首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stimulus expectation can modulate neural responses in early sensory cortical regions, with expected stimuli often leading to a reduced neural response. However, it is unclear whether this expectation suppression is an automatic phenomenon or is instead dependent on the type of task a subject is engaged in. To investigate this, human subjects were presented with visual grating stimuli in the periphery that were either predictable or non-predictable while they performed three tasks that differently engaged cognitive resources. In two of the tasks, the predictable stimulus was task-irrelevant and spatial attention was engaged at fixation, with a high load on either perceptual or working memory resources. In the third task, the predictable stimulus was task-relevant, and therefore spatially attended. We observed that expectation suppression is dependent on the cognitive resources engaged by a subjects’ current task. When the grating was task-irrelevant, expectation suppression for predictable items was visible in retinotopically specific areas of early visual cortex (V1-V3) during the perceptual task, but it was abolished when working memory was loaded. When the grating was task-relevant and spatially attended, there was no significant effect of expectation in early visual cortex. These results suggest that expectation suppression is not an automatic phenomenon, but dependent on attentional state and type of available cognitive resources.  相似文献   

2.
Over successive stages, the ventral visual system of the primate brain develops neurons that respond selectively to particular objects or faces with translation, size and view invariance. The powerful neural representations found in Inferotemporal cortex form a remarkably rapid and robust basis for object recognition which belies the difficulties faced by the system when learning in natural visual environments. A central issue in understanding the process of biological object recognition is how these neurons learn to form separate representations of objects from complex visual scenes composed of multiple objects. We show how a one-layer competitive network comprised of ‘spiking’ neurons is able to learn separate transformation-invariant representations (exemplified by one-dimensional translations) of visual objects that are always seen together moving in lock-step, but separated in space. This is achieved by combining ‘Mexican hat’ functional lateral connectivity with cell firing-rate adaptation to temporally segment input representations of competing stimuli through anti-phase oscillations (perceptual cycles). These spiking dynamics are quickly and reliably generated, enabling selective modification of the feed-forward connections to neurons in the next layer through Spike-Time-Dependent Plasticity (STDP), resulting in separate translation-invariant representations of each stimulus. Variations in key properties of the model are investigated with respect to the network’s ability to develop appropriate input representations and subsequently output representations through STDP. Contrary to earlier rate-coded models of this learning process, this work shows how spiking neural networks may learn about more than one stimulus together without suffering from the ‘superposition catastrophe’. We take these results to suggest that spiking dynamics are key to understanding biological visual object recognition.  相似文献   

3.
Continuous flash suppression (CFS) has been used as a paradigm to probe the extent to which word stimuli are processed in the absence of awareness. In the two experiments reported here, no evidence is obtained that word stimuli are processed up to the semantic level when suppressed through CFS. In Experiment 1, word stimuli did not break suppression faster than their pseudo-word variants nor was suppression time modulated by word frequency. Experiment 2 replicated these findings, but more critically showed that differential effects can be obtained with this paradigm using a simpler stimulus. In addition, pixel density of the stimuli did prove to be related to suppression time in both experiments, indicating that the paradigm is sensitive to differences in detectability. A third and final experiment replicated the well-known face inversion effect using the same set-up as Experiments 1 and 2, thereby demonstrating that the employed methodology can capture more high-level effects as well. These results are discussed in the context of previous evidence on unconscious semantic processing and two potential explanations are advanced. Specifically, it is argued that CFS might act at a level too low in the visual system for high-level effects to be observed or that the widely used breaking CFS paradigm is merely ill-suited to capture effects in the context of words.  相似文献   

4.
Mindfulness, an attentive non-judgmental focus on “here and now” experiences, has been incorporated into various cognitive behavioral therapy approaches and beneficial effects have been demonstrated. Recently, mindfulness has also been identified as a potentially effective emotion regulation strategy. On the other hand, emotion suppression, which refers to trying to avoid or escape from experiencing and being aware of one’s own emotions, has been identified as a potentially maladaptive strategy. Previous studies suggest that both strategies can decrease affective responses to emotional stimuli. They would, however, be expected to provide regulation through different top-down modulation systems. The present study was aimed at elucidating the different neural systems underlying emotion regulation via mindfulness and emotion suppression approaches. Twenty-one healthy participants used the two types of strategy in response to emotional visual stimuli while functional magnetic resonance imaging was conducted. Both strategies attenuated amygdala responses to emotional triggers, but the pathways to regulation differed across the two. A mindful approach appears to regulate amygdala functioning via functional connectivity from the medial prefrontal cortex, while suppression uses connectivity with other regions, including the dorsolateral prefrontal cortex. Thus, the two types of emotion regulation recruit different top-down modulation processes localized at prefrontal areas. These different pathways are discussed.  相似文献   

5.
Research on the scope and limits of non-conscious vision can advance our understanding of the functional and neural underpinnings of visual awareness. Here we investigated whether distributed local features can be bound, outside of awareness, into coherent patterns. We used continuous flash suppression (CFS) to create interocular suppression, and thus lack of awareness, for a moving dot stimulus that varied in terms of coherence with an overall pattern (radial flow). Our results demonstrate that for radial motion, coherence favors the detection of patterns of moving dots even under interocular suppression. Coherence caused dots to break through the masks more often: this indicates that the visual system was able to integrate low-level motion signals into a coherent pattern outside of visual awareness. In contrast, in an experiment using meaningful or scrambled biological motion we did not observe any increase in the sensitivity of detection for meaningful patterns. Overall, our results are in agreement with previous studies on face processing and with the hypothesis that certain features are spatiotemporally bound into coherent patterns even outside of attention or awareness.  相似文献   

6.
Although psychological and computational models of time estimation have postulated the existence of neural representations tuned for specific durations, empirical evidence of this notion has been lacking. Here, using a functional magnetic resonance imaging (fMRI) adaptation paradigm, we show that the inferior parietal lobule (IPL) (corresponding to the supramarginal gyrus) exhibited reduction in neural activity due to adaptation when a visual stimulus of the same duration was repeatedly presented. Adaptation was strongest when stimuli of identical durations were repeated, and it gradually decreased as the difference between the reference and test durations increased. This tuning property generalized across a broad range of durations, indicating the presence of general time-representation mechanisms in the IPL. Furthermore, adaptation was observed irrespective of the subject’s attention to time. Repetition of a nontemporal aspect of the stimulus (i.e., shape) did not produce neural adaptation in the IPL. These results provide neural evidence for duration-tuned representations in the human brain.  相似文献   

7.
Reaching movements towards an object are continuously guided by visual information about the target and the arm. Such guidance increases precision and allows one to adjust the movement if the target unexpectedly moves. On-going arm movements are also influenced by motion in the surrounding. Fast responses to motion in the surrounding could help cope with moving obstacles and with the consequences of changes in one’s eye orientation and vantage point. To further evaluate how motion in the surrounding influences interceptive movements we asked subjects to tap a moving target when it reached a second, static target. We varied the direction and location of motion in the surrounding, as well as details of the stimuli that are known to influence eye movements. Subjects were most sensitive to motion in the background when such motion was near the targets. Whether or not the eyes were moving, and the direction of the background motion in relation to the direction in which the eyes were moving, had very little influence on the response to the background motion. We conclude that the responses to background motion are driven by motion near the target rather than by a global analysis of the optic flow and its relation with other information about self-motion.  相似文献   

8.
This study aimed to determine why face identity aftereffects are diminished in children with autism, relative to typical children. To address the possibility that reduced face aftereffects might reflect reduced attention to adapting stimuli, we investigated the consequence of controlling attention to adapting faces during a face identity aftereffect task in children with autism and typical children. We also included a size-change between adaptation and test stimuli to determine whether the reduced aftereffects reflect atypical adaptation to low- or higher-level stimulus properties. Results indicated that when attention was controlled and directed towards adapting stimuli, face identity aftereffects in children with autism were significantly reduced relative to typical children. This finding challenges the notion that atypicalities in the quality and/or quantity of children’s attention during adaptation might account for group differences previously observed in this paradigm. Additionally, evidence of diminished face identity aftereffects despite a stimulus size change supports an adaptive processing atypicality in autism that extends beyond low-level, retinotopically coded stimulus properties. These findings support the notion that diminished face aftereffects in autism reflect atypicalities in adaptive norm-based coding, which could also contribute to face processing difficulties in this group.  相似文献   

9.
Freeman TC  Durand S  Kiper DC  Carandini M 《Neuron》2002,35(4):759-771
Neurons in primary visual cortex (V1) are thought to receive inhibition from other V1 neurons selective for a variety of orientations. Evidence for this inhibition is commonly found in cross-orientation suppression: responses of a V1 neuron to optimally oriented bars are suppressed by superimposed mask bars of different orientation. We show, however, that suppression is unlikely to result from intracortical inhibition. First, suppression can be obtained with masks drifting too rapidly to elicit much of a response in cortex. Second, suppression is immune to hyperpolarization (through visual adaptation) of cortical neurons responding to the mask. Signals mediating suppression might originate in thalamus, rather than in cortex. Thalamic neurons exhibit some suppression; additional suppression might arise from depression at thalamocortical synapses. The mechanisms of suppression are subcortical and possibly include the very first synapse into cortex.  相似文献   

10.
Stein T  Peelen MV  Sterzer P 《PloS one》2011,6(12):e29361
From the first days of life, humans preferentially orient towards upright faces, likely reflecting innate subcortical mechanisms. Here, we show that binocular rivalry can reveal face detection mechanisms in adults that are surprisingly similar to inborn face detection mechanism. We used continuous flash suppression (CFS), a variant of binocular rivalry, to render stimuli invisible at the beginning of each trial and measured the time upright and inverted stimuli needed to overcome such interocular suppression. Critically, specific stimulus properties previously shown to modulate looking preferences in neonates similarly modulated adults' awareness of faces presented during CFS. First, the advantage of upright faces in overcoming CFS was strongly modulated by contrast polarity and direction of illumination. Second, schematic patterns consisting of three dark blobs were suppressed for shorter durations when the arrangement of these blobs respected the face-like configuration of the eyes and the mouth, and this effect was modulated by contrast polarity. No such effects were obtained in a binocular control experiment not involving CFS, suggesting a crucial role for face-sensitive mechanisms operating outside of conscious awareness. These findings indicate that visual awareness of faces in adults is governed by perceptual mechanisms that are sensitive to similar stimulus properties as those modulating newborns' face preferences.  相似文献   

11.
It is a controversially debated topic whether stimuli can be analyzed up to the semantic level when they are suppressed from visual awareness during continuous flash suppression (CFS). Here, we investigated whether affective knowledge, i.e., affective biographical information about faces, influences the time it takes for initially invisible faces with neutral expressions to overcome suppression and break into consciousness. To test this, we used negative, positive, and neutral famous faces as well as initially unfamiliar faces, which were associated with negative, positive or neutral biographical information. Affective knowledge influenced ratings of facial expressions, corroborating recent evidence and indicating the success of our affective learning paradigm. Furthermore, we replicated shorter suppression durations for upright than for inverted faces, demonstrating the suitability of our CFS paradigm. However, affective biographical information did not modulate suppression durations for newly learned faces, and even though suppression durations for famous faces were influenced by affective knowledge, these effects did not differ between upright and inverted faces, indicating that they might have been due to low-level visual differences. Thus, we did not obtain unequivocal evidence for genuine influences of affective biographical information on access to visual awareness for faces during CFS.  相似文献   

12.

Background

Audition provides important cues with regard to stimulus motion although vision may provide the most salient information. It has been reported that a sound of fixed intensity tends to be judged as decreasing in intensity after adaptation to looming visual stimuli or as increasing in intensity after adaptation to receding visual stimuli. This audiovisual interaction in motion aftereffects indicates that there are multimodal contributions to motion perception at early levels of sensory processing. However, there has been no report that sounds can induce the perception of visual motion.

Methodology/Principal Findings

A visual stimulus blinking at a fixed location was perceived to be moving laterally when the flash onset was synchronized to an alternating left-right sound source. This illusory visual motion was strengthened with an increasing retinal eccentricity (2.5 deg to 20 deg) and occurred more frequently when the onsets of the audio and visual stimuli were synchronized.

Conclusions/Significance

We clearly demonstrated that the alternation of sound location induces illusory visual motion when vision cannot provide accurate spatial information. The present findings strongly suggest that the neural representations of auditory and visual motion processing can bias each other, which yields the best estimates of external events in a complementary manner.  相似文献   

13.
Whereas single cells in the visual cortex prefer moving light bars, mass-action responses are evoked better by diffuse luminance changes. This discrepancy was investigated by quantitatively comparing the the response properties of individual cells with those a representative group of cells. The latter responses were derived from the single-cell responses, which were obtained from recording in the rabbit. These quantitative estimates of mean responses resolve the discrepancy between the single-cell domain and the mass-action domain: from the single-cell point of view, a properly oriented moving-bar stimulus is much more effective than a diffuse-light stimulus. The corresponding mass-action response to one common moving-bar stimulus, however, is as small as the mean response to a diffuse-light stimulus (which may even be presented at retinotopically non-corresponding sites). The peak intensities of these mass responses are even much stronger with the diffuse-light stimuli. The same conclusions are valid for the cat, as could be verified from published data. The restrictions of the local receptive field concept that may be implied by the mass-action view of cortical activity and the potential functional relevance of mass activities area discussed.  相似文献   

14.

Background

Subjective duration is strongly influenced by repetition and novelty, such that an oddball stimulus in a stream of repeated stimuli appears to last longer in duration in comparison. We hypothesize that this duration illusion, called the temporal oddball effect, is a result of the difference in expectation between the oddball and the repeated stimuli. Specifically, we conjecture that the repeated stimuli contract in duration as a result of increased predictability; these duration contractions, we suggest, result from decreased neural response amplitude with repetition, known as repetition suppression.

Methodology/Principal Findings

Participants viewed trials consisting of lines presented at a particular orientation (standard stimuli) followed by a line presented at a different orientation (oddball stimulus). We found that the size of the oddball effect correlates with the number of repetitions of the standard stimulus as well as the amount of deviance from the oddball stimulus; both of these results are consistent with a repetition suppression hypothesis. Further, we find that the temporal oddball effect is sensitive to experimental context – that is, the size of the oddball effect for a particular experimental trial is influenced by the range of duration distortions seen in preceding trials.

Conclusions/Significance

Our data suggest that the repetition-related duration contractions causing the oddball effect are a result of neural repetition suppression. More generally, subjective duration may reflect the prediction error associated with a stimulus and, consequently, the efficiency of encoding that stimulus. Additionally, we emphasize that experimental context effects need to be taken into consideration when designing duration-related tasks.  相似文献   

15.
To interpret visual scenes, visual systems need to segment or integrate multiple moving features into distinct objects or surfaces. Previous studies have found that the perceived direction separation between two transparently moving random-dot stimuli is wider than the actual direction separation. This perceptual “direction repulsion” is useful for segmenting overlapping motion vectors. Here we investigate the effects of motion noise on the directional interaction between overlapping moving stimuli. Human subjects viewed two overlapping random-dot patches moving in different directions and judged the direction separation between the two motion vectors. We found that the perceived direction separation progressively changed from wide to narrow as the level of motion noise in the stimuli was increased, showing a switch from direction repulsion to attraction (i.e. smaller than the veridical direction separation). We also found that direction attraction occurred at a wider range of direction separations than direction repulsion. The normalized effects of both direction repulsion and attraction were the strongest near the direction separation of ∼25° and declined as the direction separation further increased. These results support the idea that motion noise prompts motion integration to overcome stimulus ambiguity. Our findings provide new constraints on neural models of motion transparency and segmentation.  相似文献   

16.
We tested the hypothesis that neurons in the primary visual cortex (V1) adapt selectively to contingencies in the attributes of visual stimuli. We recorded from single neurons in macaque V1 and measured the effects of adaptation either to the sum of two gratings (compound stimulus) or to the individual gratings. According to our hypothesis, there would be a component of adaptation that is specific to the compound stimulus. In a first series of experiments, the two gratings differed in orientation. One grating had optimal orientation and the other was orthogonal to it, and therefore did not activate the neuron under study. These experiments provided evidence in favour of our hypothesis. In most cells adaptation to the compound stimulus reduced responses to the compound stimulus more than it reduced responses to the optimal grating, and the responses to the compound stimulus were reduced more by adaptation to the compound stimulus than by adaptation to the individual gratings. This suggests that a component of adaptation was specific to (and caused by) the simultaneous presence of the two orientations in the compound stimulus. To test whether V1 neurons could adapt to other contingencies in the stimulus attributes, we performed a second series of experiments, in which the component gratings were parallel but differed in spatial frequency, and were both effective in activating the neuron under study. These experiments failed to reveal convincing contingent effects of adaptation, suggesting that neurons cannot adapt equally well to all types of contingency.  相似文献   

17.
Previous research has found that subtle reminders of negative stereotypes about one’s group can lead individuals to underperform on stereotype-relevant tests (e.g., women in math, ethnic minorities on intelligence tests). This so called stereotype threat effect can contribute to systematic group differences in performance that can obscure the true abilities of certain social groups and thereby sustain social inequalities. In the present study, we examined processes underlying stereotype threat effects on women’s math performance, specifically focusing on the role of suppression of mind wandering (i.e., task-irrelevant thinking) in stereotype threat (ST) and no threat (NT) situations. Based on a process model of stereotype threat effects on performance, we hypothesized that women under stereotype threat spontaneously suppress mind wandering, and that this suppression impairs performance. An alternative regulation strategy that prevents suppression (i.e., reappraising task-irrelevant thoughts as normal) was predicted to prevent stereotype threat effects on performance. We manipulated stereotype threat (ST vs. NT) and cognitive regulation strategy (suppression, reappraisal, or no strategy) and measured women’s performance on a math and a concentration task (N = 113). We expected three groups to perform relatively more poorly: Those in ST with either no strategy or suppression and those in NT with a suppression strategy. We tested the performance of these groups against the remaining three groups hypothesized to perform relatively better: those in NT with no strategy or reappraisal and those in ST with reappraisal. The results showed the expected pattern for participants’ math performance, but not for concentration achievement. This pattern suggests that ineffective self-regulation by suppressing mind wandering can at least partly explain stereotype threat effects on performance, whereas a reappraisal strategy can prevent this impairment. We discuss implications for the understanding of processes underlying stereotype threat effects and the benefits of reappraising subjective experience under threat.  相似文献   

18.
精神分裂症患者普遍存在视觉信息处理异常,这些视知觉功能紊乱涉及视通路的高级以及低级视区,表明在部分精神分裂症患者中,视觉系统早期或晚期的不同信息处理阶段均可能存在损伤.阐明这些感知觉信息处理紊乱的神经机制对理解精神分裂症神经病理生理学机制有重大意义.视觉周边抑制(surround suppression)是一种广泛存在的视觉现象,指在神经生理水平或视知觉水平上外周对中央视觉目标的抑制作用.精神分裂症的视觉周边抑制发生异常改变,然而其损伤状况并不完全一致,且其具体神经机制目前仍不清楚.本文以周边抑制为对象,从精神分裂症周边抑制改变状况及其神经机制两个层面简述了国内外精神分裂症视觉周边抑制的研究进展.未来研究方向需要系统全面地调查精神分裂症周边抑制损伤状况,综合脑科学研究技术共同探究精神分裂症患者周边抑制异常的具体神经环路.  相似文献   

19.
20.
Blake R  Sobel KV  Gilroy LA 《Neuron》2003,39(5):869-878
When the visual system is faced with conflicting or ambiguous stimulus information, visual perception fluctuates over time. We found that perceptual alternations are slowed when inducing stimuli move within the visual field, constantly engaging fresh, unadapted neural tissue. During binocular rivalry, dominance durations were longer when rival figures moved compared to when they were stationary, yielding lower alternation rates. Rate was not reduced, however, when observers tracked the moving targets, keeping the images on approximately the same retinal area. Alternations were reliably triggered when rival targets passed through a local region of the visual field preadapted to one of the rival targets. During viewing of a kinetic globe whose direction of rotation was ambiguous, observers experienced fewer alternations in perceived direction when the globe moved around the visual field or when the globe's axis of rotation changed continuously. Evidently, local neural adaptation is a key ingredient in the instability of perception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号