首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Latitudinal gradients in ecosystem patterns arise from complex interactions between biotic and abiotic forces operating at a range of spatial and temporal scales. Widespread invasive species, particularly invasive ecosystem engineers with large effects on their environment, may alter these gradients. We sampled 3–5 stands of the invasive common reed, Phragmites australis, in eight coastal wetlands ranging from Massachusetts (42°N) to South Carolina (32°N) to document geographic variation in P. australis primary production, associated plant and animal species diversity, and sediment carbon storage and to examine how local-, regional-, and large-scale environmental factors contribute to these patterns. Latitude best explained variation in P. australis density, but contrary to expectations, density increased with increasing latitude across our sites. Latitude also predicted macroinvertebrate species richness, which increased with latitude in a manner similar to P. australis density. In addition to latitude, P. australis leaf carbon:nitrogen ratios, distance to the open coast, and sediment oxygen levels were most important for explaining variation in P. australis production, as well as community (plant or animal species richness) and ecosystem (carbon storage) variables. The percent of developed land was positively associated with P. australis density, yet this variable had relatively low predictive power in our study. Our study provides an important biogeographic perspective for documenting and understanding variation in invasive P. australis that is fundamental both for managing the invasion and for understanding latitudinal gradients in ecosystem structure and function.  相似文献   

2.
Hurricane‐caused tree mortality in tropical dry forests occurs predominantly in early successional species. Consequently, hurricanes may accelerate succession in these forests. Forest regeneration, however, must be measured over an extended posthurricane time period to demonstrate this pattern. In this study, we recorded tree seedlings in 19 Florida Keys forests during May–August 1995, 3 years after Hurricane Andrew. For these forests—spanning a chronosequence from 14 to over 100 years since the most recent clearing—we used weighted averaging regression on relative abundances of pre‐hurricane trees to calculate a successional age optimum for each species; and used weighted averaging calibration to calculate inferred successional ages for stands based on pre‐hurricane trees and on posthurricane seedlings. To test the hypothesis that successional stage of seedlings exceeded successional stage of pre‐hurricane trees, we compared inferred stand ages based on posthurricane seedlings with those based on pre‐hurricane trees. Across the study area, inferred stand ages based on posthurricane seedlings were greater than those based on pre‐hurricane trees (P < 0.005); however, more seedlings in the youngest stands were early successional than in older stands. Of 29 species present both as pre‐hurricane trees and posthurricane seedlings, 23 had animal‐dispersed seeds. These results provide evidence that: (1) hurricanes do not ‘reset’ succession, and may accelerate succession; and (2) a strong legacy of stand successional age influences seedling assemblages in these forests.  相似文献   

3.
Regeneration in fringe mangrove forests damaged by Hurricane Andrew   总被引:1,自引:0,他引:1  
Baldwin  Andrew  Egnotovich  Michael  Ford  Mark  Platt  William 《Plant Ecology》2001,157(2):151-164
Mangrove forests along many tropical coastlines are frequently andseverely damaged by hurricanes. The ability of mangrove forests to regeneratefollowing hurricanes has been noted, but changes that occur in vegetationfollowing disturbance by hurricane winds and storm tides have not been studied.We measured changes in plant community structure and environmental variables intwo fringe mangrove forests in south Florida, USA that experienced high windvelocities and storm tides associated with Hurricane Andrew (August1992). Loss of the forest canopy stimulated regeneration via seedlinggrowth and recruitment, as well as resprouting of some trees that survived thehurricane. Initial regeneration differed among species in both forests:Rhizophora mangle L. regenerated primarily via growth ofseedlings present at the time of the hurricane (i.e., release of advancerecruits), but many trees of Avicennia germinans(L.) Stearn and Laguncularia racemosa Gaertn.f.resprouted profusely from dormant epicormic buds. In one forest, which wasformerly dominated by Laguncularia, high densities ofRhizophora seedlings survived the hurricane and grew toform dense stands of saplings and small trees ofRhizophora. In the other forest, there were lowerdensitiesof surviving Rhizophora seedlings (possibly due tohigher storm tide), and extensive bare areas that were colonized byAvicennia, Laguncularia, andherbaceous species. This forest, predominantly Rhizophoraat the time of the hurricane, now contains stands of saplings and small treesofall three species, interspersed with patches dominated by herbaceous plants.These findings indicate that moderately damaged fringe forests may regenerateprimarily via release of Rhizophora advance recruits,leading to single-species stands. In severely damaged forests, seedlingrecruitment may be more important and lead to mixed-species stands.Regeneration of mangrove forests following hurricanes can involve differentpathways produced by complex interactions between resprouting capability,seedling survival, post-hurricane seedling recruitment, and colonizationby herbaceous vegetation. These differences in relative importance ofregeneration pathways, which may result in post-hurricane forestsdifferent from their pre-hurricane structure, suggest that models forregeneration of mangrove forests will be more complex than directregeneration models proposed for other tropical forests whereregeneration after hurricanes is dominated by resprouting.  相似文献   

4.
Phragmites australis is a perennial grass that has invaded wetlands of the northeastern United States over the past century. The Hudson River Estuary and surrounding watersheds are no exception in that populations of P. australis have spread dramatically along its shores and tributaries in the past 40 years. Recent studies have shown that genetically variable populations of P. australis can spread by seed dispersal in addition to clonal mechanisms. It is important to characterize the genetic variation of Hudson River populations as part of a management strategy for this species to determine the mechanisms by which its spreads and colonizes new habitats, particularly those with frequent anthropogenic disturbances. The goals of this study were to quantify levels of genetic variation and structuring in Hudson River populations of P. australis using microsatellite DNA analysis. A total of 354 culms of P. australis were collected from nine locations ranging from Albany, New York to Staten Island, New York in the summers of 2004 (N = 174) and 2011 (N = 180). Microsatellite data from eight loci indicated that the Hudson River Estuary has some of the highest levels of genetic variation of all U. S. Atlantic Coast regions containing P. australis. Gene diversity (Hs) across all loci in the 2004 collection was 0.45 (±0.02) and that of the 2011 collection was 0.47 (±0.07). Patches within sample sites were rarely monoclonal and had multiple genetic phenotypes. Moran’s Identity tests indicated that individuals within a patch were closely related, whereas little genetic relatedness was evident among individuals from sample sites >1 km apart. Spatial structuring was also not evident in autospatial correlation and principle coordinate analyses. These findings suggest that genetic diversity is maintained within stands by sexual reproduction and that seeds are important in dispersal of P. australis across the Hudson River Estuary. Ample habitats are available for establishment of new Phragmites stands due to high levels of anthropogenic disturbance from populations living along the Estuary. Wildlife managers should focus on monitoring habitats that provide seedbed for Phragmites and promote land use practices that prevent soil disturbance and establishment of new stands.  相似文献   

5.
Humid tropical forests are dynamic ecosystems that experience multiple and overlapping disturbance events that vary in frequency, intensity, and spatial extent. Here we report the results of a 10-year study investigating the effects of forest clearing and multiple hurricanes on ecosystem carbon reservoirs, nutrient pools and vegetation. The aboveground plant community was most heavily affected by multiple disturbances, with the 9-year-old stands showing high rates of hurricane-induced mortality relative to surrounding forest. Belowground pools were less affected. Live fine root biomass fluctuated in response to multiple disturbances, but returned to pre-disturbance levels after 10 years. Soil C was resilient to clearing and hurricanes, probably due to the large pool size and high clay content. Soil P fluctuated over time, declining during periods of rapid plant recovery and growth. With the exception of K, base cations recovered within 2 years following clearing and showed little response to hurricane disturbance.  相似文献   

6.
Sexual plant reproduction is a strategy that allows plant populations to increase genetic variability, and consequently to be more efficient in adapting to new environments and to overcome stress conditions. Here, we focus on the reproductive mode of Phragmites australis, an important sub-cosmopolite species that can spread both by clonal propagation and sexual reproduction. In Europe, P. australis is affected by severe decline (known as Reed Die-Back Syndrome or RDBS); this study aims to understand if in RDBS condition the reproductive strategy of P. australis was altered, based on the hypothesis that if stress occurs, plants are likely to use their energy to increase genetic variability to overcome the stress. Inflorescences in five Italian wetlands were sampled from healthy and RDBS-affected stands of P. australis. Seed production, seed viability and seed germination were evaluated, with germination monitored under two different water conditions: moist and submerged. Stress induced by RDBS appears to influence the reproductive strategy of P. australis. In RDBS-affected stands, seed production was significantly higher than healthy stands for four of five sites. Seed viability and germination were also higher in RDBS-affected stands, but these differences were lower and site dependent.  相似文献   

7.
While hybridization between Native and Introduced Phragmites australis has not been documented across much of North America, it poses an ongoing threat to Native P. australis across its range. This is especially true for native populations in the biologically rich, but sparsely distributed wetlands of the southwest United States, which are among the most imperiled systems in North America. We identified multiple Hybrid P. australis stands in the Las Vegas Wash watershed, NV, a key regional link to the Colorado River basin. Rapid urbanization in this watershed has caused striking changes in water and nutrient inputs and the distribution of wetland habitats has also changed, with urban wetlands expanding but an overall reduction in wetland habitats regionally. Native P. australis has likely been present in the Wash wetland community in low abundance for thousands of years, but today Hybrid and Native plants dominate the shoreline along much of the Wash. In contrast, Introduced P. australis is rare, suggesting that opportunities for novel hybridization events remain uncommon. Hybrid crosses derived from both the native and introduced maternal lineages are widespread, although the conditions that precluded their establishment are unknown and we did not find evidence for backcrossing. Spread of Hybrid plants is likely associated with flooding events as well as restoration activities, including revegetation efforts and construction for erosion control, that have redistributed sediments containing P. australis rhizomes. Downstream escape of Hybrid plants to Lake Mead and wetlands throughout the lower Colorado River basin is of management concern as these Hybrids appear vigorous and could spread rapidly.  相似文献   

8.
The invasion of wetlands by Phragmites australis is a conservation concern across North America. We used the invasion of Chesapeake Bay wetlands by P. australis as a model system to examine the effects of regional and local stressors on plant invasions. We summarized digital maps of the distributions of P. australis and of potential stressors (especially human land use and shoreline armoring) at two spatial scales: for 72 subestuaries of the bay and their local watersheds and for thousands of 500 m shoreline segments. We developed statistical models that use the stressor variables to predict P. australis prevalence (% of shoreline occupied) in subestuaries and its presence or absence in 500 m segments of shoreline. The prevalence of agriculture was the strongest and most consistent predictor of P. australis presence and abundance in Chesapeake Bay, because P. australis can exploit the resulting elevated nutrient levels to enhance its establishment, growth, and seed production. Phragmites australis was also positively associated with riprapped shoreline, probably because it creates disturbances that provide colonization opportunities. The P. australis invasion was less severe in areas with greater forested land cover and natural shorelines. Surprisingly, invasion was low in highly developed watersheds and highest along shorelines with intermediate levels of residential land use, possibly indicating that highly disturbed systems are uninhabitable even to invasive species. Management strategies that reduce nutrient pollution, preserve natural shorelines, and limit nearshore disturbance of soils and vegetation may enhance the resilience of shorelines to invasion.  相似文献   

9.
Methane (CH4) is an important greenhouse gas whose emission from the largest source, wetlands is controlled by a number of environmental variables amongst which temperature, water-table, the availability of substrates and the CH4 transport properties of plants are most prominent and well characterised. Coastal wetland ecosystems are vulnerable to invasion by alien plant species which can make a significant local contribution to altering their species composition. However the effect of these changes in species composition on CH4 flux is rarely examined and so is poorly understood. Spartina alterniflora, a perennial grass native to North America, has spread rapidly along the south-east coast of China since its introduction in 1979. From 2002, this rapid invasion has extended to the tidal marshes of the Min River estuary, an area that, prior to invasion was dominated by the native plant Cyperus malaccensis. Here, we compare CH4 flux from the exotic invasive plant S. alterniflora with measurements from the aggressive native species Phragmites australis and the native species C. malaccensis following 3-years of monitoring. CH4 emissions were measured over entire tidal cycles. Soil CH4 production potentials were estimated for stands of each of above plants both in situ and in laboratory incubations. Mean annual CH4 fluxes from S. alterniflora, P. australis and C. malaccensis dominated stands over the 3 years were 95.7 (±18.7), 38.9 (±3.26) and 10.9 (±5.26) g m?2 year?1, respectively. Our results demonstrate that recent invasion of the exotic species S. alterniflora and the increasing presence of the native plant P. australis has significantly increased CH4 emission from marshes that were previously dominated by the native species C. malaccensis. We also conclude that higher above ground biomass, higher CH4 production and more effective plant CH4 transport of S. alterniflora collectively contribute to its higher CH4 emission in the Min River estuary.  相似文献   

10.
Paudel  Shishir  Battaglia  Loretta L. 《Plant Ecology》2021,222(2):133-148

Hurricane disturbances produce significant changes in forest microclimates, creating opportunities for seedling regeneration of native and invasive plant species alike. However, there is limited information on how changes in microclimates and pre-existing forest conditions affect native and invasive plants responses to hurricane disturbances. In this manipulative study, we examined the responses of three common shrub/small stature tree species, two of which are native to the coastal region of the southeastern USA (Baccharis halimifolia and Morella cerifera) and one that is invasive (Triadica sebifera), to two key components of hurricane disturbance (canopy damage and saline storm surge). In a greenhouse, we grew seedlings of these species under a range of shade levels that mimicked pre-and post-hurricane canopy conditions for wet pine forest and mixed hardwood forest, two forest communities common in coastal areas of the southeastern USA. Seedlings were subjected to saline storm surges equivalent to full strength sea water for 3 days. Seedling responses (mortality and growth) to the treatments were monitored for 16 months. All species benefitted from higher canopy openness. Storm surge effects were short-lived and seedlings readily recovered under high light conditions. The storm surge had stronger negative effects on survival and growth of all species when coupled with high shade, suggesting storm surge has greater negative impacts on seedlings where hurricane winds cause minimal or no canopy damage. The invasive T. sebifera was by far more shade tolerant than the natives. Survival of T. sebifera seedlings under highly shaded conditions may provide it a competitive edge over native species during community reassembly following tropical storms. Differential responses of native and invasive species to hurricane disturbances will have profound consequences on community structure across coastal forest stands, and may be regulated by legacies of prior disturbances, community structure, extent of canopy damage, and species’ tolerance to specific microclimates.

  相似文献   

11.
Few hurricanes affect intact stands of subtropical pines. We examined effects of winds in the eyewalls of Hurricane Andrew, where wind speeds were >200 km h–1, on all remaining large mainland stands of Pinus elliottii var. densa (south Florida slash pine) on limestone outcroppings (rocklands) in the everglades region of southern Florida. We measured densities and sizes of trees and assessed damage and mortality in plots in old-growth stands in the Lostman's Pines (LOP) region of Big Cypress National Preserve and in second-growth stands in the Pines West (PIW) and Long Pine Key (LPK) regions of Everglades National Park. We also examined age-size relationships using sections from trees killed by the hurricane in LOP and LPK. We used the data to predict effects of recurrent hurricanes on the structure and dynamics of the old-growth stand and to compare effects of hurricanes on old- and second-growth stands.Slash pine was resistant to hurricane winds. Most trees in stands (68–76%) were not severely damaged; mortality in the three regions averaged 17–25% shortly after the hurricane and 3–7% during the following year. Mortality was positively associated with tree size; mean tree sizes decreased and size-selective thinning occurred in all stands. Nonetheless, local mortality ranged from 3–4% to 50–60% among plots in all stands. Such local variation in mortality resulted from clustering of large trees, especially in old-growth stands, and from microbursts during the hurricane, which affected all stands. Recurrent, intense hurricanes are predicted to kill larger trees, slowly opening new patches and increasing sizes of extant patches, thus resulting in almost continual presence of openings suitable for recruitment in old-growth stands. Age-size relationships also indicated that large trees in old-growth stands may survive 2–3 centuries. The combination of frequent openings and wind resistance of large trees is predicted to result in old-growth stands that are highly uneven aged, with trees locally distributed in similar-aged patches. The extent to which such stands deviate from demographic equilibrium, as well as turnover rates within stands, are likely to increase as the frequency of recurrent, intense hurricanes increases.Damage and mortality differed in old- and second-growth stands. Large trees were more, but small trees less likely to be damaged in old- than second-growth stands. In contrast, mortality was significantly lower in old- (LOP: 16.9% ± 3.1 [mean ± s.e.]) than second-growth stands (PIW: 22.5% ± 2.0; LPK: 25.2% ± 2.7). Total hurricane-related mortality was 30–60% higher in second- than old-growth stands. Size class structure, more uneven in old- than second growth stands prior to the hurricane, diverged even more afterwards. Hurricane Andrew removed  相似文献   

12.
The environmental and social impacts of Phragmites australis invasion have been extensively studied in the eastern United States. In the West where the invasion is relatively recent, a lack of information on distributions and spread has limited our ability to manage invasive populations or assess whether native populations will experience a decline similar to that in the East. Between 2006 and 2015, we evaluated the genetic status, distribution, and soil properties (pH, electrical conductivity, and soil texture) of Phragmites stands in wetlands and riparian systems throughout the Southwest. Native (subspecies americanus), Introduced (haplotype M), and Gulf Coast (subspecies berlandieri) Phragmites lineages were identified in the survey region, as well as watershed-scale hybridization between the Native and Introduced lineages in southern Nevada. Two Asian haplotypes (P and Q) that were previously not known to occur in North America were found in California. The Native lineage was the most frequent and widespread across the region, with four cpDNA haplotypes (A, B, H, and AR) occurring at low densities in all wetland types. Most Introduced Phragmites stands were in or near major urban centers and associated with anthropogenic disturbance in wetlands and rivers, and we document their spread in the region, which is likely facilitated by transportation and urban development. Soil pH of Native and hybrid stands was higher (averaging 8.3 and 8.6, respectively) than Introduced stands (pH of 7.5) and was the only soil property that differed among lineages. Continued monitoring of all Phragmites lineages in the Southwest will aid in assessing the conservation status of Native populations and developing management priorities for non-native stands.  相似文献   

13.
Hurricanes have dramatic effects on forest vegetation, but their effects on shrublands have rarely been studied. We analyzed the effects of three 2004 hurricanes—among the strongest on record in Florida—on vital rates of 12 rare plant species of pyrogenic interior Florida scrub and sandhill. Tree damage varied by vegetation type (being highest in areas with Pinus clausa) and was associated with debris deposition. Most rare species were minimally impacted by hurricanes. The two most frequently damaged species were the shrubs Prunus geniculata (11% of individuals) and Asimina obovata (7%); both were resilient to damage. Prunus geniculata had little mortality during the hurricane year but damaged plants had a temporary (1‐yr) reduction in relative growth rate. Prunus geniculata flowering was unaffected by hurricane damage. Hurricane damage had no effects on vital rates of A. obovata, Eriogonum longifolium var. gnaphalifolium, or Chrysopsis highlandsensis. Other species suffered little or no observable hurricane damage. Of 12 species analyzed, nine had similar annual survival in hurricane and nonhurricane years. Relatively low survival in the hurricane year (compared with other years) was linked to prehurricane drought or prescribed fire in two of three species. Thus, the 2004 hurricanes did not have important effects on populations of interior Florida scrub and sandhill plants, especially herbaceous species. This is in marked contrast to dramatic demographic responses to fire in central Florida and strong effects of hurricanes in coastal Florida, highlighting that these different disturbances may have divergent effects on vegetation and populations over short distances.  相似文献   

14.
Manipulating plant microbiomes may provide control of invasive species. Invasive Phragmites australis has spread rapidly in North American wetlands, causing significant declines in native biodiversity. To test microbiome effects on host growth, we inoculated four common fungal endophytes into replicated Phragmites genotypes and monitored their growth in field and growth chamber environments. Inoculations were highly successful in the growth chamber but inoculated plants in the field were rapidly colonized by diverse endophytes from the local environment. There were significant genotype effects and minimal inoculation effects in both experiments with a significant inoculation × genotype interaction on tiller height in the field. Our results demonstrate that endophyte inoculation treatments are feasible, but repeated inoculations may be required to maintain high titer in plants subject to endophyte colonization from the local environment. Future studies should investigate a wider range of fungal endophytes to identify taxa that inhibit Phragmites and other invaders.  相似文献   

15.
In this study we conducted field investigations to examine the effects of native Cuscuta australis on three exotic invasive plants (i.e. Ipomoea cairica, Mikania micrantha, and Wedelia trilobata) and on the invaded native communities. The results showed that C. australis produced high infection rates on the exotic invasive hosts but low ones on the native species. Furthermore, the results showed that C. australis exhibited vigorous growth and high reproduction when it grew on M. micrantha and W. trilobata, indicating that these exotic invasive plants are more rewarding hosts than are native plants for C. australis. C. australis infection was positively related to the growth traits (e.g. biomass, cover, and total leaf area) and nutrient contents (e.g. N, P, and K) of the exotic invasive plants. The infections of C. australis significantly decreased the growth and nutrient contents of exotic invasive hosts, and the host?Cparasite interactions benefited the native species with increased species richness and biodiversity, facilitating the recovery of invaded native communities. This study provides a model for a native agent to both resist exotic invasive plants and benefit other native species. Furthermore, it indicates that certain native agents in invaded regions can be an effective and environmentally benign alternative to traditional biological control.  相似文献   

16.
The cosmopolitan reed grass Phragmites australis (Poaceae) is an intensively studied species globally with a substantial focus in the last two decades on its invasive populations. Here we argue that P. australis meets the criteria to serve as a model organism for studying plant invasions. First, as a dominant species in globally important wetland habitats, it has generated significant pre-existing research, demonstrating a high potential for funding. Second, this plant is easy to grow and use in experiments. Third, it grows abundantly in a wide range of ecological systems and plant communities, allowing a broad range of research questions to be addressed. We formalize the designation of P. australis as a model organism for plant invasions in order to encourage and standardize collaborative research on multiple spatial scales that will help to integrate studies on the ecology and evolution of P. australis invasive populations, their response to global environmental change, and implications for biological security. Such an integrative framework can serve as guidance for studying invasive plant species at the population level and global spatial scale.  相似文献   

17.
Our study organism, Phragmites australis (common reed), is a unique invader in that both native and introduced lineages are found coexisting in North America. This allows one to make direct assessments of physiological differences between these different subspecies and examine how this relates to invasiveness. Recent efforts to understand plant invasive behavior show that some invasive plants secrete a phytotoxin to ward-off encroachment by neighboring plants (allelopathy) and thus provide the invaders with a competitive edge in a given habitat. Here we show that a varying climatic factor like ultraviolet (UV) light leads to photo-degradation of secreted phytotoxin (gallic acid) in P. australis rhizosphere inducing higher mortality of susceptible seedlings. The photo-degraded product of gallic acid (hereafter GA), identified as mesoxalic acid (hereafter MOA), triggered a similar cell death cascade in susceptible seedlings as observed previously with GA. Further, we detected the biological concentrations of MOA in the natural stands of exotic and native P. australis. Our studies also show that the UV degradation of GA is facilitated at an alkaline pH, suggesting that the natural habitat of P. australis may facilitate the photo-degradation of GA. The study highlights the persistence of the photo-degraded phytotoxin in the P. australis''s rhizosphere and its inhibitory effects against the native plants.Key words: ultraviolet, gallic acid, mesoxalic acid, novel weapons, invasive species, Phragmites australis  相似文献   

18.
《Aquatic Botany》2007,86(2):163-170
Two exotic gall fly species infest stems of native and exotic Phragmites australis (Cav.) Trin. ex Steudel in northeastern North America. In this study, we determined the distribution of Lipara similis Schiner and L. rufitarsis Loew in native and exotic P. australis in Rhode Island. We also studied the within-stand distributions of each fly species and their effects on flowering of native and exotic P. australis. We collected stems from populations throughout southern Rhode Island and measured stem length and diameter, and percent flowering. Stems were then dissected to determine Lipara infestation. L. similis and L. rufitarsis were found throughout Rhode Island infesting both native and exotic P. australis, but their presence and abundance varied among sites. Within stands, L. similis infests the taller, thicker interior stems and L. rufitarsis infests the shorter, thinner exterior stems. Lipara similis reduces stem length by 6%; L. rufitarsis infestation reduces stem length by 37%. The flowering rate of uninfested stems is significantly lower in native P. australis stems than in exotic stems. Both Lipara species prevent infested stems from flowering. In adjacent stands of native and exotic P. australis, L. rufitarsis infests significantly more native stems than exotic stems, possibly further reducing the reproductive potential of the native plants relative to the exotic. Lipara species may play a role in facilitating the displacement of native P. australis by the exotic genotype.  相似文献   

19.
Size and age structures of stand populations of numerous tree species exhibit uneven or reverse J-distributions that can persist after non-catastrophic disturbance, especially windstorms. Among disjunct populations of conspecific trees, alternative distributions are also possible and may be attributed to more localized variation in disturbance. Regional differences in structure and demography among disjunct populations of sand pine (Pinus clausa (Chapm. ex Engelm.) Vasey ex Sarg.) in the Florida panhandle and peninsula may result from variation in hurricane regimes associated with each of these populations. We measured size, age, and growth rates of trees from panhandle and peninsula populations and then compiled size and age class distributions. We also characterized hurricanes in both regions over the past century. Size and age structures of panhandle populations were unevenly distributed and exhibited continuous recruitment; peninsula populations were evenly sized and aged and exhibited only periodic recruitment. Since hurricane regimes were similar between regions, historical fire regimes may have been responsible for regional differences in structure of sand pine populations. We hypothesize that fires were locally nonexistent in coastal panhandle populations, while periodic high intensity fires occurred in peninsula populations over the past century. Such differences in local fire regimes could have resulted in the absence of hurricane effects in the peninsula. Increased intensity of hurricanes in the panhandle and current fire suppression patterns in the peninsula may shift characteristics of sand pine stands in both regions.  相似文献   

20.
Invasion biology research, often performed by scientists at relatively small spatial scales, provides experimental precision but may be limited in generalizability. Conversely, large-scale invasive species management represents a largely untapped wealth of information on invasion ecology and management, but such data are difficult to capture and synthesize. We developed a network (“PhragNet”) of individuals managing wetlands occupied by native and non-native lineages of the invasive wetland grass Phragmites australis (common reed). This network collected environmental and genetic samples, habitat data, and management information to identify environmental and plant community associations of Phragmites invasion and patterns of management responses. Fifty managers overseeing 209 Phragmites stands in 16 US states and ON, Canada participated. Participants represented federal agencies (26%), municipalities (20%), NGOs (20%), academia (14%), state agencies (12%), and private landowners (8%). Relative to the native lineage, non-native Phragmites occurred in areas with higher nitrate/nitrite and ammonium than non-native Phragmites. Stand interiors had higher soil electrical conductivity than nearby uninvaded areas, consistent with use of road salt promoting spread of Phragmites. Non-native Phragmites co-occurred with fewer plant species than native Phragmites and was actively targeted for management. Herbicide was applied to 51% of non-native stands; surprisingly, 11% of native stands were also treated with herbicide. This project demonstrates the utility of crowdsourcing standardized data from resource managers. We conclude by describing how this approach could be expanded into an adaptive management framework, strengthening connections between wetland management and research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号