首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of the enzymes of the tricarboxylic acid cycle and glyoxylate shunt, as well as of some enzymes involved in carbohydrate metabolism, were determined in the purple sulfur bacterium Chromatium minutissimum, either maintained by subculturing in liquid medium or stored in the lyophilized state for 36 years. In cultures stored in the lyophilized state, the activities of the key enzymes of the tricarboxylic acid cycle, glyoxylate shunt, and Embden-Meyerhof-Parnas pathway were higher, whereas the activities of glucose-6-phosphate dehydrogenase, pyruvate kinase, and ribulose bisphosphate carboxylase were somewhat lower than in cultures maintained by regular transfers.  相似文献   

2.
 Biochemical roles of the representative enzymes involved in carbon metabolism of glucose were investigated in relation to the fruit-body formation of the basidiomycete Flammulina velutipes. Changes in specific activities of the enzymes of the tricarboxylic acid (TCA) cycle and glyoxylate (GLOX) and gluconeogenesis pathways were measured at different stages of development of the fungus. The enzyme activities of malate synthase (MS) and fructose bisphosphatase (FBP) as the key enzymes for the GLOX-gluconeogenesis pathways increased in mycelia during the fruit-body formation. The activities of isocitrate dehydrogenase (IDH) for the TCA cycle and NADP-linked glutamate dehydrogenase (GLTDH (NADP)) for glutamate synthesis increased more markedly. Moreover, the mycelial mat of the cultures producing fruit bodies yielded greater enzyme activities of isocitrate lyase (ICL), MS, FBP, and IDH than that of the cultures that did not produce fruit bodies. These results suggest that the GLOX-gluconeogenesis pathways as well as the glutamate synthesis have a strong correlation with the fruit-body formation of F. velutipes. Received: January 22, 2002 / Accepted: May 10, 2002  相似文献   

3.
The composition and properties of the tricarboxylic acid cycle of the microaerophilic human pathogen Helicobacter pylori were investigated in situ and in cell extracts using [1H]- and [13C]-NMR spectroscopy and spectrophotometry. NMR spectroscopy assays enabled highly specific measurements of some enzyme activities, previously not possible using spectrophotometry, in in situ studies with H. pylori, thus providing the first accurate picture of the complete tricarboxylic acid cycle of the bacterium. The presence, cellular location and kinetic parameters of citrate synthase, aconitase, isocitrate dehydrogenase, alpha-ketoglutarate oxidase, fumarate reductase, fumarase, malate dehydrogenase, and malate synthase activities in H. pylori are described. The absence of other enzyme activities of the cycle, including alpha-ketoglutarate dehydrogenase, succinyl-CoA synthetase, and succinate dehydrogenase also are shown. The H. pylori tricarboxylic acid cycle appears to be a noncyclic, branched pathway, characteristic of anaerobic metabolism, directed towards the production of succinate in the reductive dicarboxylic acid branch and alpha-ketoglutarate in the oxidative tricarboxylic acid branch. Both branches were metabolically linked by the presence of alpha-ketoglutarate oxidase activity. Under the growth conditions employed, H. pylori did not possess an operational glyoxylate bypass, owing to the absence of isocitrate lyase activity; nor a gamma-aminobutyrate shunt, owing to the absence of both gamma-aminobutyrate transaminase and succinic semialdehyde dehydrogenase activities. The catalytic and regulatory properties of the H. pylori tricarboxylic acid cycle enzymes are discussed by comparing their amino acid sequences with those of other, more extensively studied enzymes.  相似文献   

4.
A comparative study of the enzymes of tricarboxylic acid (TCA) and glyoxylate cycles in the mutant Yarrowia lipolytica strain N1 capable of producing -ketoglutaric acid (KGA) and citric acid showed that almost all enzymes of the TCA cycle are more active under conditions promoting the production of KGA. The only exception was citrate synthase, whose activity was higher in yeast cells producing citric acid. The production of both acids was accompanied by suppression of the glyoxylate cycle enzymes. The activities of malate dehydrogenase, aconitase, NADP-dependent isocitrate dehydrogenase, and fumarase were higher in cells producing KGA than in cells producing citric acid.  相似文献   

5.
Summary In uniformly labeled logarithmic-phase cells of Thraustochytrium roseum grown in isotopic glucose, 85% of the respiratory CO2 was derived from endogenous reserves and only 15% was contributed by exogenous glucose. Experiments with asymetrically labeled glucose showed that the main portion of metabolic CO2 came from carbon 1 of the glucose molecule, suggesting that the hexose monophosphate shunt is a major pathway for glucose dissimilation in the fungus. The presence of several enzymes of the hexose monophosphate shunt, the Embden-Meyerhof and glyoxylate pathways, and the tricarboxylic acid cycle were demonstrated.  相似文献   

6.
An analysis was made of the specific enzyme activities of the TCA and glyoxylate cycle in Thiobacillus versutus cells grown in a thiosulphate- or acetate-limited chemostat. Activities of all enzymes of the TCA cycle were detected, irrespective of the growth substrate and they were invariably lower in the thiosulphate-grown cells. Of the glyoxylate cycle enzymes, isocitrate lyase was absent but malate synthase activity was increased from 15 nmol·min-1·mg-1 protein in thiosulphate-grown cells to 58 nmol·min-1·mg-1 protein in acetate-grown cells. Suspensions of cells grown on thiosulphate were able to oxidize acetate, although the rate was 3 times lower than that observed with acetate-grown cells. The respiration of acetate was completely inhibited by 10 mM fluoroacetate or 5 mM arsenite. Partially purified citrate synthase from both thiosulphate- and acetate-grown cells was completely inhibited by 0.5 mM NADH and was insensitive to inhibition by 1 mM 2-oxoglutarate or 1 mM ATP. The specific enzyme activities of the TCA and glyoxylate cycle in T. versutus were compared with those of Pseudomonas fluorescens, an isocitrate lyase positive organism, after growth in a chemostat limited by acetate, glutarate, succinate or glutamate. The response of the various enzyme activities to a change in substrate was similar in both organisms, with the exception of isocitrate lyase.Abbreviations TCA tricarboxylic acid - DNTB 2,2-dinitro-5,5-dithiobenzoic acid - APAD acetylpyridine adenine dinucleotide - PMS phenazine methosulphate - DCPIP 2,6-dichlorophenol-indophenol - DOC dissolved organic carbon  相似文献   

7.
In the previous paper, most of the enzymes of the Embden-Meyerhof-Parnas pathway and glucose-6-phosphate dehydrogenase have been demonstrated to be present in cell-free extracts of Brevibacterium divaricatum, No. 1627. In this paper, the presence of condensing enzyme, aconitase, TPN-linked isocitric dehydrogenase, succinic dehydrogenase, fumarase, DPN-linked malic dehydrogenase, TPN-linked malic enzyme, oxalacetic carboxylase, isocitritase and malate synthetase in cell-free extracts of this bacterium was also demonstrated. From these results it was concluded that a strain of Brevibacterium divaricatum which has been found to contain all of the enzymes of the tricarboxylic acid cycle, would be capable of forming the key enzymes of the glyoxylate bypass as well. It suggests that the accumulation of α-ketoglutarate involves the glyoxylate bypass besides the tricarboxylic acid cycle in this bacterium.  相似文献   

8.
A comparative study of the enzymes of the tricarboxylic acid (TCA) and glyoxylate cycles in the mutant Yarrowia lipolytica strain N1 capable of producing alpha-ketoglutaric acid (KGA) and citric acid showed that almost all enzymes of the TCA cycle are more active under conditions promoting the production of KGA. The only exception was citrate synthase, whose activity was higher in yeast cells producing citric acid. The production of both acids was accompanied by suppression of the glyoxylate cycle enzymes. The activities of malate dehydrogenase, aconitase, NADP-dependent isocitrate dehydrogenase, and fumarase were higher in cells producing KGA than in cells producing citric acid.  相似文献   

9.
Yersinia pestis was found to utilize palmitic acid as a primary carbon and energy source. No inhibition of growth by palmitic acid was observed. Comparison of palmitic acid uptake by cells pregrown either with or without palmitic acid demonstrated that fatty acid uptake was constitutive. High basal levels of two enzymes of beta-oxidation, beta-hydroxyacyl-coenzyme A dehydrogenase and thiolase, and the two enzymes of the glyoxylate shunt, isocitrate lyase and malate synthase, were found in cells grown in defined medium with glucose. Elevated levels of all four enzymes were found when cells were grown with acetate as a primary carbon and energy source, and even higher levels were observed when palmitic acid was provided as a primary carbon and energy source. High-pressure liquid chromatography was used to demonstrate that, in the presence of glucose, uniformly labeled [14C]palmitic acid was converted to intermediates of the tricarboxylic acid cycle and glyoxylate shunt. Pregrowth with palmitic acid was not required for this conversion. Strains lacking the 6- or the 47-megadalton plasmid did not take up [3H]palmitic acid but did possess levels of enzyme activity comparable to those observed in the wild-type strain.  相似文献   

10.
The branch point of the tricarboxylic acid and glyoxylate shunt has been characterized in the intact organism by a multidimensional approach. Theory and methodology have been developed to determine velocities for the net flow of carbon through the major steps in acetate metabolism in Escherichia coli. Rates were assigned based on the 13C NMR spectrum of intracellular glutamate, measured rates of substrate incorporation into end products, the constituent composition of E. coli, and a series of conservation equations which described the system at steady state. The in vivo fluxes through the branch point of the tricarboxylic acid and glyoxylate cycles were compared to rates calculated from the kinetic constants of the branch point enzymes and the intracellular concentrations of their substrates.  相似文献   

11.
Setaria digitata, a filarial parasite of cattle possesses certain unique characteristics like cyanide insensitivity, and lack of cytochromes. In the present study, we have shown that the parasite has an incomplete tricarboxylic acid cycle with the absence of activities of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase and succinyl-CoA synthase. However the parasite showed the existence of glyoxylate cycle and phosphoenolpyruvate-succinate pathway. The widely used antifilarial drug diethylcarbamazine caused general inhibition of all enzymes of phosphoenolpyruvate-succinate pathway and glyoxylate cycle except that of fumarase and isocitrate lyase. The results may pave the way for new targets for chemotherapy in the control of filarial parasites.  相似文献   

12.
Complete oxidation of carbohydrates to CO2 is considered to be the exclusive property of the ubiquitous tricarboxylic acid cycle, the central process in cellular energy metabolism of aerobic organisms. Based on metabolism-wide in vivo quantification of intracellular carbon fluxes, we describe here complete oxidation of carbohydrates via the novel P-enolpyruvate (PEP)-glyoxylate cycle, in which two PEP molecules are oxidized by means of acetyl coenzyme A, citrate, glyoxylate, and oxaloacetate to CO2, and one PEP is regenerated. Key reactions are the constituents of the glyoxylate shunt and PEP carboxykinase, whose conjoint operation in this bi-functional catabolic and anabolic cycle is in sharp contrast to their generally recognized functions in anaplerosis and gluconeogenesis, respectively. Parallel operation of the PEP-glyoxylate cycle and the tricarboxylic acid cycle was identified in the bacterium Escherichia coli under conditions of glucose hunger in a slow-growing continuous culture. Because the PEP-glyoxylate cycle was also active in glucose excess batch cultures of an NADPH-overproducing phosphoglucose isomerase mutant, one function of this new central pathway may be the decoupling of catabolism from NADPH formation that would otherwise occur in the tricarboxylic acid cycle.  相似文献   

13.
To determine enzymatic activities in the thermotolerant strain K1 (formerly Sulfobacillus thermosulfidooxidans subsp. thermotolerans), it was grown in a mineral medium with (1) thiosulfate and Fe2+ or pyrite (autotrophic conditions), (2) Fe2+, thiosulfate, and yeast extract or glucose (mixotrophic conditions), and (3) yeast extract (heterotrophic conditions). Cells grown mixo-, hetero-, and autotrophically were found to contain enzymes of the tricarboxylic acid (TCA) cycle, as well as malate synthase, an enzyme of the glyoxylate cycle. Cells grown organotrophically in a medium with yeast extract exhibited the activity of the key enzymes of the Embden–Meyerhof–Parnas and Entner–Doudoroff pathways. The increased content of carbon dioxide (up to 5 vol %) in the auto- and mixotrophic media enhanced the activity of the enzymes involved in the terminal reactions of the TCA cycle and the enzymes of the pentose phosphate pathway. Carbon dioxide is fixed in the Calvin cycle. The highest activity of ribulose bisphosphate carboxylase was detected in cells grown autotrophically at the atmospheric content of CO2 in the air used for aeration of the growth medium. The activities of pyruvate carboxylase, phosphoenolpyruvate carboxylase, phosphoenolpyruvate carboxykinase, and phospho-enolpyruvate carboxytransphosphorylase decreased with increasing content of CO2 in the medium.  相似文献   

14.
A propanologenic (i.e., 1-propanol-producing) bacterium Escherichia coli strain was previously derived by activating the genomic sleeping beauty mutase (Sbm) operon. The activated Sbm pathway branches out of the tricarboxylic acid (TCA) cycle at the succinyl-CoA node to form propionyl-CoA and its derived metabolites of 1-propanol and propionate. In this study, we targeted several TCA cycle genes encoding enzymes near the succinyl-CoA node for genetic manipulation to identify the individual contribution of the carbon flux into the Sbm pathway from the three TCA metabolic routes, that is, oxidative TCA cycle, reductive TCA branch, and glyoxylate shunt. For the control strain CPC-Sbm, in which propionate biosynthesis occurred under relatively anaerobic conditions, the carbon flux into the Sbm pathway was primarily derived from the reductive TCA branch, and both succinate availability and the SucCD-mediated interconversion of succinate/succinyl-CoA were critical for such carbon flux redirection. Although the oxidative TCA cycle normally had a minimal contribution to the carbon flux redirection, the glyoxylate shunt could be an alternative and effective carbon flux contributor under aerobic conditions. With mechanistic understanding of such carbon flux redirection, metabolic strategies based on blocking the oxidative TCA cycle (via ∆sdhA mutation) and deregulating the glyoxylate shunt (via ∆iclR mutation) were developed to enhance the carbon flux redirection and therefore propionate biosynthesis, achieving a high propionate titer of 30.9 g/L with an overall propionate yield of 49.7% upon fed-batch cultivation of the double mutant strain CPC-Sbm∆sdhAiclR under aerobic conditions. The results also suggest that the Sbm pathway could be metabolically active under both aerobic and anaerobic conditions.  相似文献   

15.
Isocitrate lyase is a key enzyme of the glyoxylate cycle. This cycle plays an essential role in cell growth on acetate, and is important for gluconeogenesis as it bypasses the two oxidative steps of the tricarboxylic acid (TCA) cycle in which CO2 is evolved. In this paper, a null icl mutant of the green microalga Chlamydomonas reinhardtii is described. Our data show that isocitrate lyase is required for growth in darkness on acetate (heterotrophic conditions), as well as for efficient growth in the light when acetate is supplied (mixotrophic conditions). Under these latter conditions, reduced acetate assimilation and concomitant reduced respiration occur, and biomass composition analysis reveals an increase in total fatty acid content, including neutral lipids and free fatty acids. Quantitative proteomic analysis by 14N/15N labelling was performed, and more than 1600 proteins were identified. These analyses reveal a strong decrease in the amounts of enzymes of the glyoxylate cycle and gluconeogenesis in parallel with a shift of the TCA cycle towards amino acid synthesis, accompanied by an increase in free amino acids. The decrease of the glyoxylate cycle and gluconeogenesis, as well as the decrease in enzymes involved in β–oxidation of fatty acids in the icl mutant are probably major factors that contribute to remodelling of lipids in the icl mutant. These modifications are probably responsible for the elevation of the response to oxidative stress, with significantly augmented levels and activities of superoxide dismutase and ascorbate peroxidase, and increased resistance to paraquat.  相似文献   

16.
Frankia isolate NPI 0136010 was able to use only propionate and acetate as sole carbon sources and was unable to use hexoses, pentoses, disaccharides, and trisaccharides. Cell free extracts were surveyed for key enzymes of intermediary carbon metabolism. Enzymes of the Embden-Meyerhof-Parnas (EMP) pathway, the tricarboxylic acid (TCA) cycle and glyoxylate shunt were detected while enzymes of the pentose phosphate (PP) and Entner-Doudoroff (ED) pathways were absent. Malic enzyme was present allowing for the conversion of malate to pyruvate and gluconeogenesis. Radiorespirometric analysis confirmed the operation of the TCA cycle and established the methylmalonyl pathway as the route of propionate metabolism. The uptake of propionate was active and mediated by sulfhydryl groups.  相似文献   

17.
Enzymes of the tricarboxylic acid (TCA) cycle and glyoxylate pathway were investigated in adults and infective larvae of Ancylostoma ceylanicum and Nippostrongylus brasiliensis, and their activities were compared with those obtained in rat liver. A complete sequence of enzymes of the TCA cycle, with most of them showing activities quite similar to those in the rat liver homogenate, was detected in adults of both species. All the enzymes except fumarase and malate dehydrogenase were located predominantly in mitochondria where they showed a variable distribution of activities between the soluble and the membranes fractions. Malate dehydrogenase and fumarase were found in both the mitochondria and the 9,000-g supernatant fraction. Succinyl CoA synthetase, which was present in minimum activity, appeared rate limiting. Enzymes of the glyoxylate pathway, particularly isocitrate lyase, seemed to aid the functioning of the Krebs cycle by allowing the formation of succinate from isocitrate. The infective larvae of both species also were found equipped with all the enzymes of the Krebs cycle. Nonetheless, only isocitrate lyase of the glyoxylate pathway could be detected in these parasites.  相似文献   

18.
A method for the isolation of Leishmania donovani amastigotes from infected hamster spleen and liver tissues is described. Over 85% of the isolated amastigotes were viable as judged by acridine orange-ethidium bromide staining and in vitro transformation to the promastigote form. A comprehensive survey of the enzymes of carbohydrate metabolism in L. donovani amastigotes and promastigotes was conducted. Amastigotes and promastigotes possess all of the enzymes of the Embden-Meyerhof pathway, hexose monophosphate shunt, and tricarboxylic acid cycle. Cell-free extracts of both forms show pyruvate dehydrogenase activity which permits entry of pyruvate into the tricarboxylic acid cycle. Both forms demonstrate an active glutamate dehydrogenase, thus linking amino acid metabolism with carbohydrate metabolism. Pyruvate carboxylase, the enzyme responsible for replenishment of C4 acids by heterotrophic CO2 fixation into pyruvate, was also demonstrable in the tissue and insect forms. In general, activities of promastigote enzymes are higher than the amastigote enzymes. Differences between the vertebrate (amastigote) and invertebrate (promastigote) forms in their potential to utilize carbohydrates as substrates would appear to be quantitative rather than qualitative.  相似文献   

19.
The autotrophic CO2 fixation pathway inAcidianus brierleyi, a facultatively anaerobic thermoacidophilic archaebacterium, was investigated by measuring enzymatic activities from autotrophic, mixotrophic, and heterotrophic cultures. Contrary to the published report that the reductive tricarboxylic acid cycle operates inA. brierleyi, the enzymatic activity of ATP:citrate lyase, the key enzyme of the cycle, was not detected. Instead, activities of acetyl-CoA carboxylase and propionyl-CoA carboxylase, key enzymes of the 3-hydroxypropionate cycle, were detected only whenA. brierleyi was growing autotrophically. We conclude that a modified 3-hydroxypropionate pathway operates inA. brierleyi.Abbreviations TCA tricarboxylic acid - BV Benzyl viologen  相似文献   

20.
Summary The soil yeast Trichosporon cutaneum was grown in continuous culture on phenol, acetate or glucose as sole carbon source. The activities of enzymes participating in the tricarboxylic acid cycle, glyoxylate cycle, 3-oxoadipate pathway, pentose phosphate pathway and glycolysis were determined in situ during shifts of carbon sources. Cells grown on phenol or glucose contained basal activity of the glyoxylate-cycle-specific isocitrate lyase. The derepression of the glyoxylate cycle enzymes was partly hindered in the presence of phenol but not in the presence of low levels of glucose. Phenol and glucose caused repression of isocitrate lyase. In the presence of either phenol or glucose, acetate accumulation in the medium increased. However, part of the supplied acetate was utilized simultaneously with phenol or glucose, the utilization rate of either carbon source being reduced in the presence of the other carbon source. Acetate caused repression but not inactivation of the phenol-degrading enzymes, phenol hydroxylase and catechol 1,2-dioxygenase. The simultaneous utilization of phenol and other carbon sources in continuous culture as well as the observed repression-derepression patterns of the involved enzymes reveal T. cutaneum to be an organism of interest for possible use in decontamination processes. Offprint requests to: H. Y. Neujahr Offprint requests to: H. Y. Neujahr  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号