首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three experiments were designed to examine the mechanisms that govern prostaglandin (PGF2alpha)-induced regression of the sheep corpus luteum. Evidence is presented supporting the involvement of endothelin 1 (EDN1) in PGF2alpha-induced luteolysis. Experiment 1 measured effects of PGF2alpha when actions of EDN1 were blocked by sustained administration of a type-A endothelin (EDNRA) or type-B endothelin (EDNRB) antagonist in vivo. Experiment 2 examined antisteroidogenic actions of PGF2alpha and EDN1 in the presence of an EDNRA or EDNRB antagonist in Day-8 luteal minces. In experiment 3, luteal cellular expression of EDNRA and EDNRB was determined immunohistochemically. Relative gene expression of EDNRA and EDNRB receptors was examined by real-time RT-PCR in Day-8 sheep corpora lutea. EDNRA, but not EDNRB, participated in antisteroidogenic actions of EDN1. During the first 12 h after PGF2alpha-induced luteolysis, EDNRA antagonist did not prevent a decline in serum progesterone concentrations. Early actions of PGF2alpha are either direct or mediated by something other than EDN1. However, beyond 12 h after PGF2alpha, serum progesterone concentrations increased in EDNRA antagonist-treated animals until they were the same as saline-treated controls, whereas an EDNRB antagonist had no effect in vivo or in vitro. The EDNRA antagonist negated the antisteroidogenic actions of EDN1 but only partially abolished the actions of PGF2alpha in vitro. In contrast, the EDNRB antagonist was ineffective in abolishing antisteroidogenic actions of EDN1 and PGF2alpha. Whereas real-time RT-PCR demonstrated high expression of EDNRA and low expression of EDNRB, immunohistochemically, only EDNRA was located in small steroidogenic, endothelial, and smooth muscle cells. In summary, studies in ovine corpora lutea provided strong evidence that: 1) EDNRA, but not EDNRB, mediates antisteroidogenic actions of EDN1, 2) actions of PGF2alpha are both independent of and dependent upon mediation by EDN1, and 3) small steroidogenic cells are targets for antisteroidogenic effects of EDN1. Furthermore, the results from experiment 1 suggest that the intermediary role of EDN1 may be more important in later stages of luteal regression.  相似文献   

2.
Luteolysis is caused by a pulsatile release of prostaglandin F(2alpha) (PGF(2alpha)) from the uterus in ruminants, and a positive feedback between endometrial PGF(2alpha) and luteal oxytocin (OXT) has a physiologic role in the promotion of luteolysis. The bovine corpus luteum (CL) produces vasoactive substances, such as endothelin 1 (EDN1) and angiotensin II (Ang II), that mediate and progress luteolysis. We hypothesized that luteal OXT has an additive function to ensure the CL regression with EDN1 and Ang II, and that it has an active role in the luteolytic cascade in the cow. Thus, the aim of the present study was to observe real-time changes in the local secretion of luteal OXT and to determine its relationship with other local mediators of luteolysis. Microdialysis system (MDS) capillary membranes were implanted surgically into each CL of six cyclic Holstein cows (18 lines total among the six cows) on Day 15 (estrus == Day 0) of the estrous cycle. Simultaneously, catheters were implanted to collect ovarian venous plasma ipsilateral to the CL. Although the basal secretion of OXT by luteal tissue was maintained during the experimental period, the intraluteal PGF(2alpha) secretion gradually increased up to 300% from 24 h after the onset of luteolysis (0 h; time in which progesterone started to decrease). In each MDS line (microenvironment) within the CL, the local releasing profiles of OXT were positively associated with PGF(2alpha) and EDN1 within the CL in all 18 MDS lines implanted in the six CLs (OXT vs. PGF(2alpha), 50.0%; OXT vs. EDN1, 72.2%; P < 0.05). On the other hand, the intraluteal OXT was weakly related to Ang II (OXT vs. Ang II, 27.7%). In the ovarian vein, the peak concentration of PGF(2alpha) increased significantly when the peak of PGF(2alpha) coincided with the peak of OXT after the onset of spontaneous luteolysis (P < 0.05). In conclusion, intraluteal OXT may locally modulate secretion of vasoactive substances, particularly EDN1 and PGF(2alpha) within the CL, and thus might be one of the luteal mediators of spontaneous luteolysis in the cow.  相似文献   

3.
Western blotting was used to identify the array of protein kinase C (PKC) isozymes expressed in the early (Day 4) and midcycle (Day 10) bovine corpus luteum (CL). PCKalpha, betaI, betaII, epsilon, and micro isozymes were detected in total protein samples prepared from both Day-4 and Day-10 corpora lutea. In contrast, specific antibodies for PKCgamma, eta, lambda, and theta isozymes failed to detect protein bands in the luteal samples. PKCbetaII and epsilon isozymes were expressed differentially at these two developmental stages of the bovine CL. In the Day-4 luteal samples, PKCepsilon was barely detectable; in contrast, in the Day-10 samples, the actin-corrected ratio for PKCepsilon was 1.16 +/- 0.13. This ratio was higher than the detected ratio for PKCbetaI and micro at this developmental phase of the CL (P < 0.01), but it was comparable with the ratio detected for the PCKalpha and betaII. The amount of PKCbetaII was, although not as dramatic, also greater in the Day-10 CL (actin-corrected ratio was 0.85 +/- 0.2) than in the Day-4 CL (0.35 +/- 0.09 [P < 0.01]). The actin-corrected ratios for all other PKC isozymes, alpha (Day 4 = 0.93 +/- 0.16, Day 10 = 0.97 +/- 0.09), betaI (Day 4 = 0.54 +/- 0.073, Day 10 = 0.48 +/- 0.74), and micro (Day 4 = 0.21 +/- 0.042, Day 10 = 0.21 +/- 0.38) were not different at these 2 days of the cycle. An experiment was designed to test whether activation of specific isozymes differed between CL that do or do not regress in response to PGF(2alpha). Bovine CL from Day 4 and Day 10 of the estrous cycle were collected and 1 mm CL fragments were treated in vitro for 0, 2.5, 5, 10 or 20 min with PGF(2alpha) (0.1, 1.0, and 10 nM) or minimal essential medium-Hepes vehicle. Translocation of PKC from cytoplasm to membrane fraction was used as indication of PKC activation by PGF(2alpha). Evidence for PKC activation was observed in both Day-4 and Day-10 luteal samples treated with 10 nM PGF(2alpha). Therefore, if PKC, an intracellular mediator associated with the luteal PGF(2alpha) receptor, contributes to the lesser sensitivity of the Day-4 CL, it is likely due to the differential expression of the epsilon and betaII isozymes of PKC at this stage and not due to an inability of the PGF(2alpha) receptor to activate the isozymes expressed in the early CL.  相似文献   

4.
Two experiments were conducted to determine the luteotropin of pregnancy in sheep and to examine autocrine and paracrine roles of progesterone and estradiol-17 beta on progesterone secretion by the ovine corpus luteum (CL). Secretion of progesterone per unit mass by day-8 or day-11 CL of the estrous cycle was similar to day-90 CL of pregnancy (P >/= 0.05). In experiment 1, secretion of progesterone in vitro by slices of CL from ewes on day-8 of the estrous cycle was increased (P /= 0.05) while PGE(2) increased (P /= 0.05) detectable quantities of PGF(2alpha) or PGE while day-90 ovine CL of pregnancy secreted PGE (P /= 0.05). Trilostane, mifepristone, or MER-25 did not affect secretion of progesterone, PGE, or PGF(2alpha) by day-11 CL of the estrous cycle or day-90 CL of pregnancy (P >/= 0.05). It is concluded that PGE(2), not LH, is the luteotropin at day-90 of pregnancy in sheep and that progesterone does not modify the response to luteotropins. Thus, we found no evidence for an autocrine or paracrine role for progesterone or estradiol-17 36 on luteal secretion of progesterone, PGE or PGF(2alpha).  相似文献   

5.
6.
Prostaglandin (PG) F2alpha that is released from the uterus is essential for spontaneous luteolysis in cattle. Although PGF2alpha and its analogues are extensively used to synchronize the estrous cycle by inducing luteolysis, corpora lutea (CL) at the early stage of the estrous cycle are resistant to the luteolytic effect of PGF2alpha. We examined the sensitivity of bovine CL to PGF2alpha treatment in vitro and determined whether the changes in the response of CL to PGF2alpha are dependent on progesterone (P4), oxytocin (OT), and PGs produced locally. Bovine luteal cells from early (Days 4-5 of the estrous cycle) and mid-cycle CL (Days 8-12 of the estrous cycle) were preexposed for 12 h to a P4 antagonist (onapristone: OP; 10(-4) M), an OT antagonist (atosiban: AT; 10(-6) M), or indomethacin (INDO; 10(-4) M) before stimulation with PGF2alpha. Although OP reduced P4 secretion (p < 0.001) only in early CL, it reduced OT secretion in the cells of both phases examined (p < 0.001). OP also reduced PGF2alpha and PGE2 secretion (p < 0.01) from early CL. However, it stimulated PGF2alpha secretion in mid-cycle luteal cells (p < 0.001). AT reduced P4 secretion in early and mid-cycle CL (p < 0.05). Moreover, PGF2alpha secretion was inhibited (p < 0.05) by AT in early CL. The OT secretion and the intracellular level of free Ca2+ ([Ca2+]i) were measured as indicators of CL sensitivity to PGF2alpha. PGF2alpha had no influence on OT secretion, although [Ca2+]i increased (p < 0.05) in the early CL. However, the effect of PGF2alpha was augmented (p < 0.01) in cells after pretreatment with OP, AT, and INDO in comparison with the controls. In mid-cycle luteal cells, PGF2alpha induced 2-fold increases in OT secretion and [Ca2+]i. However, in contrast to results in early CL, these increases were magnified only by preexposure of the cells to AT (p < 0.05). These results indicate that luteal P4, OT, and PGs are components of an autocrine/paracrine positive feedback cascade in bovine early to mid-cycle CL and may be responsible for the resistance of the early bovine CL to the exogenous PGF2alpha action.  相似文献   

7.
Endothelial cells (EC) of the bovine corpus luteum (CL) are a known source of proinflammatory mediators, including monocyte chemoattractant protein 1 (CCL2) and endothelin 1 (EDN1). Here, a coculture system was devised to determine if immune cells and PGF 2alpha together affect CCL2 and EDN1 secretion by EC. Luteal EC were cultured either alone or together with peripheral blood mononuclear cells (PBMC), and treated without or with PGF 2alpha for 48 h (n = 6 experiments). Coculture of EC with PBMC increased CCL2 secretion an average of 5-fold higher compared with either cell type alone (P < 0.05). Basal secretion of EDN1 by EC was substantial (approximately 2 ng/ml), but was not affected by coculture with PBMC (P > 0.05). EC cocultured with concanavalin A-activated PBMC (ActPBMC) increased CCL2 secretion an average of 12-fold higher compared with controls (P < 0.05), but again, EDN1 secretion was unchanged (P > 0.05). Interestingly, PGF 2alpha did not alter either CCL2 or EDN1 secretion, regardless of culture conditions (P > 0.05). In a second series of experiments (n = 3 experiments), mixed luteal cells (MLC) were cultured alone or with PBMC as described above. Secretion of CCL2 and EDN1 was not affected by coculture or by PGF 2alpha (P > 0.05), but MLC produced less progesterone in the presence of ActPBMC (P < 0.05). Collectively, these results suggest that immune cells and EC can interact cooperatively to increase CCL2 secretion in the CL, but this interaction does not affect EDN1 secretion nor is it influenced by PGF 2alpha. Additionally, activated immune cells appear to produce a factor that impairs progesterone production by luteal steroidogenic cells.  相似文献   

8.
Although prostaglandin (PG) F(2alpha) released from the uterus has been shown to cause regression of the bovine corpus luteum (CL), the neuroendocrine, paracrine, and autocrine mechanisms regulating luteolysis and PGF(2alpha) action in the CL are not fully understood. A number of substances produced locally in the CL may be involved in maintaining the equilibrium between luteal development and its regression. The present study was carried out to determine whether noradrenaline (NA) and nitric oxide (NO) regulate the sensitivity of the bovine CL to PGF(2alpha) in vitro and modulate a positive feedback cascade between PGF(2alpha) and luteal oxytocin (OT) in cows. Bovine luteal cells (Days 8-12 of the estrous cycle) cultured in glass tubes were pre-exposed to NA (10(-5) M) or an NO donor (S-nitroso-N:-acetylpenicillamine [S-NAP]; 10(-4) M) before stimulation with PGF(2alpha) (10(-6) M). Noradrenaline significantly stimulated the release of progesterone (P(4)), OT, PGF(2alpha), and PGE(2) (P: < 0.01); however, S-NAP inhibited P(4) and OT secretion (P: < 0.05). Oxytocin secretion and the intracellular level of free Ca(2+) ([Ca(2+)](i)) were measured as indicators of CL sensitivity to PGF(2alpha). Prostaglandin F(2alpha) increased both the amount of OT secretion and [Ca(2+)](i) by approximately two times the amount before (both P: < 0.05). The S-NAP amplified the effect of PGF(2alpha) on [Ca(2+)](i) and OT secretion (both P: < 0.001), whereas NA diminished the stimulatory effects of PGF(2alpha) on [Ca(2+)](i) (P: < 0.05). Moreover, PGF(2alpha) did not exert any additionally effects on OT secretion in NA-pretreated cells. The overall results suggest that adrenergic and nitrergic agents play opposite roles in the regulation of bovine CL function. While NA stimulates P(4) and OT secretion, NO may inhibit it in bovine CL. Both NA and NO are likely to stimulate the synthesis of luteal PGs and to modulate the action of PGF(2alpha). Noradrenaline may be the factor that is responsible for the limited action of PGF(2alpha) on CL and may be involved in the protection of the CL against premature luteolysis. In contrast, NO augments PGF(2alpha) action on CL and it may be involved in the course of luteolysis.  相似文献   

9.
Prostaglandin F2alpha (PGF2alpha) is a major physiological luteolysin in the cow. However, injection of PGF2alpha before day 5 (day 0 = estrus) of the estrous cycle dose not induce luteolysis. On the other hand, the early corpus luteum (CL) actively produces PGF2alpha. This indicates that luteal PGF2alpha may play a key role in the refractoriness to PGF2alpha injected during the early luteal phase when angiogenesis is active in the CL. Thus, this study aimed to investigate the possible interaction between pituitary hormones and local factors (luteal peptides) on secretion of PGF2alpha and progesterone (P) by the early bovine CL, and to evaluate the effect of growth hormone (GH) as well as its interactions on production of PGF2alpha in the developing CL. A RT-PCR analysis revealed that mRNA for GH receptor in CL was fully expressed from early in the luteal phase throughout the estrous cycle, while luteinizing hormone (LH) receptor mRNA was expressed less by the early and regressing CL than those at mid or late luteal phases (P < 0.05). For the stimulation test, an in vitro microdialysis system (MDS) was used as a model. Each bovine early CL (days 3-4) was implanted with the MDS, and maintained in an organ culture chamber. The infusion of GH, insulin-like growth factor-1 (IGF-1) and oxytocin (OT) increased (P < 0.05) PGF2alpha and P release. In contrast, LH had no effect (P > 0.05) on PGF2alpha secretion and little effect on P release. Unexpectedly, there was no distinct interaction between pituitary hormones and luteal peptides on secretion of PGF2alpha and P. These results indicate that GH is a more powerful stimulator of PGF2alpha and P production in the early bovine CL than LH and suggest that GH and luteal peptides, IGF-1 and OT, contribute to maintenance of elevated PGF2alpha production in the developing bovine CL.  相似文献   

10.
Secretion of prostaglandins (PGs) by the regressing corpus luteum (CL) was investigated in the cow. Six cows were implanted with microcapillary dialysis membranes of a microdialysis system (MDS) into the CL during Days 8-9 (Day 0 = estrus), and a prostaglandin (PG) F2alpha analogue (Estrumate) was injected intramuscularly (i.m.) to induce luteolysis. Acute increases in intraluteal release of PGF2alpha and PGE2 were observed during the first 4 h, followed by decreases over the next 8 h. Intraluteal release of both PGs gradually increased again during the period 48-72 h. Concentrations of PGF2alpha in ovarian venous plasma (OVP) were 4-13 times higher than those of jugular venous plasma (JVP) (P < 0.001) during the period of the experiment, and increased from 24 h after treatment with Estrumate (P < 0.05). Cyclooxygenase (COX)-2 mRNA expression increased (P < 0.05) at 2 and 24 h after treatment with Estrumate. The results indicated that local release of PGF2alpha and PGE2, and COX-2 mRNA expression were increased by Estrumate in the regressing CL at the later stages of luteolysis. Thus, luteal secretion of PGs may be involved in the local mechanism for structural rather than functional luteolysis.  相似文献   

11.
The effect of prostaglandin F2 alpha (PGF2 alpha) on luteinizing hormone (LH) receptors, weight and progesterone content of corpora lutea (CL), and serum progesterone concentrations was studied in gilts. Fifteen gilts were hysterectomized between Days 9 to 11 of the estrous cycle. Twelve gilts were injected i.m. with 10 mg of PGF2 alpha and 3 with saline on Day 20. Ovaries were surgically removed from each of 3 gilts at 4, 8, 12 and 24 h following PGF2 alpha treatment and from the 3 control gilts 12 h following saline injection. Jugular blood samples for progesterone analysis were collected from all gilts at 0, 2 and 4 h following treatment and at 8, 12 and 24 h for gilts from which ovaries were removed at 8, 12 and 24 h, respectively. Mean serum progesterone and CL progesterone concentrations decreased within 4 h after PGF2 alpha treatment (P less than 0.05) and remained low through 24 h after treatment. The number of unoccupied LH receptors decreased by 4 h (P less than 0.05) and this trend continued through 24 h. There were no differences in luteal weight or affinity of unoccupied LH receptors of luteal tissue at 4, 8 12 and 24 h after PGF2 alpha when compared to luteal tissue from controls. These data indicate that during PGF2 alpha-induced luteolysis in the pig, luteal progesterone, serum progesterone concentrations and the number of LH receptors decrease simultaneously.  相似文献   

12.
Preliminary characterization indicated the presence of separate prostaglandin (PG)E1 and (PG)F2alpha binding sites in membrane fractions prepared from bovine corpora lutea. These differ in the rate and temperature dependence of the specific binding. Equilibrium binding data indicate the apparent dissociation constants as 1.32 x 10(-9)M and 1.1 x 10(-8)M for PGE1 and PGF2alpha, respectively. Competition of several natural prostaglandins for the PGE1 and PGF2alpha bovine luteal specific binding sites indicates specificity for the 9-keto or 9alpha-hydroxyl moiety, respectively. Differences in relative ability to inhibit 3H-PG binding were found due to sensitivity to the absence or presence of the 5, 6-cis-double bond as well. Bovine luteal function was affected following treatment of heifers with 25 mg PGF2alpha as measured by reduced estrous cycle length, decreased corpus luteum size and significantly decreased plasma progesterone levels. In contract, treatment with 25 mg PGE1 resulted in cycle lengths comparable to those of non-treated herdmates with no apparent modification in corpus luteum size. However, plasma progesterone levels were increased significantly following PGE1 treatment compared to pretreatment values. In so far as data obtained in vitro on PGF2alpha relative binding affinity to the bovine CL can be compared to data obtained independently in vitro on PGF2alpha induced luteolysis in the bovine, PGF2alpha relative binding to the CL and luteolysis appeared to be associated. By similar reasoning, there was no apparent relationship between PGE1 relative binding affinity in the luteal fractions and luteolysis in estrous cyclic cattle.  相似文献   

13.
Prostaglandin F2alpha (PGF2alpha) is a major physiological luteolysin in the cow. However, injection of PGF2alpha before day 5 (day 0 = estrus) of the estrous cycle dose not induce luteolysis. On the other hand, the early corpus luteum (CL) actively produces PGF2alpha. This indicates that luteal PGF2alpha may play a key role in the refractoriness to PGF2alpha injected during the early luteal phase when angiogenesis is active in the CL. Thus, this study aimed to investigate the possible interaction between pituitary hormones and local factors (luteal peptides) on secretion of PGF2alpha and progesterone (P) by the early bovine CL, and to evaluate the effect of growth hormone (GH) as well as its interactions on production of PGF2alpha in the developing CL. A RT-PCR analysis revealed that mRNA for GH receptor in CL was fully expressed from early in the luteal phase throughout the estrous cycle, while luteinizing hormone (LH) receptor mRNA was expressed less by the early and regressing CL than those at mid or late luteal phases (P < 0.05). For the stimulation test, an in vitro microdialysis system (MDS) was used as a model. Each bovine early CL (days 3-4) was implanted with the MDS, and maintained in an organ culture chamber. The infusion of GH, insulin-like growth factor-I (IGF-I) and oxytocin (OT) increased (P < 0.05) PGF2alpha and P release. In contrast, LH had no effect (P > 0.05) on PGF2alpha secretion and little effect on P release. Unexpectedly, there was no distinct interaction between pituitary hormones and luteal peptides on secretion of PGF2alpha and P. These results indicate that GH is a more powerful stimulator of PGF2alpha and P production in the early bovine CL than LH and suggest that GH and luteal peptides, IGF-1 and OT, contribute to maintenance of elevated PGF2alpha production in the developing bovine CL.  相似文献   

14.
15.
We hypothesize that spontaneous regression of corpora lutea (CL) involves short-lasting restructure of luteal tissue with an activation of matrix metalloproteinases (MMPs) and their respective inhibitors (tissue inhibitors of metalloproteinase, TIMPs). This was tested by determining the gene expression of MMP-1, MMP-2, and MMP-9 and respective TIMP-1 and TIMP-2 in luteal tissue from sows at the early, midluteal, and late luteal phase (Days 6-8, Days 9-11, and Days 13-15 of estrous cycle). Gene expression of the three MMPs was low in early, slightly higher in midluteal, and significantly elevated (P < 0.05) in regressing CL. An inverse pattern was found for gene expression of TIMP-1 and TIMP-2. Under culture conditions, the release of MMPs was determined from steroidogenic large luteal cells (LLC). LLC harvested from regressing CL released significantly (P < 0.05) more active MMPs than cells obtained from CL at the early luteal phase. As luteolysis can be induced by prostaglandin F(2alpha) (PGF(2alpha)) and tumor necrosis factor alpha (TNF), we studied their effects on LLC under culture conditions. Treatment of cells with PGF(2alpha) or TNF (10(-7) M or 3 x 10(-9) M, respectively) induced a significantly higher release of MMPs, and gene expression was also significantly stimulated in comparison to that in untreated LLC. The gene expression of TIMPs remained unaffected by either treatment. It is concluded that at the beginning of luteolysis, MMPs are expressed and released in high amounts and that this is essential for the structural regression of the CL.  相似文献   

16.
The present study was conducted to evaluate whether the corpus luteum (CL) of the water buffalo (Bubalus bubalis) cow undergoes luteal regression by the process of apoptosis and to examine the involvement of mitogen-activated protein (MAP) kinases during prostaglandin (PG) F(2alpha)-induced luteolysis. Sections of CL from late in the estrous cycle, i.e., during spontaneous luteolysis, stained for 4',6'-diamidino-2-phenylindole revealed increased numbers of condensed nuclei, indicating cell death by apoptosis, which was confirmed further by the occurrence of pronounced oligonucleosome formation. For morphological and biochemical characterization during PGF(2alpha)-induced apoptosis, CL were collected at 0, 4, 12, and 18 h after injection of 750 micro g of Tiaprost, a synthetic analogue of PGF(2alpha), to midestrous buffalo cows. Serum progesterone concentrations fell within 4 h and decreased (P < 0.05) maximally by 18 h. Concomitant decreases (P < 0.05) in the levels of steroidogenic acute regulatory mRNA and protein were observed in CL during 12-18 h, with the more profound effect on mRNA levels. Quantitative analysis of the genomic DNA showed a >5-fold increase (P < 0.05) in the low molecular weight DNA fragments by 18 h postinjection. Immunoblot analysis of CL tissue lysates showed increased (P < 0.05) levels of phospho-Jun N-terminal kinase (JNK) 1 (4- to 14-fold during 4-18 h) and phospho-p38 (2- to 4-fold at 18 h). Immunohistochemical evaluation of CL sections revealed an increased nuclear localization of phospho-JNK after treatment. These findings demonstrate that the CL of the buffalo cow undergoes cell death by the process of apoptosis both during spontaneous and PGF(2alpha)-induced luteolysis and that MAP kinases are involved during PGF(2alpha)-mediated apoptosis in the CL.  相似文献   

17.
It is well known that prostaglandin F(2alpha) (PGF(2alpha)) is a physiological luteolysine, and that its pulsatile release from the endometrium is a luteolytic signal in many species. There is now clear evidence that the vasoactive peptides endothelin-1 (ET-1) and angiotensin II (Ang II) interact with PGF(2alpha) in the luteolytic cascade during PGF(2alpha)-induced luteolysis in the cow. Thus, we investigated the local secretion of PGF(2alpha), ET-1, and Ang II in the corpus luteum (CL) and their real-time relationships during spontaneous luteolysis in the cow. For this purpose, an in vivo microdialysis system (MDS) implanted in the CL was utilized to observe local secretion changes within the CL microenvironment. Each CL of cyclic Holstein cows (n = 6) was surgically implanted with MDS capillary membranes (18 lines/6 cows) on Day 15 (estrus = Day 0) of the estrous cycle. The concentrations of PGF(2alpha), ET-1, Ang II, and progesterone (P) in the MDS samples were determined by enzyme immunoassays. The intraluteal PGF(2alpha) secretion slightly increased from 12 h after the onset of luteolysis (0 h) and drastically increased (by about 300%) from 24 h. Intraluteal ET-1 secretion increased from 12 h. Intraluteal Ang II secretion was elevated from 0 h and was maintained at high levels (about 180%) toward estrus. In each MDS lines (in the same microenvironment) within the regressing CL, the local releasing profiles of PGF(2alpha), ET-1, and Ang II CL positively correlated with each other (P < 0.05) at high proportions in 18 MDS lines (PGF(2alpha) vs. ET-1, 44.4%; PGF(2alpha) vs. Ang II, 55.6%; ET-1 vs. Ang II, 38.9%). In contrast, there was no clear relationship among these substances released into different MDS lines implanted in the same CL (with different microenvironments). In conclusion, we propose that the increase of PGF(2alpha), ET-1, and Ang II within the CL during luteolysis is a common phenomenon for both PGF(2alpha)-induced and spontaneous luteolysis. Moreover, this study illustrated the in vivo relationships in intraluteal release among PGF(2alpha), ET-1, and Ang II during spontaneous luteolysis in the cow. The data suggest that these vasoactive substances may interact with each other in a local positive feedback manner to activate their secretion in the regressing CL, thus accelerating and completing luteolysis.  相似文献   

18.
The possible mediatory role of endothelin-1 (ET-1) in prostaglandin F(2alpha) (PGF(2alpha))-induced luteolysis in the rat was examined. The effect of PGF(2alpha) was tested on day 9 of pregnancy either in vivo, by injecting cloprostenol, an analog of PGF(2alpha) or in vitro, in isolated intact corpora lutea incubated with PGF(2alpha). Luteolysis was confirmed by progesterone determination in the peripheral blood serum or in the culture medium, respectively. Administration of cloprostenol (.0025 mg/rat) induced within 1 hr, a significant fall (from 56.8 to 27.6 ng/ml, P < 0.0001) in serum progesterone concentrations that was associated with an increased expression of the mRNA to ET-1 and its protein product in rat luteal tissue. Elevated level of ET-1 were also determined at the spontaneous regression of the CL, upon parturition. Expression of the ET receptors, ETA and ETB was not affected by cloprostenol. On the other hand, this PGF(2alpha) analog induced expression of luteal VEGF mRNA. In vitro experiments demonstrate that the LH (100 ng/ml)-induced increase in luteal progesterone secretion was reduced by PGF(2alpha) (1 microg/ml). The inhibitory effect of PGF(2alpha) was reversed by BQ123 (10(- 7) M), that is a selective ETA receptor antagonist. We conclude that the PGF(2alpha)-induced elevation in luteal expression of ET-1 combined with the reversal of its luteolytic effect by an ETA receptor antagonist suggest that ET-1 may take part in the PGF(2alpha)-induced luteolysis in the rat.  相似文献   

19.
20.
To determine whether prostaglandin (PG) F(2alpha) had a dose-dependent effect upon secretion of progesterone, oligonucleosome formation, or loss of luteal weight, ewes on Day 9 or 10 of the estrous cycle were administered 0, 3, 10, or 30 mg PGF(2alpha) per 60 kg BW (i.v.), and luteal tissue was collected 9 and 24 h after injection. All doses of PGF(2alpha) decreased (P < 0. 05) concentrations of progesterone in sera by 9 h; however, in ewes treated with 3 mg PGF(2alpha), concentrations of progesterone were similar to control values at 24 h and higher (P < 0.05) than those in the 10- or 30-mg groups. Concentrations of progesterone in sera over all dose levels were highly correlated to luteal concentrations of mRNA encoding steroidogenic acute regulatory protein (P < 0.001), cytochrome P450 side-chain cleavage (P < 0.02), and 3beta-hydroxysteroid dehydrogenase (P < 0.01). Corpora lutea collected at 24 h from ewes treated with the 10- and 30-mg doses of PGF(2alpha) weighed less (P < 0.05) than those from controls. Oligonucleosomes were not present in luteal tissues from control ewes. Surprisingly, all doses of PGF(2alpha)-induced oligonucleosomes in a majority of animals at 9 h and in a majority of ewes treated with 10 and 30 mg of PGF(2alpha) at 24 h. In conclusion, 3 mg of PGF(2alpha) per 60 kg BW transiently decreased serum concentrations of progesterone and induced oligonucleosome formation, but did not result in reduced luteal weight. The 10- and 30-mg doses of PGF(2alpha) decreased secretion of progesterone and induced oligonucleosome formation and luteolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号