD4(+) T cell response revealed that ICOS-Ig treatment also affected the specific CD4(+) T cell response. When restimulated with listerial Ag in vitro, reduced numbers of CD4(+) T cells from infected and ICOS-Ig-treated mice responded with IFN-gamma production. The impaired acquired immune response in ICOS-Ig treated mice was accompanied by their increased susceptibility to L. monocytogenes infection. ICOS-Ig treatment drastically enhanced bacterial titers, and a large fraction of mice succumbed to the otherwise sublethal dose of infection. Thus, ICOS costimulation is crucial for protective immunity against the intracellular bacterium L. monocytogenes.  相似文献   

13.
T cell dysfunction that occurs after surgery or trauma is associated with a poor clinical outcome. We describe that myeloid suppressor cells expressing CD11b(+)/Gr-1(+) markers invade the spleen after traumatic stress and suppress T cell function through the production of arginase 1. We created a consistent model of traumatic stress in C57BL/6 mice to perform this work. A significant number of CD11b(+)/Gr-1(+) cells expressing arginase 1 accumulated in T cell zones around the germinal centers of the white pulp of the spleen within 6 h of trauma and lasted for at least 72 h. Increased arginase activity and arginase 1 expression, along with increased [(3)H]arginine uptake, l-arginine depletion, and l-ornithine accumulation in the culture medium, were observed exclusively in CD11b(+)/Gr-1(+) cells after traumatic stress. Flow cytometry revealed CD11b(+)/Gr-1(+) as a heterogeneous myeloid suppressor cell also expressing low levels of MHC class I and II, CD80, CD86, CD31, and others. When compared with controls, trauma-induced CD11b(+)/Gr-1(+) cells significantly inhibited CD3/CD28-mediated T cell proliferation, TCR zeta-chain expression, and IL-2 production. The suppressive effects by trauma CD11b(+)/Gr-1(+) cells were overcome with the arginase antagonist N-hydroxy-nor-l-arginine or extrasupplementation of medium with l-arginine. Poor Ag-presenting capacity of control and trauma-induced CD11b(+)/Gr-1(+) cells was detected in allogeneic murine leukocyte reaction. This study demonstrates that CD11b(+)/Gr-1(+) cells invade the spleen following traumatic stress and cause T cell dysfunction by an arginase-mediated mechanism, probably that of arginine depletion. Understanding the mechanism of immune suppression by these cells has important clinical implications in the treatment of immune dysfunction after trauma or surgery.  相似文献   

14.
During adaptive immune response, pathogen-specific CD8(+) T cells recognize preferentially a small number of epitopes, a phenomenon known as immunodominance. Its biological implications during natural or vaccine-induced immune responses are still unclear. Earlier, we have shown that during experimental infection, the human intracellular pathogen Trypanosoma cruzi restricts the repertoire of CD8(+) T cells generating strong immunodominance. We hypothesized that this phenomenon could be a mechanism used by the parasite to reduce the breath and magnitude of the immune response, favoring parasitism, and thus that artificially broadening the T cell repertoire could favor the host. Here, we confirmed our previous observation by showing that CD8(+) T cells of H-2(a) infected mice recognized a single epitope of an immunodominant antigen of the trans-sialidase super-family. In sharp contrast, CD8(+) T cells from mice immunized with recombinant genetic vaccines (plasmid DNA and adenovirus) expressing this same T. cruzi antigen recognized, in addition to the immunodominant epitope, two other subdominant epitopes. This unexpected observation allowed us to test the protective role of the immune response to subdominant epitopes. This was accomplished by genetic vaccination of mice with mutated genes that did not express a functional immunodominant epitope. We found that these mice developed immune responses directed solely to the subdominant/cryptic CD8 T cell epitopes and a significant degree of protective immunity against infection mediated by CD8(+) T cells. We concluded that artificially broadening the T cell repertoire contributes to host resistance against infection, a finding that has implications for the host-parasite relationship and vaccine development.  相似文献   

15.
5-Lipoxygenase-derived products have been implicated in both the inhibition and promotion of chronic infection. Here, we sought to investigate the roles of endogenous 5-lipoxygenase products and exogenous leukotrienes during Histoplasma capsulatum infection in vivo and in vitro. 5-LO deficiency led to increased lung CFU, decreased nitric oxide production and a deficient primary immune response during active fungal infection. Moreover, H. capsulatum-infected 5-LO(-/-) mice showed an intense influx of neutrophils and an impaired ability to generate and recruit effector T cells to the lung. The fungal susceptibility of 5-LO(-/-) mice correlated with a lower rate of macrophage ingestion of IgG-H. capsulatum relative to WT macrophages. Conversely, exogenous LTB4 and LTC4 restored macrophage phagocytosis in 5-LO deficient mice. Our results demonstrate that leukotrienes are required to control chronic fungal infection by amplifying both the innate and adaptive immune response during histoplasmosis.  相似文献   

16.
To elucidate the role of NKT cells in the host defense to cryptococcal infection, we examined the proportion of these cells, identified by the expression of CD3 and NK1.1, in lungs after intratracheal infection with Cryptococcus neoformans. This population increased on day 3 after infection, reached a peak level on days 6-7, and decreased thereafter. In Valpha14 NKT cell-deficient mice, such increase was significantly attenuated. The proportion of Valpha14 NKT cells, detected by binding to alpha-galactosylceramide-loaded CD1d tetramer, and the expression of Valpha14 mRNA increased after infection with a similar kinetics. The delayed-type hypersensitivity response and differentiation of the fungus-specific Th1 cells was reduced in Valpha14 NKT cell-deficient mice, compared with control mice. Additionally, elimination of this fungal pathogen from lungs was significantly delayed in Valpha14 NKT cell-deficient mice. Production of monocyte chemoattractant protein (MCP)-1 in lungs, detected at both mRNA and protein levels, increased on day 1, reached a peak level on day 3, and decreased thereafter, which preceded the increase in NKT cells. Finally, the increase of total and Valpha14(+) subset of NKT cells after infection was significantly reduced in MCP-1-deficient mice. Our results demonstrated that NKT cells, especially Valpha14(+) subset, accumulated in a MCP-1-dependent manner in the lungs after infection with C. neoformans and played an important role in the development of Th1 response and host resistance to this fungal pathogen.  相似文献   

17.
18.
19.
Leading hypotheses to explain helminth-mediated protection against autoimmunity postulate that type 2 or regulatory immune responses induced by helminth infections in the host limit pathogenic Th1-driven autoimmune responses. We tested these hypotheses by investigating whether infection with the filarial nematode Litomosoides sigmodontis prevents diabetes onset in IL-4-deficient NOD mice and whether depletion or absence of regulatory T cells, IL-10, or TGF-β alters helminth-mediated protection. In contrast to IL-4-competent NOD mice, IL-4-deficient NOD mice failed to develop a type 2 shift in either cytokine or Ab production during L. sigmodontis infection. Despite the absence of a type 2 immune shift, infection of IL-4-deficient NOD mice with L. sigmodontis prevented diabetes onset in all mice studied. Infections in immunocompetent and IL-4-deficient NOD mice were accompanied by increases in CD4(+)CD25(+)Foxp3(+) regulatory T cell frequencies and numbers, respectively, and helminth infection increased the proliferation of CD4(+)Foxp3(+) cells. However, depletion of CD25(+) cells in NOD mice or Foxp3(+) T cells from splenocytes transferred into NOD.scid mice did not decrease helminth-mediated protection against diabetes onset. Continuous depletion of the anti-inflammatory cytokine TGF-β, but not blockade of IL-10 signaling, prevented the beneficial effect of helminth infection on diabetes. Changes in Th17 responses did not seem to play an important role in helminth-mediated protection against autoimmunity, because helminth infection was not associated with a decreased Th17 immune response. This study demonstrates that L. sigmodontis-mediated protection against diabetes in NOD mice is not dependent on the induction of a type 2 immune shift but does require TGF-β.  相似文献   

20.
Parasitic-infection studies on rhesus macaque monkeys have shown juvenile animals to be more susceptible to infection than adults, but the immunological mechanism for this is not known. In this study, we investigated the age-dependent genesis of helminth-induced type 2 immune responses using adult (6-8-wk-old) and juvenile (21-28-d-old) mice. Following infection with the parasitic nematode Nippostrongylus brasiliensis, juvenile mice had increased susceptibility to infection relative to adult mice. Juvenile mice developed a delayed type 2 immune response with decreased Th2 cytokine production, IgE Ab responses, mouse mast cell protease 1 levels, and intestinal goblet cell induction. This innate immune defect in juvenile mice was independent of TLR signaling, dendritic cells, or CD4(+) cell function. Using IL-4-eGFP mice, it was demonstrated that the numbers of IL-4-producing basophil and eosinophils were comparable in young and adult naive mice; however, following helminth infection, the early induction of these cells was impaired in juvenile mice relative to older animals. In nonhelminth models, there was an innate in vivo defect in activation of basophils, but not eosinophils, in juvenile mice compared with adult animals. The specific role for basophils in this innate defect in helminth-induced type 2 immunity was confirmed by the capacity of adoptively transferred adult-derived basophils, but not eosinophils, to restore the ability of juvenile mice to expel N. brasiliensis. The defect in juvenile mice with regard to helminth-induced innate basophil-mediated type 2 response is relevant to allergic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号