首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Caspase-independent programmed necrosis is a highly regulated cellular demise that displays morphological and biochemical necrotic hallmarks, such as an earlier permeability of the plasma membrane and lactate dehydrogenase (LDH) leakiness. This form of programmed cell death (PCD) is regulated by AIF, a FAD-dependent oxidoreductase, which is released from the mitochondria to the nucleus where it induces chromatin condensation and DNA fragmentation. Some years ago, it has been established that the sequential activation of poly(ADP-ribose) polymerase-1 (PARP-1), calpains, and Bax regulate the mitochondrial AIF release associated to programmed necrosis. But, what happens when AIF is in the nucleus? How does this protein induce chromatinolysis and programmed necrosis? Recently, we have unraveled some of the mechanisms underlying the nuclear action of AIF in this type of caspase-independent cell death. Indeed, AIF plays a key role in programmed necrosis by its ability to organize a DNA-degrading complex with H2AX and Cyclophiline A (CypA). The AIF/H2AX link is indeed a critical event and explains the nuclear AIF apoptogenic action. In the present article, we outline the current knowledge on cell death by programmed necrosis and discuss the relevance of the AIF/H2AX/CypA DNA-degrading complex in the regulation of this original form of cell death.  相似文献   

2.
Apoptosis-inducing factor (AIF) exerts dual roles on cell death and survival, but its substrates as a putative oxidoreductase and roles in tumorigenesis remain elusive. Here, we report that AIF physically interacts with and inhibits the oxidation of phosphatase and tensin homolog on chromosome ten (PTEN), a tumor suppressor susceptible for oxidation-mediated inactivation. More intriguingly, we also identify PTEN as a mitochondrial protein and the ectopic expression of mitochondrial targeting sequence-carrying PTEN almost completely inhibits Akt phosphorylation in PTEN-deficient cells. AIF knockdown causes oxidation-mediated inactivation of the lipid phosphatase activity of PTEN, with ensuing activation of Akt kinase, phosphorylation of the Akt substrate GSK-3β, and activation of β-catenin signaling in cancer cells. Through its effect on β-catenin signaling, AIF inhibits epithelial–mesenchymal transition (EMT) and metastasis of cancer cells in vitro and in orthotopically implanted xenografts. Accordingly, the expression of AIF is correlated with the survival of human patients with cancers of multiple origins. These results identify PTEN as the substrate of AIF oxidoreductase and reveal a novel function for AIF in controlling tumor metastasis.  相似文献   

3.
Previous studies established a major role for apoptosis inducing factor (AIF) in neuronal cell death after acute brain injury. For example, AIF translocation from mitochondria to the nucleus determined delayed neuronal death, whereas reduced AIF expression provided neuroprotective effects in models of cerebral ischemia or brain trauma. The question remains, however, why reduced AIF levels are sufficient to mediate neuroprotection, since only very little AIF translocation to the nucleus is required for induction of cell death. Thus, the present study addresses the question, whether AIF gene silencing affects intrinsic death pathways upstream of nuclear translocation at the level of the mitochondria. Using MTT assays and real-time cell impedance measurements we confirmed the protective effect of AIF siRNA against glutamate toxicity in immortalized mouse hippocampal HT-22 neurons. Further, AIF siRNA prevented glutamate-induced mitochondrial fragmentation and loss of mitochondrial membrane potential. The protection of mitochondrial integrity was associated with preserved ATP levels, attenuated increases in lipid peroxidation and reduced complex I expression levels. Notably, low concentrations of the complex I inhibitor rotenone (20?nM), provided similar protective effects against glutamate toxicity at the mitochondrial level. These results expose a preconditioning effect as a mechanism for neuroprotection mediated by AIF depletion. In particular, they point out an association between mitochondrial complex I and AIF, which regulate each other's stability in mitochondria. Overall, these findings postulate that AIF depletion mediates a preconditioning effect protecting neuronal cells from subsequent glutamate toxicity through reduced levels of complex I protein.  相似文献   

4.
Mitochondrial dysfunction and release of pro-apoptotic factors such as cytochrome c or apoptosis-inducing factor (AIF) from mitochondria are key features of neuronal cell death. The precise mechanisms of how these proteins are released from mitochondria and their particular role in neuronal cell death signaling are however largely unknown. Here, we demonstrate by fluorescence video microscopy that 8-10 h after induction of glutamate toxicity, AIF rapidly translocates from mitochondria to the nucleus and induces nuclear fragmentation and cell death within only a few minutes. This markedly fast translocation of AIF to the nucleus is preceded by increasing translocation of the pro-apoptotic bcl-2 family member Bid (BH3-interacting domain death agonist) to mitochondria, perinuclear accumulation of Bid-loaded mitochondria, and loss of mitochondrial membrane integrity. A small molecule Bid inhibitor preserved mitochondrial membrane potential, prevented nuclear translocation of AIF, and abrogated glutamate-induced neuronal cell death, as shown by experiments using Bid small interfering RNA (siRNA). Cell death induced by truncated Bid was inhibited by AIF siRNA, indicating that caspase-independent AIF signaling is the main pathway through which Bid mediates cell death. This was further supported by experiments showing that although caspase-3 was activated, specific caspase-3 inhibition did not protect neuronal cells against glutamate toxicity. In conclusion, Bid-mediated mitochondrial release of AIF followed by rapid nuclear translocation is a major mechanism of glutamate-induced neuronal death.  相似文献   

5.
Calpains are Ca2+-dependent cysteine proteases; their aberrant activation is associated with several neurodegenerative diseases. The μ-calpain catalytic subunit, calpain-1, is located in the cytoplasm as well as in the mitochondria. Mitochondrial calpain-1 cleaves apoptosis-inducing factor (AIF), leading to apoptotic cell death. We have previously reported that short peptides of calpain-1 C2-like domain conjugated with cell penetrating peptide HIV-Tat (Tat-μCL) selectively inhibit mitochondrial calpain-1 and effectively prevent neurodegenerative diseases of the eye. In this study, we determined whether mitochondrial calpain-1 mediates oxytosis (oxidative glutamate toxicity) in hippocampal HT22 cells using Tat-μCL and newly generated polyhistidine-conjugated μCL peptide and compared their efficacies in preventing oxytosis. TUNEL assay and single strand DNA staining revealed that both μCL peptides inhibited glutamate-induced oxytosis. Additionally, both the peptides suppressed the mitochondrial AIF translocation into the nucleus. All polyhistidine-μCL peptides (containing 4–16 histidine residues) showed higher cell permeability than Tat-μCL. Notably, tetrahistidine (H4)-μCL exerted the highest cytoprotective activity. Thus, H4-μCL may be a potential peptide drug for calpain-1-mediated neurodegenerative diseases such as Alzheimer's disease.  相似文献   

6.
Apoptosis-inducing factor (AIF) is a flavin-binding mitochondrial intermembrane space protein that is implicated in diverse but intertwined processes that include maintenance of electron transport chain function, reactive oxygen species regulation, cell death, and neurodegeneration. In acute brain injury, AIF acquires a pro-death role upon translocation from the mitochondria to the nucleus, where it initiates chromatin condensation and large-scale DNA fragmentation. Although harlequin mice exhibiting an 80–90% global reduction in AIF protein are resistant to numerous forms of acute brain injury, they paradoxically undergo slow, progressive neurodegeneration beginning at three months of age. Brain deterioration, accompanied by markers of oxidative stress, is most pronounced in the cerebellum and retina, although it also occurs in the cortex, striatum, and thalamus. Loss of an AIF pro-survival function linked to assembly or stabilization of electron transport chain complex I underlies chronic neurodegeneration. To date, most studies of neurodegeneration have failed to adequately separate the relative importance of the mitochondrial and nuclear functions of AIF in determining the extent of injury, or whether oxidative stress plays a causative role. This review explores the complicated relationship among AIF, complex I, and the regulation of mitochondrial reactive oxygen species levels. It also discusses the controversial role of complex I deficiency in Parkinson’s disease, and what can be learned from the AIF- and complex I-depleted harlequin mouse.  相似文献   

7.
The B-cell CLL/lymphoma-2 (Bcl-2) family of proteins are important regulators of the intrinsic pathway of apoptosis, and their interactions, driven by Bcl-2 homology (BH) domains, are of great interest in cancer research. Particularly, the BH3 domain is of clinical relevance, as it promotes apoptosis through activation of Bcl-2-associated x protein (Bax) and Bcl-2 antagonist killer (Bak), as well as by antagonising the anti-apoptotic Bcl-2 family members. Although investigated extensively in vitro, the study of the BH3 domain alone inside cells is more problematic because of diminished secondary structure of the unconstrained peptide and a lack of stability. In this study, we report the successful use of a novel peptide aptamer scaffold – Stefin A quadruple mutant – to anchor and present the BH3 domains from Bcl-2-interacting mediator of cell death (Bim), p53 upregulated modulator of apoptosis (Puma), Bcl-2-associated death promoter (Bad) and Noxa, and demonstrate its usefulness in the study of the BH3 domains in vivo. When expressed intracellularly, anchored BH3 peptides exhibit much the same binding specificities previously established in vitro, however, we find that, at endogenous expression levels, Bcl-2 does not bind to any of the anchored BH3 domains tested. Nonetheless, when expressed inside cells the anchored PUMA and Bim BH3 α-helices powerfully induce cell death in the absence of efficient targeting to the mitochondrial membrane, whereas the Noxa helix requires a membrane insertion domain in order to kill Mcl-1-dependent myeloma cells. Finally, the binding of the Bim BH3 peptide to Bax was the only interaction with a pro-apoptotic effector protein observed in this study.  相似文献   

8.
Programmed necrosis induced by DNA alkylating agents, such as MNNG, is a caspase‐independent mode of cell death mediated by apoptosis‐inducing factor (AIF). After poly(ADP‐ribose) polymerase 1, calpain, and Bax activation, AIF moves from the mitochondria to the nucleus where it induces chromatinolysis and cell death. The mechanisms underlying the nuclear action of AIF are, however, largely unknown. We show here that, through its C‐terminal proline‐rich binding domain (PBD, residues 543–559), AIF associates in the nucleus with histone H2AX. This interaction regulates chromatinolysis and programmed necrosis by generating an active DNA‐degrading complex with cyclophilin A (CypA). Deletion or directed mutagenesis in the AIF C‐terminal PBD abolishes AIF/H2AX interaction and AIF‐mediated chromatinolysis. H2AX genetic ablation or CypA downregulation confers resistance to programmed necrosis. AIF fails to induce chromatinolysis in H2AX or CypA‐deficient nuclei. We also establish that H2AX is phosphorylated at Ser139 after MNNG treatment and that this phosphorylation is critical for caspase‐independent programmed necrosis. Overall, our data shed new light in the mechanisms regulating programmed necrosis, elucidate a key nuclear partner of AIF, and uncover an AIF apoptogenic motif.  相似文献   

9.
Mitochondrial μ-calpain and apoptosis-inducing factor (AIF)-dependent photoreceptor cell death has been seen in several rat and mouse models of retinitis pigmentosa (RP). Previously, we demonstrated that the specific peptide inhibitor of mitochondrial μ-calpain, Tat-µCL, protected against retinal degeneration following intravitreal injection or topical eye-drop application in Mertk gene-mutated Royal College of Surgeons rats, one of the animal models of RP. Because of the high rate of rhodopsin mutations in RP patients, the present study was performed to confirm the protective effects of Tat-µCL against retinal degeneration in rhodopsin transgenic S334ter and P23H rats. We examined the effects of intravitreal injection or topical application of the peptide on retinal degeneration in S334ter and P23H rats by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay, electroretinogram (ERG), immunohistochemistry for AIF, and histological staining. In S334ter rats, we found that intravitreal injection or topical application of the peptide prevented photoreceptor cell death from postnatal (PN) 15 to 18 days, the time of early-stage retinal degeneration. Topical application of the peptide also delayed attenuation of ERG responses from PN 28 to 56 days. In P23H rats, topical application of the peptide protected against photoreceptor cell death and nuclear translocation of AIF on PN 30, 40, and 50 days, as the primary stages of degeneration. We observed that topical application of the peptide inhibited the thinning of the outer nuclear layer and delayed ERG attenuations from PN 30 to 90 days. Our results demonstrate that the mitochondrial μ-calpain and AIF pathway is involved in early-stage retinal degeneration in rhodopsin transgenic S334ter and P23H rats, and inhibition of this pathway shows curative potential for rhodopsin mutation-caused RP.  相似文献   

10.
Necroptosis is a newly described form of regulated necrosis that contributes to neuronal death in experimental models of stroke and brain trauma. Although much work has been done elucidating initiating mechanisms, signaling events governing necroptosis remain largely unexplored. Akt is known to inhibit apoptotic neuronal cell death. Mechanistic target of rapamycin (mTOR) is a downstream effector of Akt that controls protein synthesis. We previously reported that dual inhibition of Akt and mTOR reduced acute cell death and improved long term cognitive deficits after controlled-cortical impact in mice. These findings raised the possibility that Akt/mTOR might regulate necroptosis. To test this hypothesis, we induced necroptosis in the hippocampal neuronal cell line HT22 using concomitant treatment with tumor necrosis factor α (TNFα) and the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. TNFα/zVAD treatment induced cell death within 4 h. Cell death was preceded by RIPK1–RIPK3–pAkt assembly, and phosphorylation of Thr-308 and Thr473 of AKT and its direct substrate glycogen synthase kinase-3β, as well as mTOR and its direct substrate S6 ribosomal protein (S6), suggesting activation of Akt/mTOR pathways. Pretreatment with Akt inhibitor viii and rapamycin inhibited Akt and S6 phosphorylation events, mitochondrial reactive oxygen species production, and necroptosis by over 50% without affecting RIPK1–RIPK3 complex assembly. These data were confirmed using small inhibitory ribonucleic acid-mediated knockdown of AKT1/2 and mTOR. All of the aforementioned biochemical events were inhibited by necrostatin-1, including Akt and mTOR phosphorylation, generation of oxidative stress, and RIPK1–RIPK3–pAkt complex assembly. The data suggest a novel, heretofore unexpected role for Akt and mTOR downstream of RIPK1 activation in neuronal cell death.  相似文献   

11.
Apoptosis-inducing factor (AIF) and AMID (AIF-homologous mitochondrion-associated inducer of death) are flavoproteins. Although AIF was originally discovered as a caspase-independent cell death effector, bioenergetic roles of AIF, particularly relating to complex I functions, have since emerged. However, the role of AIF in mitochondrial respiration and redox metabolism has remained unknown. Here, we investigated the redox properties of human AIF and AMID by comparing them with yeast Ndi1, a type 2 NADH:ubiquinone oxidoreductase (NDH-2) regarded as alternative complex I. Isolated AIF and AMID containing naturally incorporated FAD displayed no NADH oxidase activities. However, after reconstituting isolated AIF or AMID into bacterial or mitochondrial membranes, N-terminally tagged AIF and AMID displayed substantial NADH:O2 activities and supported NADH-linked proton pumping activities in the host membranes almost as efficiently as Ndi1. NADH:ubiquinone-1 activities in the reconstituted membranes were highly sensitive to 2-n-heptyl-4-hydroxyquinoline-N-oxide (IC50 = ∼1 μm), a quinone-binding inhibitor. Overexpressing N-terminally tagged AIF and AMID enhanced the growth of a double knock-out Escherichia coli strain lacking complex I and NDH-2. In contrast, C-terminally tagged AIF and NADH-binding site mutants of N-terminally tagged AIF and AMID failed to show both NADH:O2 activity and the growth-enhancing effect. The disease mutant AIFΔR201 showed decreased NADH:O2 activity and growth-enhancing effect. Furthermore, we surprisingly found that the redox activities of N-terminally tagged AIF and AMID were sensitive to rotenone, a well known complex I inhibitor. We propose that AIF and AMID are previously unidentified mammalian NDH-2 enzymes, whose bioenergetic function could be supplemental NADH oxidation in cells.  相似文献   

12.
Our study focused on the relationship between amyloid β 1–42 (Aβ), sphingosine kinases (SphKs) and mitochondrial sirtuins in regulating cell fate. SphK1 is a key enzyme involved in maintaining sphingolipid rheostat in the brain. Deregulation of the sphingolipid metabolism may play a crucial role in the pathogenesis of Alzheimer’s disease (AD). Mitochondrial function and mitochondrial deacetylases, i.e. sirtuins (Sirt3,-4,-5), are also important for cell viability. In this study, we evaluated the interaction between Aβ1–42, SphKs and Sirts in cell survival/death, and we examined several compounds to indicate possible target(s) for a strategy protecting against cytotoxicity of Aβ1–42. PC12 cells were subjected to Aβ1–42 oligomers and SphK inhibitor SKI II for 24–96 h. Our data indicated that Aβ1–42 enhanced SphK1 expression and activity after 24 h, but down-regulated them after 96 h and had no effect on Sphk2. Aβ1–42 and SKI II induced free radical formation, disturbed the balance between pro- and anti-apoptotic proteins and evoked cell death. Simultaneously, up-regulation of anti-oxidative enzymes catalase and superoxide dismutase 2 was observed. Moreover, the total protein level of glycogen synthase kinase-3β was decreased. Aβ1–42 significantly increased the level of mitochondrial proteins: apoptosis-inducing factor AIF and Sirt3, -4, -5. By using several pharmacologically active compounds we showed that p53 protein plays a significant role at very early stages of Aβ1–42 toxicity. However, during prolonged exposure to Aβ1–42, the activation of caspases, MEK/ERK, and alterations in mitochondrial permeability transition pores were additional factors leading to cell death. Moreover, SphK product, sphingosine-1-phosphate (S1P), and Sirt activators and antioxidants, resveratrol and quercetin, significantly enhanced viability of cells subjected to Aβ1–42. Our data indicated that p53 protein and inhibition of SphKs may be early key events responsible for cell death evoked by Aβ1–42. We suggest that activation of S1P-dependent signalling and Sirts may offer a promising cytoprotective strategy.  相似文献   

13.
Porins, a major class of outer membrane proteins in Gram-negative bacteria, primarily act as transport channels. OmpU is one of the major porins of human pathogen, Vibrio cholerae. In the present study, we show that V. cholerae OmpU has the ability to induce target cell death. Although OmpU-mediated cell death shows some characteristics of apoptosis, such as flipping of phosphatidylserine in the membrane as well as cell size shrinkage and increased cell granularity, it does not show the caspase-3 activation and DNA laddering pattern typical of apoptotic cells. Increased release of lactate dehydrogenase in OmpU-treated cells indicates that the OmpU-mediated cell death also has characteristics of necrosis. Further, we show that the mechanism of OmpU-mediated cell death involves major mitochondrial changes in the target cells. We observe that OmpU treatment leads to the disruption of mitochondrial membrane potential, resulting in the release of cytochrome c and apoptosis-inducing factor (AIF). AIF translocates to the host cell nucleus, implying that it has a crucial role in OmpU-mediated cell death. Finally, we observe that OmpU translocates to the target cell mitochondria, where it directly initiates mitochondrial changes leading to mitochondrial membrane permeability transition and AIF release. Partial blocking of AIF release by cyclosporine A in OmpU-treated cells further suggests that OmpU may be inducing the opening of the mitochondrial permeability transition pore. All of these results lead us to the conclusion that OmpU induces cell death in target cells in a programmed manner in which mitochondria play a central role.  相似文献   

14.
Poly(ADP-ribose) polymerase-1-dependent cell death (known as parthanatos) plays a pivotal role in many clinically important events including ischaemia/reperfusion injury and glutamate excitotoxicity. A recent study by us has shown that uncleaved AIF (apoptosis-inducing factor), but not calpain-hydrolysed truncated-AIF, was rapidly released from the mitochondria during parthanatos, implicating a second pool of AIF that might be present in brain mitochondria contributing to the rapid release. In the present study, a novel AIF pool is revealed in brain mitochondria by multiple biochemical analyses. Approx. 30% of AIF loosely associates with the outer mitochondrial membrane on the cytosolic side, in addition to its main localization in the mitochondrial intermembrane space attached to the inner membrane. Immunogold electron microscopic analysis of mouse brain further supports AIF association with the outer, as well as the inner, mitochondrial membrane in vivo. In line with these observations, approx. 20% of uncleaved AIF rapidly translocates to the nucleus and functionally causes neuronal death upon NMDA (N-methyl-d-aspartate) treatment. In the present study we show for the first time a second pool of AIF in brain mitochondria and demonstrate that this pool does not require cleavage and that it contributes to the rapid release of AIF. Moreover, these results suggest that this outer mitochondrial pool of AIF is sufficient to cause cell death during parthanatos. Interfering with the release of this outer mitochondrial pool of AIF during cell injury paradigms that use parthanatos hold particular promise for novel therapies to treat neurological disorders.  相似文献   

15.
Caveolin-1 (CAV-1) participates in regulating vesicular transport, signal transduction, tumor progression, and cholesterol homeostasis. In the present study, we tested the hypothesis that CAV-1 improves dyslipidemia, inhibits cyclophilin A (CypA)- mediated ROS production, prevents mitochondrial compensatory action and attenuates oxidative stress responses in cholesterol-induced hypercholesterolemia. To determine the role of CAV-1 in mediating oxidative and antioxidative as well as cholesterol homeostasis, hypercholesterolemic rabbits were intravenously administered antenapedia-CAV-1 (AP-CAV-1) peptide for 2 wk. AP-CAV-1 enhanced CAV-1 expression by ˃15%, inhibited CypA expression by ˃50% (P < 0.05) and significantly improved dyslipidemia, thus reducing neutral lipid peroxidation. Moreover, CAV-1 attenuated hypercholesterolemia-induced changes in mitochondrial morphology and biogenesis and preserved mitochondrial respiratory function. In addition, CAV-1 protected against hypercholesterol-induced oxidative stress responses by reducing the degree of oxidative damage and enhancing the expression of antioxidant enzymes. CAV-1 treatment significantly suppressed apoptotic cell death, as evidenced by the reduction in the number of terminal deoxynucleotidyl transferase dUTP nick end-labeling-positive cells. We concluded that CAV-1 plays a critical role in inhibiting CypA-mediated ROS production, improving dyslipidemia, maintaining mitochondrial function, and suppressing oxidative stress responses that are vital for cell survival in hypercholesterol-affected renal organs.  相似文献   

16.
The betanodavirus non-structural protein B2 is a newly discovered necrotic death factor with a still unknown role in regulation of mitochondrial function. In the present study, we examined protein B2-mediated inhibition of mitochondrial complex II activity, which results in ATP depletion and thereby in a bioenergetic crisis in vitro and in vivo. Expression of protein B2 was detected early at 24 h postinfection with red-spotted grouper nervous necrosis virus in the cytoplasm. Later B2 was found in mitochondria using enhanced yellow fluorescent protein (EYFP) and immuno-EM analysis. Furthermore, the B2 mitochondrial targeting signal peptide was analyzed by serial deletion and specific point mutation. The sequence of the B2 targeting signal peptide (41RTFVISAHAA50) was identified and its presence correlated with loss of mitochondrial membrane potential in fish cells. Protein B2 also was found to dramatically inhibit complex II (succinate dehydrogenase) activity, which impairs ATP synthesis in fish GF-1 cells as well as human embryonic kidney 293T cells. Furthermore, when B2 was injected into zebrafish embryos at the one-cell stage to determine its cytotoxicity and ability to inhibit ATP synthesis, we found that B2 caused massive embryonic cell death and depleted ATP resulting in further embryonic death at 10 and 24 h post-fertilization. Taken together, our results indicate that betanodavirus protein B2-induced cell death is due to direct targeting of the mitochondrial matrix by a specific signal peptide that targets mitochondria and inhibits mitochondrial complex II activity thereby reducing ATP synthesis.  相似文献   

17.
Poly(ADP-ribose) polymerase-1 (PARP-1) mediates neuronal cell death in a variety of pathological conditions involving severe DNA damage. Poly(ADP-ribose) (PAR) polymer is a product synthesized by PARP-1. Previous studies suggest that PAR polymer heralds mitochondrial apoptosis-inducing factor (AIF) release and thereby, signals neuronal cell death. However, the details of the effects of PAR polymer on mitochondria remain to be elucidated. Here we report the effects of PAR polymer on mitochondria in cells in situ and isolated brain mitochondria in vitro. We found that PAR polymer causes depolarization of mitochondrial membrane potential and opening of the mitochondrial permeability transition pore early after injury. Furthermore, PAR polymer specifically induces AIF release, but not cytochrome c from isolated brain mitochondria. These data suggest PAR polymer as an endogenous mitochondrial toxin and will further our understanding of the PARP-1-dependent neuronal cell death paradigm.  相似文献   

18.
Glutamate toxicity involves increases in intracellular calcium levels and enhanced formation of reactive oxygen species (ROS) causing neuronal dysfunction and death in acute and chronic neurodegenerative disorders. The molecular mechanisms mediating glutamate-induced ROS formation are, however, still poorly defined. Using a model system that lacks glutamate-operated calcium channels, we demonstrate that glutamate-induced acceleration of ROS levels occurs in two steps and is initiated by lipoxygenases (LOXs) and then significantly accelerated through Bid-dependent mitochondrial damage. The Bid-mediated secondary boost of ROS formation downstream of LOX activity further involves mitochondrial fragmentation and release of mitochondrial apoptosis-inducing factor (AIF) to the nucleus. These data imply that the activation of Bid is an essential step in amplifying glutamate-induced formation of lipid peroxides to irreversible mitochondrial damage associated with further enhanced free radical formation and AIF-dependent execution of cell death.  相似文献   

19.
20.
The endoplasmic reticulum (ER) is not only a home for folding and posttranslational modifications of secretory proteins but also a reservoir for intracellular Ca2+. Perturbation of ER homeostasis contributes to the pathogenesis of various neurodegenerative diseases, such as Alzheimer''s and Parkinson diseases. One key regulator that underlies cell survival and Ca2+ homeostasis during ER stress responses is inositol-requiring enzyme 1α (IRE1α). Despite extensive studies on this ER membrane-associated protein, little is known about the molecular mechanisms by which excessive ER stress triggers cell death and Ca2+ dysregulation via the IRE1α-dependent signaling pathway. In this study, we show that inactivation of IRE1α by RNA interference increases cytosolic Ca2+ concentration in SH-SY5Y cells, leading to cell death. This dysregulation is caused by an accelerated ER-to-cytosolic efflux of Ca2+ through the InsP3 receptor (InsP3R). The Ca2+ efflux in IRE1α-deficient cells correlates with dissociation of the Ca2+-binding InsP3R inhibitor CIB1 and increased complex formation of CIB1 with the pro-apoptotic kinase ASK1, which otherwise remains inactivated in the IRE1α–TRAF2–ASK1 complex. The increased cytosolic concentration of Ca2+ induces mitochondrial production of reactive oxygen species (ROS), in particular superoxide, resulting in severe mitochondrial abnormalities, such as fragmentation and depolarization of membrane potential. These Ca2+ dysregulation-induced mitochondrial abnormalities and cell death in IRE1α-deficient cells can be blocked by depleting ROS or inhibiting Ca2+ influx into the mitochondria. These results demonstrate the importance of IRE1α in Ca2+ homeostasis and cell survival during ER stress and reveal a previously unknown Ca2+-mediated cell death signaling between the IRE1α–InsP3R pathway in the ER and the redox-dependent apoptotic pathway in the mitochondrion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号