首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The fatty acid composition of serum phospholipids (PL) and cholesteryl esters (CE) in 26 healthy pregnant women at the end of term and 1 and 3 days after delivery was analysed in order to determine whether the maternal serum fatty acid composition changes in the early puerperium. The composition of the saturated fatty acids significantly changes in the PL fraction: 16:0 decreased and 18:0 increased. Both 20:4n-6 and 20:5 n-3 significantly increased after parturition in serum PL while 22:6n-3 remained constant at the three sampling time points. The sum of HUFA was slightly higher 3 days postpartum compared to the prepartum data. The essential fatty acid index significantly increased after delivery. In the CE fraction too differences occurred during puerperium: 18:2n-6 and 20:4n-6 increased and 18:1n-9 decreased after parturition. The sum of the n-3 fatty acids in CE remained unaltered. The EFA index significantly improved both in PL as in CE after delivery.In conclusion, the previously reported changes in the fatty acid composition of PL and CE during normal pregnancy diminish shortly after delivery. In fact, very soon after delivery the maternal fatty acid composition returns to more normal values.  相似文献   

2.
The biochemical essential fatty acid (EFA) status of neonates born after normal and hypertensive pregnancies (PIH) and that of their mothers was assessed by measuring the fatty acid composition of phospholipids (PL), triglycerides (TG) and cholesterol esters (CE) of umbilical cord serum and maternal serum, respectively. Relative contents of linoleic acid of serum PL and CE were significantly lower in mothers with PIH compared to normal pregnancies. Most other (n-6) polyenes in PL tended to be higher under hypertensive conditions. Total maternal (n-3) polyenes of serum PL were significantly higher in PIH, mainly due to clupanodonic acid, 22:5 (n-3), and cervonic acid, 22:6 (n-3). Total maternal (n-7) and (n-9) fatty acids were also significantly higher in PIH (PL and CE). The results indicate that PIH is associated with a relative increased unsaturation of maternal serum PL, which might facilitate the placental transfer of long-chain, polyunsaturated fatty acids. As a result, the neonatal EFA status after PIH only slightly differs from normal.  相似文献   

3.
Maternal and umbilical fatty acid status in relation to maternal diet   总被引:1,自引:0,他引:1  
The aim of this study was to describe the dietary fat intake during pregnancy and to study the relationship between the intake of polyunsaturated fatty acids (PUFAs) and the fatty acid composition of maternal and umbilical plasma phospholipids (PLs) and cholesterol esters (CEs) at delivery. In addition, the contribution of food groups to the intake of total fat and fatty acids in the diet was quantified.Maternal and umbilical blood samples were collected at delivery from 30 healthy pregnant women. The women completed a food frequency questionnaire during the first and third trimesters. The total fat intake during pregnancy is 85 (SD 24) g/day. The mean intake of saturated fatty acids (SFAs) is 33.4 g/day, of monounsaturated fatty acids (MUFAs) 28.6 g/day and of PUFA 15.2 g/day. Major sources of fat, MUFA and PUFA are fats, oils and sauces. Major sources of SFA are meat and poultry followed by cheese and eggs. Meat and poultry contribute the most to the intake of 20:4n-6 whereas fish is the major source of 20:5n-3 (EPA) and 22:6n-3 (docosahexaenoic acid (DHA)) in the diet. Linoleic acid, EPA and DHA (w%) in PL of maternal plasma are positively related to the intake of these fatty acids during pregnancy. No association is found between the maternal intake of the two parent essential fatty acids (18:2n-6 and 18:3n-3) and their fraction in umbilical PL or CE. EPA and the sum of n-6 fatty acids (w%) in umbilical plasma PL are positively correlated with the dietary intake of these fatty acids.  相似文献   

4.
The phospholipids, particularly phosphatidylethanolamine, of brain gray matter are enriched with docosahexaenoic acid (22:6n-3). The importance of uptake of preformed 22:6n-3 from plasma compared with synthesis from the alpha-linolenic acid (18:3n-3) precursor in brain is not known. Deficiency of 18:3n-3 results in a compensatory increase in the n-6 docosapentaenoic acid (22:5n-6) in brain, which could be formed from the precursor linoleic acid (18:2n-6) in liver or brain. We studied n-3 and n-6 fatty acid incorporation in brain astrocytes cultured in chemically defined medium using delipidated serum supplemented with specific fatty acids. High performance liquid chromatography with evaporative light scattering detection and gas liquid chromatography were used to separate and quantify cell and media lipids and fatty acids. Although astrocytes are able to form 22:6n-3, incubation with 18:3n-3 or eicosapentaenoic acid (20:5n-3) resulted in a time and concentration dependent accumulation of 22:5n-3 and decrease in 22:6n-3 g/g cell fatty acids. Astrocytes cultured with 18:2n-6 failed to accumulate 22:5n-6. Astrocytes secreted cholesterol esters (CE) and phosphatidylethanolamine containing saturated and monounsaturated fatty acids, and arachidonic acid (20:4n-6) and 22:6n-3. These studies suggest conversion of 22:5n-3 limits 22:6n-3 synthesis, and show astrocytes release fatty acids in CE.  相似文献   

5.
This study examines the transfer of lipids from the yolk to the embryo of the king penguin, a seabird with a high dietary intake of n-3 fatty acids. The concentrations of total lipid, triacylglycerol (TAG), and phospholipid (PL) in the yolk decreased by ~80% between days 33 and 55 of development, indicating intensive lipid transfer, whereas the concentration of cholesteryl ester (CE) increased threefold, possibly due to recycling. Total lipid concentration in plasma and liver of the embryo increased by twofold from day 40 to hatching due to the accumulation of CE. Yolk lipids contained high amounts of C(20-22) n-3 fatty acids with 22:6(n-3) forming 4 and 10% of the fatty acid mass in TAG and PL, respectively. Both TAG and PL of plasma and liver contained high proportions of 22:6(n-3) ( approximately 15% in plasma and >20% in liver at day 33); liver PL also contained a high proportion of 20:4(n-6) (14%). Thus both 22:6(n-3) and 20:4(n-6), which are, respectively, abundant and deficient in the yolk, undergo biomagnification during transfer to the embryo.  相似文献   

6.
Short-term weight-reducing regimens were shown to influence fatty acid composition of serum lipids unfavorably. Adding long chain n-3 polyunsaturated fatty acids (n-3 LC PUFA) to a low-calorie diet (LCD) could avoid these changes. The aim of this study was to examine the effect of a short-term in-patient weight-reducing regimen including LCD with yogurt enriched by low doses of n-3 PUFA (n-3 LCD). The enriched yogurt contained 790 mg of fish oil, predominantly eicosapentaenoic (20:5n-3; EPA) and docosahexaenoic (22:6n-3; DHA). Forty obese women were randomly assigned to the group consuming LCD and joghurt either with or without n-3 enrichment. Following the 3-week diet in the n-3 LCD group a significantly higher increase in the proportion of n-3 LC PUFA (sum of n-3 FA, EPA and DHA) in serum lipids was confirmed. In phospholipids (PL) a significant difference in the sum of n-6 fatty acids was found, a decrease in the n-3 LCD group and an increase in LCD group. Significantly higher increase in the PL palmitate (16:0) was shown in the LCD group. The results suggest that low doses of n-3 fatty acid enrichment can help to avoid unfavorable changes in fatty acid composition in serum lipids after a short-term weight-reducing regimen.  相似文献   

7.
Weanling female rats raised on a fat-free diet for 8 weeks were then given the same diet supplemented with 0, 0.25, 0.5, or 1% by weight of cholesterol in addition to 10% of safflower oil for 3 days. Fatty acid compositions of cholesteryl esters (CE), triglycerides (TG), and phospholipids (PL) in liver and plasma were examined. Cholesterol feeding increased plasma and liver cholesterol contents and also affected the patterns of n-6 polyunsaturated fatty acids. There were no consistent changes in either plasma and liver TG which contained little 20:3n-6 and 20:4n-6. The levels of 20:3n-6 increased in plasma and liver PL, while proportions of 20:4n-6 decreased in liver and plasma CE. However, the absolute amount of 20:4n-6 in cholesteryl esters increased because of a threefold rise in cholesteryl ester levels. The changes might be attributable to an increased utilization of 20:4n-6 for cholesterol transport and/or an inhibition of delta 5-desaturation of n-6 fatty acids by cholesterol feeding.  相似文献   

8.
Observational studies suggest an association between a low docosahexaenoic acid (DHA, 22:6n-3) status after pregnancy and the occurrence of postpartum depression. However, a comparison of the actual biochemical plasma DHA status among women with and without postpartum depression has not been reported yet. The contents of DHA and of its status indicator n-6 docosapentaenoic acid (n-6DPA, 22:5n-6) were measured in the plasma phospholipids of 112 women at delivery and 32 weeks postpartum. At this latter time point, the Edinburgh Postnatal Depression Scale (EPDS) questionnaire was completed to measure postpartum depression retrospectively. The EPDS cutoff score of 10 was used to define 'possibly depressed' (EPDS score > or =10) and non-depressed women (EPDS score <10). Odds ratios (OR) were calculated using a multiple logistic regression analysis with the EPDS cutoff score as dependent and fatty acid concentrations and ratio's as explanatory variables, while controlling for different covariables. The results demonstrated that the postpartum increase of the functional DHA status, expressed as the ratio DHA/n-6DPA, was significantly lower in the 'possibly depressed' group compared to the non-depressed group (2.34+/-5.56 versus 4.86+/-5.41, respectively; OR=0.88, P=0.03). Lactating women were not more predisposed than non-lactating women were to develop depressive symptoms. From this observation it seems that the availability of DHA in the postpartum period is less in women developing depressive symptoms. Although further studies are needed for confirmation, increasing the dietary DHA intake during pregnancy and postpartum, seems prudent.  相似文献   

9.
Primary culture is a suitable system to study lipid metabolism and polyunsaturated fatty acid biosynthesis. Sertoli cell-enriched preparations were used to determine the fatty acid composition after 5 and 7 days in culture (serum free) as well as the uptake and metabolism of [1-14C]eicosa-8,11,14-trienoic acid. The addition of unlabeled linoleic acid (0.2 and 2.0 microg/ml) was also evaluated. Fatty acid methyl esters derived from cellular lipids were analyzed by gas liquid chromatography and radiochromatography. After 5 days in culture, cells had significantly less 18:2, 20:4, 22:5 and 24:5 and more 18:3, 20:3, 22:4 and 24:4 n-6 fatty acids than non-cultured cells. On day 7, an additional increment in 22:4 n-6 and a decrease in linoleic, gamma-linoleic and 24:4 n-6 fatty acids were observed. The presence of linoleic acid (low dose) produced a significant decrease in saturated and monounsaturated acids and an increase in 18:2, 20:4 and 22:5 n-6 fatty acids. At a high concentration almost all fatty acids belonging to 18:2 n-6 increased significantly. The drop in 20:4 n-6/20:3 n-6 ratio was considered as an indirect evidence of a Delta 5 desaturase activity depression. This assumption was corroborated by studying the transformation of [1-14C]eicosa-8,11,14-trienoic acid into 20:4, 22:4, 22:5, 24:4 and 24:5 n-6 fatty acids. We conclude that Sertoli cells after 7 days in culture evidenced changes in the fatty acid profile similar to those described under fat deprivation. The addition of linoleic acid reverted this pattern and indicated that the Delta 5 desaturase activity is a limiting step in the polyunsaturated fatty acid biosynthesis.  相似文献   

10.
Lipid classes and their fatty acids were studied in the major lipoprotein fractions from canine, in comparison with human, plasma. In dogs, high-density-lipoprotein (HDL), the main carrier of plasma phospholipid (PL), cholesterol ester (CE) and free cholesterol, was the most abundant lipoprotein, followed by low and very-low density lipoproteins (LDL and VLDL). Notably, LDL and VLDL contributed similarly to the total dog plasma triacylglycerol (TG). The PL composition was similar in all three lipoproteins, dominated by phosphatidylcholine (PC). Even though the content and composition of lipids within and among lipoproteins differed markedly between dog and man, the total amount of circulating lipid was similar. All canine lipoproteins were relatively richer than those from humans in long-chain (C20-C22) n-6 and n-3 polyunsaturated fatty acids (PUFA) but had comparable proportions of total saturated and monoenoic fatty acids, with 18:2n-6 being the main PUFA in both mammals. The fatty acid profile of canine and human lipoproteins differed because they had distinct proportions of their major lipids. There were more n-3 and n-6 long-chain PUFA in canine than in human plasma, because dogs had more HDL, their HDL had more PC and CE, and both these lipids were richer in such PUFA.  相似文献   

11.
The effect of dietary fatty acids on uterine fatty acid composition was studied in rats fed control diet or semi-synthetic diet supplemented with 1.5 microliter/g/day evening primrose oil (EPO) or fish oil (FO). Diet-related changes in uterine lipid were detected within 21 days. Changes of 2- to 20-fold were detected in the uterine n-6 and n-3 essential fatty acids (EFA) and in certain saturated and monounsaturated fatty acids. The FO diet was associated with higher uterine C20 and C22 n-3, and the EPO diet, with higher uterine n-6 fatty acid. High uterine C18:2 n-6 was detected in neutral lipid (NL) of rats fed high concentrations of this fatty acid, but there was little evidence of selective incorporation or retention of C18:2 n-6 by uterine NL. The incorporation of EFA into uterine phospholipids (PL) was greater than NL EFA incorporation, and uterine PL n-3/n-6 ratios showed greater diet dependence. Tissue/diet fatty acid ratios in NL and PL also indicated preferential incorporation/synthesis of C16:1 n-9, and C16:0, and there was greater incorporation of C12:0 and C14:0 into uteri of rats fed EPO and FO. Replacement of 50-60% of arachidonate with n-3 EFA in uterine PL may inhibit n-6 EFA metabolism necessary for uterine function at parturition.  相似文献   

12.
Alpha-linolenic acid (18:3n-3) is essential in the human diet, probably because it is the substrate for the synthesis of longer-chain, more unsaturated n-3 fatty acids eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3) which are required for tissue function. This article reviews the recent literature on 18:3n-3 metabolism in humans, including fatty acid beta-oxidation, recycling of carbon by fatty acid synthesis de novo and conversion to longer-chain polyunsaturated fatty acids (PUFA). In men, stable isotope tracer studies and studies in which volunteers increased their consumption of 18:3n-3 show conversion to 20:5n-3 and 22:5n-3, but limited conversion to 22:6n-3. However, conversion to 18:3n-3 to 20:5n-3 and 22:6n-3 is greater in women compared to men, due possibly to a regulatory effect of oestrogen, while partitioning of 18:3n-3 towards beta-oxidation and carbon recycling was lower than in men. These gender differences may be an important consideration in making dietary recommendations for n-3 PUFA intake.  相似文献   

13.
The composition of fatty acids in human milk lipids was determined in 41 women on the 3rd, 4th, 5th and 6th days after labour by the method of gas chromatography. In these investigations no significant differences were demonstrated in the fatty acids in the lipid fractions between these consecutive days. The level of polyunsaturated fatty acids of the n-6 and n-3 groups was about 11.9-13.6%, including linoleic acid (18:2, n-6) about 7.7-9.8%, and alpha-linolenic acid (18:3, n-3) about 0.7-1%. In the analysis group of n-6 fatty acids the determined acids were: linoleic acid (18:2, n-6), gamma-linolenic acid (18:3, n-6), eicosadienoic acid (20:2, n-6), eicosatrienoic acid (20:3, n-6), arachidonic acid (20:4, n-6), docosahexaenoic acid (22:6, n-6). From the group of n-3 acids the identified ones were: alpha-linolenic acid (18:3, n-3), eicosapentaenoic acid (20:5, n-3), docosapentaenoic acid (22:5, n-3) and docosahexaenoic acid (22:6, n-3). The obtained quotients of fatty acids n-6 through n-3 on the consecutive days were: 7.2:1-7.8:1, indicating a too low level of the n-3 acids in the investigated milk. The acids prevailing in human milk lipids were: oleic (18:1, n-9) and palmitic (16:0) which accounted for 37-39% and 25-26% respectively. The polyunsaturated to saturated fatty acid ratio (P:S) ranged from 0.28 to 0.33.  相似文献   

14.
Previous studies have reported that polyunsaturated fatty acids (PUFAs) of nutritional interest may influence arachidonic acid (20:4n-6) metabolism in both platelets and endothelium, when tested separately. In the present study, platelets (PL) and cultured endothelial cells (EC) were first pre-enriched with eight different PUFAs for a two hour incubation in the presence of free fatty acid albumin pre-coated with each acid. EC, PL or both cell populations in combination, were then stimulated by thrombin (0.1 U/ml) for five minutes. Prostanoids were extracted, purified by thin-layer chromatography, and TxB2, 6-keto-PGF1 alpha and PGE2 were quantitated by radioimmunoassays. Prostanoids or dihomoprostanoids formed from cyclooxygenase substrates other than 20:4n-6 were measured by gas chromatography-negative chemical ionisation mass-spectrometry (GC-MS). When co-incubated with EC, PL produced less TxB2 (-15 and -85% in the absence and presence of thrombin, respectively). In contrast, 6-keto-PGF1 alpha increased by 189 (basal conditions) and 358% (thrombin stimulation) when PL were added to EC, in agreement with PGH2 transfers from PL to EC. PGE2, produced by both cell populations, reached amounts which roughly represent the sum of those measured in PL and EC alone, except when cells were pre-enriched with linoleic (18:2n-6) and the n-3 family fatty acids (18:3-, 20:5- and 22:6n-3). 6-keto-PGF1 alpha was markedly inhibited by adrenic acid (22:4n-6), while this acid was converted into dihomo-6-keto-PGF1 alpha, the stable metabolite of dihomoprostacyclin. 22:4n-6 also inhibited TxB2 formation and was converted into dihomo-TxA2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Accumulating evidence finds a relative deficiency of peripheral membrane fatty acids in persons with affective disorders such as unipolar and bipolar depression. Here we sought to investigate whether postmortem brain fatty acids within the anterior cingulate cortex (BA-24) varied according to the presence of major depression at the time of death. Using capillary gas chromatography we measured fatty acids in a depressed group (n=12), and in a control group without lifetime history of psychiatric diagnosis (n=14). Compared to the control group, the depressed group showed significantly lower concentrations of numerous saturated and polyunsaturated fatty acids including both the n-3 and n-6 fatty acids. Additionally, significant correlations between age at death and precursor (or metabolites) in the n-3 fatty acid pathway were demonstrated in the depressed group but not in control subjects. In the n-6 fatty acid family, the ratio of 20:3(n-6)/18:2(n-6) was higher in patients than in control groups, whereas the ratio of 20:4(n-6)/20:3(n-6) was relatively decreased in patients. Lastly, a significant negative correlation between age and the ratio of 20:4(n-6) to 22:6(n-3) was found in patients, but not in controls. Taken together, decreases in 22:6(n-3) may be caused, at least in part, by the diminished formation of 20:5(n-3), which is derived from 20:4(n-3) through a Δ5 desaturase reaction. The present findings from postmortem brain tissue raise the possibility that an increased ratio of 20:4(n-6) to 22:6(n-3) may provide us with a biomarker for depression. Future research should further investigate these relationships.  相似文献   

16.

Background

Essential fatty acid status as well as docosahexaenoic acid (DHA, 22:6n-3) declines during pregnancy and lactation. As a result, the DHA status may not be optimal for child development and may increase the risk for maternal postpartum depression. The objective of this study was to assess changes in the maternal fatty acid status from pregnancy to 12 months postpartum, and to study the impact of seafood consumption on the individual fatty acid status.

Methods

Blood samples and seafood consumption habits (gestation week 28, and three-, six- and 12 months postpartum) were collected in a longitudinal observational study of pregnant and postpartum women (n = 118). Multilevel linear modeling was used to assess both changes over time in the fatty acid status of red blood cells (RBC), and in the seafood consumption.

Results

Six fatty acids varied the most (>80%) across the four time points analyzed, including the derivative of the essential α-linoleic acid (ALA, 18:3n-3), DHA; the essential linoleic acid (LA, 18:2 n-6); and the LA derivative, arachidonic acid (AA, 20:4n-6). Over all, a large variation in individuals’ DHA- and AA status was observed; however, over the 15-month study period only small inter-individual differences in the longitudinal trajectory of DHA- and AA abundance in the RBC were detected. The median intake of seafood was lower than recommended. Regardless, the total weekly frequency of seafood and eicosapentaenoic acid (EPA, 20:5n-3)/DHA-supplement intake predicted the maternal level of DHA (μg/g RBC).

Conclusion

The period of depletion of the maternal DHA status during pregnancy and lactation, seem to turn to repletion from about six months postpartum towards one year after childbirth, irrespective of RBC concentration of DHA during pregnancy. Seafood and EPA/DHA-supplement intake predicted the DHA levels over time.

Trial Registration

www.helseforskning.etikkom.no 2009/570/REC, project number: 083.09  相似文献   

17.
Women with gestational diabetes mellitus (GDM) and their neonates have lower levels of arachidonic (AA) and docosahexaenoic (DHA) acids in red cell membranes. It is not clear if this abnormality is restricted to red cells or is a generalised problem. We have investigated plasma fatty acids of neonates (venous cord) of GDM (n=37), and non-diabetic (n=31) women. The GDMs had lower levels of dihomogamma-linolenic (20:3n-6, DHGLA) acid, summation operator n-6 metabolites, DHA and summation operator n-3 metabolites (p<0.05) in choline phosphoglycerides (CPG). They also had lower levels of AA (-4.5%), adrenic acid (22:4n-6, -13%), osbond acid (22:5n-6, -7%) and summation operator n-6 (-2.5%). There was a similar pattern in triglycerides (TG) and cholesterol esters (CE). Mead acid, a marker of generalised shortage of derived and parent essential fatty acids, was higher in CPG and TG of the GDM group by 73% and 76%. The adrenic/osbond acid (22:4n-6/22:5n-6) ratio, a biochemical marker of DHA insufficiency, was reduced in CPG (-4.5%), TG (-63%) and CE (-75%) of the GDM group. These findings, which are consistent with the previous red cell data, suggest that the neuro-visual and vascular development and function of the offspring of GDM women may be adversely affected if the levels of AA and DHA are compromised further by other factors, pre- or post-natally. Studies are required to elucidate the underlying mechanism for the reduction of the two fatty acids and to evaluate the developmental and health implications.  相似文献   

18.
Several studies have suggested that lipoprotein metabolism can be affected by lipoprotein phospholipid composition. We investigated the effect of virgin olive oil (VOO) and high-oleic sunflower oil (HOSO) intake on the distribution of fatty acids in triacylglycerols (TG), cholesteryl esters (CE) and phospholipid (PL) classes of triacylglycerol-rich lipoproteins (TRL) from normolipidemic males throughout a 7 h postprandial metabolism. Particularly, changes in oleic acid (18:1n-9) concentration of PL were used as a marker of in vivo hydrolysis of TRL external monolayer. Both oils equally promoted the incorporation of oleic acid into the TG and CE of postprandial TRL. However, PL was enriched in oleic acid (18:1n-9) and n-3 polyunsaturated fatty acids (PUFA) after VOO meal, whereas in stearic (18:0) and linoleic (18:2n-6) acids after HOSO meal. We also found that VOO produced TRL which PL 18:1n-9 content was dramatically reduced along the postprandial period. We conclude that the fatty acid composition of PL can be a crucial determinant for the clearance of TRL during the postprandial metabolism of fats.  相似文献   

19.
The purpose of the present study was to investigate the relation between adipose tissue polyunsaturated fatty acids, an index of long-term or habitual fatty acid dietary intake and depression. The sample consisted of 90 adolescents from the island of Crete. There were 54 girls and 36 boys, aged 13-18. The mean age was 15.2 years. Subjects were examined by the Preventive Medicine and Nutrition Clinic of the University of Crete. Depression was assessed through the use of the Beck Depression Inventory (BDI) and the Center for Epidemiologic Studies Depression Scale (CES-D). Unlike other studies, there were no significant relations between adipose tissue n-3 or n-6 polyunsaturated fatty acids and depression. BDI correlated positively with adipose tissue C20:3n-6/C18:3n-6 ratio, while CES-D correlated positively with adipose tissue (C20:3n-6+C22:5n-3)/(C18:3n-6+C20:5n-3) ratio. Depressed subjects (BDI>16, CES-D>16) had significantly elevated adipose tissue C20:3n-6/C18:3n-6 and (C20:3n-6+C22:5n-3)/(C18:3n-6+C20:5n-3) ratios, than non-depressed subjects. The observed positive relation between depression and the particular fatty acid ratios, in the present study, appears to indicate increasing activity of elongases, the enzymes responsible for elongating polyunsaturated fatty acids into their longer-chain derivatives, with increasing depression. This is the first literature report of a possible relation between elongases and depression. The observed relation may stem from a possible over-expression of the HELO1 (ELOVL5) gene, the gene encoding a protein responsible for elongating long-chain polyunsaturated fatty acids, in the adipose tissue of depressed adolescents.  相似文献   

20.
The last period of the intrauterine life in the rat (embryonic day 17 to 21, ED17-ED21) is demarcated by an increase in brain and body weight and active neuronogenesis. During this period, a rapid accumulation of DHA (22:6 n-3), unparalleled to other fatty acids, takes place. The details of DHA rapid acquisition in the fetal brain were investigated after imposing a diet deficient in n-3 fatty acids (FA) as of ED1 and subsequently examining the distribution of DHA in major brain phospholipid (PL) classes on ED20, having added on ED15 a triglyceride (TG) mixture enriched up to 43% with DHA. The n-3 deficiency maintained for 19 days resulted at ED20 in more than 30% reduction of DHA in PL, which was counterbalanced by an increase of docosapentaenoic acid (DPA, 22:5 n-6). No effect on body weight, nor major changes in PL composition or other FA in fetal brain PL were observed. Feeding dams a DHA-TG diet on ED15 induced an immediate increase of DHA in maternal liver PL, followed by a subsequent increase of DHA in fetal liver PL, as well as in fetal brain PL.Thus the content of fetal brain DHA in n-3 deficient embryos could be restored within 48 hours. Dietary manipulation of fetal tissues is a rapid phenomenon and can be used to enrich DHA at critical periods of development in utero.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号