首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
等离子体医学及其在肿瘤治疗中的应用   总被引:1,自引:0,他引:1  
大气压冷等离子体是近年来学术界兴起的新研究领域,由于其在大气压下产生,气体温度低、粒子活性高,在众多领域尤其是生物医学方面的应用引起了人们广泛的关注.等离子体医学是一个革新的、新兴的交叉学科研究领域,结合了等离子体物理学、化学、生命科学和临床医学等.本文首先介绍了大气压冷等离子体的产生及其粒子成分,与液体和生物组织的相互作用,并介绍了大气压冷等离子体在生物医学领域的一些主要应用,如杀菌消毒、凝血、牙科应用、伤口愈合及皮肤病治疗等方面.同时,重点介绍大气压冷等离子体在肿瘤治疗方面的研究进展.大气压冷等离子体可有效诱导肿瘤细胞死亡、抑制增殖及迁徙、诱导肿瘤细胞分化并抑制干细胞潜能,同时能提高化疗药物敏感性,在肿瘤治疗领域具有很好的应用前景.  相似文献   

2.
Reactive oxygen and nitrogen species produced by cold atmospheric plasma (CAP) are considered to be the most important species for biomedical applications, including cancer treatment. However, it is not known which species exert the greatest biological effects, and the nature of their interactions with tumor cells remains ill-defined. These questions were addressed in the present study by exposing human mesenchymal stromal and LP-1 cells to reactive oxygen and nitrogen species produced by CAP and evaluating cell viability. Superoxide anion (O2 ) and hydrogen peroxide (H2O2) were the two major species present in plasma, but their respective concentrations were not sufficient to cause cell death when used in isolation; however, in the presence of iron, both species enhanced the cell death-inducing effects of plasma. We propose that iron containing proteins in cells catalyze O2 and H2O2 into the highly reactive OH radical that can induce cell death. The results demonstrate how reactive species are transferred to liquid and converted into the OH radical to mediate cytotoxicity and provide mechanistic insight into the molecular mechanisms underlying tumor cell death by plasma treatment.  相似文献   

3.
The effects of cold plasmas are due to charged particles, reactive oxygen species (ROS), reactive nitrogen species (RNS), UV photons, and intense electric field. In order to obtain a more efficient action on mammalian cells (useful for cancer therapy), we used in our studies chemically activated cold plasma (He and O2 gas mixture). V79-4 cells were exposed to plasma jet for different time periods (30, 60, 90, 120 and 150s), using different combinations of helium and oxygen inputs (He:2.5l/min + 02:12.5ml/min; He:2.51/min + O2:25ml/min; He:2.51/min + O2:37.5 ml/min). Using MTT test we demonstrated that plasma jet induced cell viability decrease in all cases. The effect of chemically activated cold plasma--apoptosis or necrosis--depends on gas mixture and treatment period. Taking into account that ROS density in cell microenvironment is related to O2 percent in the gas mixture and treatment period, we can presume that cell death is due to ROS produced in plasma jet.  相似文献   

4.
Plasma is generated by ionizing gas molecules. Helium (He)‐based cold atmospheric plasma (CAP) was generated using a high‐voltage power supply with low‐frequency excitation (60 Hz at 7 kV) and He flow at 2 l/min. Platinum nanoparticles (Pt‐NPs) are potent antioxidants due to their unique ability to scavenge superoxides and peroxides. These features make them useful for the protection against oxidative stress‐associated pathologies. Here, the effects of Pt‐NPs on He‐CAP‐induced apoptosis and the underlying mechanism were examined in human lymphoma U937 cells. Apoptosis was measured after cells were exposed to He‐CAP in the presence or absence of Pt‐NPs. The effects of combined treatment were determined by observing the changes in intracellular reactive oxygen species (ROS) and both mitochondrial and Fas dependent pathway. The results indicate that Pt‐NPs substantially scavenge He‐CAP‐induced superoxides and peroxides and inhibit all the pathways involved in apoptosis execution. This might be because of the SOD/catalase mimetic effects of Pt‐NPs. These results showed that the Pt‐NPs can induce He‐CAP desensitization in human lymphoma U937 cells.  相似文献   

5.
Recent studies have proven several promising anticancer activities for cold atmospheric plasma (CAP) against a wide range of cancer cells in vitro. Recently, media treated with CAP have also found to effectively eradicate cancer cells similar to the CAP. Based on advantages, many researchers prefer to apply CAP-activated media (PAM) as an alternative to cap in the treatment of cancer. However, less has been achieved regarding the anticancer effects and anticancer mechanisms of PAM. Investigating the selective anticancerous activities of PAM, the viability of SKBR3, MCF7, ASPC-1, A-549, G-292, and SW742 cancer cell lines, as well as normal human skin fibroblasts (FMGB-1) and MCF10A cells in relation to the media activation time, and the length of exposure was studied. Also, we examined the concentration of ozone in media as a function to CAP activation time since recent studies have proposed ozone as a pivotal reactive species in the induction of cell death. Based on the result, both increasing the duration of media activation time and the length of exposure to PAM could significantly increase the anticancer activity. Nevertheless, the cytotoxicity on normal cells was either not affected or slightly increased. Among the six tested cancer cell lines, SW742 was the most resistant and SKBR3 the most susceptible cancer cell lines to PAM. Also, increasing duration of treatment with CAP resulted in a significant rise in O3 concentration levels in media. Overall, these results suggest PAM, as a promising tool in the treatment of different cancers and O 3 formation as a probable underlying mechanism.  相似文献   

6.
The atomic force microscope (AFM) is broadly used to study the morphology of cells. The morphological characteristics and differences of the cell membrane between normal human astrocytes and glial tumor cells are not well explored. Following treatment with cold atmospheric plasma, evaluation of the selective effect of plasma on cell viability of tumor cells is poorly understood and requires further evaluation. Using AFM we imaged morphology of glial cells before and after cold atmospheric plasma treatment. To look more closely at the effect of plasma on cell membrane, high resolution imaging was used. We report the differences between normal human astrocytes and human glioblastoma cells by considering the membrane surface details. Our data, obtained for the first time on these cells using atomic force microscopy, argue for an architectural feature on the cell membrane, i.e. brush layers, different in normal human astrocytes as compared to glioblastoma cells. The brush layer disappears from the cell membrane surface of normal E6/E7 cells and is maintained in the glioblastoma U87 cells after plasma treatment.  相似文献   

7.

Background and Purpose

Shikonin was reported to induce necroptosis in leukemia cells, but apoptosis in glioma cell lines. Thus, it is needed to clarify whether shikonin could cause necroptosis in glioma cells and investigate its underlying mechanisms.

Methods

Shikonin and rat C6 glioma cell line and Human U87 glioma cell line were used in this study. The cellular viability was assayed by MTT. Flow cytometry with annexin V-FITC and PI double staining was used to analyze cellular death modes. Morphological alterations in C6 glioma cells treated with shikoinin were evaluated by electronic transmission microscopy and fluorescence microscopy with Hoechst 33342 and PI double staining. The level of reactive oxygen species was assessed by using redox-sensitive dye DCFH-DA. The expressional level of necroptosis associated protein RIP-1 was analyzed by western blotting.

Results

Shikonin induced cell death in C6 and U87 glioma cells in a dose and time dependent manner. The cell death in C6 and U87 glioma cells could be inhibited by necroptosis inhibitor necrotatin-1, not by pan-caspase inhibitor z-VAD-fmk. Shikonin treated C6 glioma cells presented electron-lucent cytoplasm, loss of plasma membrane integrity and intact nuclear membrane in morphology. The increased ROS level caused by shikonin was attenuated by necrostatin-1 and blocking ROS by anti-oxidant NAC rescued shikonin-induced cell death in both C6 and U87 glioma cells. Moreover, the expressional level of RIP-1 was up-regulated by shikonin in a dose and time dependent manner as well, but NAC suppressed RIP-1 expression.

Conclusions

We demonstrated that the cell death caused by shikonin in C6 and U87 glioma cells was mainly via necroptosis. Moreover, not only RIP-1 pathway, but also oxidative stress participated in the activation of shikonin induced necroptosis.  相似文献   

8.
Cold atmospheric plasma (CAP) represents a promising therapy for selectively cancer killing. However, the mechanism of CAP‐induced cancer cell death remains unclear. Here, we identified the tumor necrosis factor‐family members, especially Fas, and overloaded intracellular nitric oxide participated in CAP induced apoptosis in A375 and A875 melanoma cell lines, which was known as extrinsic apoptosis pathway. This progress was mediated by antagonistic protein of reactive oxygen species, Sestrin2. The over expression of Sestrin2 induced by plasma treatment resulted in phosphorylation of p38 mitogen‐activated protein kinase (MAPK), followed by increased expression of nitric oxide synthase (iNOS), Fas and Fas ligand. Depletion of Sestrin2 reduced iNOS and Fas expression, which was associated with reduction of plasma‐induced apoptosis. In contrast, inhibition of iNOS activity and phosphorylation of p38 did not alter Sestrin2 expression in plasma‐treated melanoma cells. Taken together, cold atmospheric plasma increases Sestrin2 expression and further activates downstream iNOS, Fas and p38 MAPK signaling to induce apoptosis of melanoma cell lines. These findings suggest a previously unrecognized mechanism in melanoma cells response to cold atmospheric plasma therapy.   相似文献   

9.
Non-thermal atmospheric pressure plasma (NTAPP) is an ionized gas at room temperature and has potential as a new apoptosis-promoting cancer therapy that acts by generating reactive oxygen species (ROS). However, it is imperative to determine its selectivity and standardize the components and composition of NTAPP. Here, we designed an NTAPP-generating apparatus combined with a He gas feeding system and demonstrated its high selectivity toward p53-mutated cancer cells. We first determined the proper conditions for NTAPP exposure to selectively induce apoptosis in cancer cells. The apoptotic effect of NTAPP was greater for p53-mutated cancer cells; artificial p53 expression in p53-negative HT29 cells decreased the pro-apoptotic effect of NTAPP. We also examined extra- and intracellular ROS levels in NTAPP-treated cells to deduce the mechanism of NTAPP action. While NTAPP-mediated increases in extracellular nitric oxide (NO) did not affect cell viability, intracellular ROS increased under NTAPP exposure and induced apoptotic cell death. This effect was dose-dependently reduced following treatment with ROS scavengers. NTAPP induced apoptosis even in doxorubicin-resistant cancer cell lines, demonstrating the feasibility of NTAPP as a potent cancer therapy. Collectively, these results strongly support the potential of NTAPP as a selective anticancer treatment, especially for p53-mutated cancer cells.  相似文献   

10.
《Free radical research》2013,47(5):542-549
Abstract

Plasma medicine is an interdisciplinary field and recent clinical studies showed benefits of topical plasma application to chronic wounds. Whereas most investigations have focused on plasma–skin cell interaction, immune cells are omnipresent in most tissues as well. They not only elicit specific immune responses but also regulate inflammation, which is central in healing and regeneration. Plasma generates short-lived radicals and species in the gas phase. Mechanisms of plasma–cell interactions are not fully understood but it is hypothesized that reactive oxygen and nitrogen species (RONS) mediate effects of plasma on cells. In this study human blood cells were investigated after cold atmospheric plasma treatment with regard to oxidation and viability. Plasma generates hydrogen peroxide (H2O2) and the responses were similar in cells treated with concentration-matched H2O2. Both treatments gave an equivalent reduction in viability and this was completely abrogated if catalase was added prior to plasma exposure. Further, five oxidation probes were utilized and fluorescence increase was observed in plasma-treated cells. Dye-dependent addition of catalase diminished most but not all of the probe fluorescence, assigning H2O2 a dominant but not exclusive role in cellular oxidation by plasma. Investigations for other species revealed generation of nitrite and formation of 3-nitrotyrosine but not 3-chlorotyrosine after plasma treatment indicating presence of RNS which may contribute to cellular redox changes observed. Together, these results will help to clarify how oxidative stress associates with physical plasma treatment in wound relevant cells.  相似文献   

11.
The decontamination of implant surfaces represents the basic procedure in the management of peri-implant diseases, but it is still a challenge. The study aimed to evaluate the degradation of oral biofilms grown in situ on machined titanium (Ti) discs by cold atmospheric plasma (CAP). ~ 200 Ti discs were exposed to the oral cavities of five healthy human volunteers for 72?h. The resulting biofilms were divided randomly between the following treatments: CAP (which varied in mean power, treatment duration, and/or the gas mixture), and untreated and treated controls (diode laser, air-abrasion, chlorhexidine). The viability, quantity, and morphology of the biofilms were determined by live/dead staining, inoculation onto blood agar, quantification of the total protein content, and scanning electron microscopy. Exposure to CAP significantly reduced the viability and quantity of biofilms compared with the positive control treatments. The efficacy of treatment with CAP correlated with the treatment duration and plasma power. No single method achieved complete biofilm removal; however, CAP may provide an effective support to established decontamination techniques for treatment of peri-implant diseases.  相似文献   

12.
A series of related 2-arylindoles have been evaluated for their anticancer activity against a range of glioblastoma cell lines using a number of different cell-based assays to determine cell viability after treatment with the compounds. The best indoles, which showed comparable activity to cisplatin against a U87MG cell line in the MTS assay, were taken forward and initial studies suggest that their mechanism of action is consistent with the generation of reactive oxygen species followed by autophagic cell death. Furthermore, activity was also observed in glioblastoma short-term cell cultures for the best lead compound and in some cases gave low micromolar IC50s.  相似文献   

13.
Cold atmospheric plasma (CAP) that generates reactive oxygen species (ROS) has received considerable scientific attentions as a new type of anticancer. In particular, an indirect treatment method of inducing cancer cell death through plasma-activated medium (PAM), rather than direct plasma treatment has been well established. Although various cell death pathways such as apoptosis, necroptosis, and autophagy have been suggested to be involved in PAM-induced cell death, the involvement of ferroptosis, another type of cell death regulated by lipid ROS is largely unknown. This study reports, that PAM promotes cell death via ferroptosis in human lung cancer cells, and PAM increases intracellular and lipid ROS, thereby resulting in mitochondrial dysfunction. The treatment of cells with N-acetylcysteine, an ROS scavenging agent, or ferrostatin-1, a ferroptosis inhibitor, protects cells against PAM-induced cell death. Interestingly, ferroptosis suppressor protein 1 (FSP1) is downregulated upon PAM treatment. Furthermore, the treatment of cells with iFSP1, an inhibitor of FSP1, further enhances PAM-induced ferroptosis. Finally, this study demonstrates that PAM inhibits tumor growth in a xenograft model with an increase in 4-hydroxynoneal and PTGS2, a byproduct of lipid peroxidation, and a decrease in FSP1 expression. This study will provide new insights into the underlying mechanism and therapeutic strategies of PAM-mediated cancer treatment.Subject terms: Non-small-cell lung cancer, Drug development  相似文献   

14.
Autophagy can promote cell survival or death, but the molecular basis of its dual role in cancer is not well understood. Here, we report that glucosamine induces autophagic cell death through the stimulation of endoplasmic reticulum (ER) stress in U87MG human glioma cancer cells. Treatment with glucosamine reduced cell viability and increased the expression of LC3 II and GFP-LC3 fluorescence puncta, which are indicative of autophagic cell death. The glucosamine-mediated suppression of cell viability was reversed by treatment with an autophagy inhibitor, 3-MA, and interfering RNA against Atg5. Glucosamine-induced ER stress was manifested by the induction of BiP, IRE1α, and phospho-eIF2α expression. Chemical chaperon 4-PBA reduced ER stress and thereby inhibited glucosamine-induced autophagic cell death. Taken together, our data suggest that glucosamine induces autophagic cell death by inducing ER stress in U87MG glioma cancer cells and provide new insight into the potential anticancer properties of glucosamine.  相似文献   

15.
The proliferation of fibroblasts and myofibroblast differentiation are crucial in wound healing and wound closure. Impaired wound healing is often correlated with chronic bacterial contamination of the wound area. A new promising approach to overcome wound contamination, particularly infection with antibiotic-resistant pathogens, is the topical treatment with non-thermal “cold” atmospheric plasma (CAP). Dielectric barrier discharge (DBD) devices generate CAP containing active and reactive species, which have antibacterial effects but also may affect treated tissue/cells. Moreover, DBD treatment acidifies wound fluids and leads to an accumulation of hydrogen peroxide (H2O2) and nitric oxide products, such as nitrite and nitrate, in the wound. Thus, in this paper, we addressed the question of whether DBD-induced chemical changes may interfere with wound healing-relevant cell parameters such as viability, proliferation and myofibroblast differentiation of primary human fibroblasts. DBD treatment of 250 μl buffered saline (PBS) led to a treatment time-dependent acidification (pH 6.7; 300 s) and coincidently accumulation of nitrite (~300 μM), nitrate (~1 mM) and H2O2 (~200 μM). Fibroblast viability was reduced by single DBD treatments (60–300 s; ~77–66%) or exposure to freshly DBD-treated PBS (60–300 s; ~75–55%), accompanied by prolonged proliferation inhibition of the remaining cells. In addition, the total number of myofibroblasts was reduced, whereas in contrast, the myofibroblast frequency was significantly increased 12 days after DBD treatment or exposure to DBD-treated PBS. Control experiments mimicking DBD treatment indicate that plasma-generated H2O2 was mainly responsible for the decreased proliferation and differentiation, but not for DBD-induced toxicity. In conclusion, apart from antibacterial effects, DBD/CAP may mediate biological processes, for example, wound healing by accumulation of H2O2. Therefore, a clinical DBD treatment must be well-balanced in order to avoid possible unwanted side effects such as a delayed healing process.  相似文献   

16.
Glioblastoma multiforme (GBM) is the most aggressive kind of malignant primary brain tumor in humans. Given the limitation of Conventional therapeutic strategy, the development of nanotechnology and natural product therapy seems to be an effective method enhancing the prognosis of GBM patients. In this research, cell viability, mRNA expressions of various apoptosis-related genes apoptosis, and generation of reactive oxygen species (ROS) in human U-87 malignant GBM cell line (U87) treated with Urolithin B (UB) and CeO2-UB. Unlike CeO2-NPs, both UB and CeO2-UB caused a dose-dependent decrease in the viability of U87 cells. The half-maximal inhibitory concentration values of UB and CeO2-UB were 315 and 250 μM after 24 h, respectively. Moreover, CeO2-UB exerted significantly higher effects on U87 viability, P53 expression, and ROS generation. Furthermore, UB and CeO2-UB increased the accumulation of U87 cells in the SUB-G1 population, decreased the expression of cyclin D1, and increased the Bax/Bcl2 ratio expression. Collectively, these data indicate that CeO2-UB exhibited more substantial anti-GBM effects than UB. Although further in vivo investigations are needed, these results proposed that CeO2-NPs could be utilized as a potential novel anti-GBM agent after further studies.  相似文献   

17.
The effect of cold plasma on E. coli cells was studied. It was shown that the treatment of E. coli cells with cold plasma caused partial or total disruption of the plasma membrane integrity, which was accompanied by a release of intracellular substances into the extracellular environment. A quantitative assessment of the extent of the damage to the cell membrane showed that a loss of no more than 23.6% of intracellular substances (calculated by the proportion of the intracellular nucleotide release) is sufficient to lead to cell death. The use of media with different ionic strength levels to create osmotic shock showed that the treatment of E. coli cells with cold plasma significantly decreased the cell wall strength.  相似文献   

18.
Psoriasis is a chronic hyperproliferative skin disease characterised by excessive growth of keratinocytes. Indeed, inducing keratinocyte apoptosis is a key mechanism responsible for psoriatic plaques clearance following some important existing therapies, which display pro-oxidant activity. Cold atmospheric plasma (CAP), acting as a tuneable source of reactive oxygen and nitrogen species (RONS), can controllably transfer RONS to the cellular environment, deliver antiproliferative RONS concentrations and exert antiproliferative and proapoptotic effects. This study was undertaken to evaluate the therapeutic potential of CAP in psoriasis. We used cell models of psoriasis-like inflammation by adding lipopolysaccharide (LPS) or tumour necrosis factor alpha (TNF-α) to HaCaT keratinocytes. Indirect plasma, plasma-activated medium (PAM), was administered to HaCaT cells. Atmospheric pressure plasma jet (APPJ) was applied directly to imiquimod (IMQ)-induced psoriasiform dermatitis in mice. The results showed that PAM induced an increase in intracellular ROS and caused keratinocyte apoptosis. Moreover, cells under inflammation showed lesser viability and larger apoptosis rate. With repeated administration of APPJ, psoriasiform lesions showed ameliorated morphological manifestation and reduced epidermal proliferation. Overall, this study supports that CAP holds good potential in psoriasis treatment.  相似文献   

19.

Objective

Cold atmospheric plasma (CAP) has recently been shown to selectively target cancer cells with minimal effects on normal cells. We systematically assessed the effects of CAP in the treatment of glioblastoma.

Methods

Three glioma cell lines, normal astrocytes, and endothelial cell lines were treated with CAP. The effects of CAP were then characterized for viability, cytotoxicity/apoptosis, and cell cycle effects. Statistical significance was determined with student''s t-test.

Results

CAP treatment decreases viability of glioma cells in a dose dependent manner, with the ID50 between 90-120 seconds for all glioma cell lines. Treatment with CAP for more than 120 seconds resulted in viability less than 35% at 24-hours posttreatment, with a steady decline to less than 20% at 72-hours. In contrast, the effect of CAP on the viability of NHA and HUVEC was minimal, and importantly not significant at 90 to 120 seconds, with up to 85% of the cells remained viable at 72-hours post-treatment. CAP treatment produces both cytotoxic and apoptotic effects with some variability between cell lines. CAP treatment resulted in a G2/M-phase cell cycle pause in all three cell lines.

Conclusions

This preliminary study determined a multi-focal effect of CAP on glioma cells in vitro, which was not observed in the non-tumor cell lines. The decreased viability depended on the treatment duration and cell line, but overall was explained by the induction of cytotoxicity, apoptosis, and G2/M pause. Future studies will aim at further characterization with more complex pre-clinical models.  相似文献   

20.
Ethanol treatment causes an increase in expression of TGF-beta1 and CYP2E1 in the centrilobular area. Alcoholic liver disease is usually initiated in the centrilobular region of the liver. We hypothesized that the combination of TGF-beta1 and CYP2E1 produces increased oxidative stress and liver cell toxicity. To test this possibility, we studied the effects of TGF-beta1 on the viability of HepG2 E47 cells that express human CYP2E1, and C34 HepG2 cells, which do not express CYP2E1. E47 cells underwent greater growth inhibition and enhanced apoptosis after TGF-beta1 treatment, as compared to the C34 cells. There was an enhanced production of reactive oxygen species (ROS) and a decline in reduced glutathione (GSH) levels in the TGF-beta1-treated E47 cells and the enhanced cell death could be prevented by antioxidants. The CYP2E1 inhibitor diallyl sulfide prevented the potentiated cell death in E47 cells validating the role of CYP2E1. Mitochondrial membrane potential declined in the TGF-beta1-treated E47 cells, prior to developing toxicity, and cell death could be prevented by trifluoperazine, an inhibitor of the mitochondrial membrane permeability transition. TGF-beta1 also produced a loss of cell viability in hepatocytes from pyrazole-treated rats with elevated levels of CYP2E1, compared to control hepatocytes. In conclusion, increased toxic interactions by TGF-beta1 plus CYP2E1 can occur by a mechanism involving increased production of intracellular ROS and depletion of GSH, resulting in mitochondrial membrane damage and loss of membrane potential, followed by apoptosis. Potentiation of TGF-beta1-induced cell death by CYP2E1 may contribute to mechanisms of alcohol-induced liver disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号