首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
肿瘤细胞能够通过多种机制抵御免疫防御或药物的抗肿瘤作用.近年研究发现,外泌体能够直接介导癌症的进展和远端转移灶的形成.更为重要的是,在肿瘤免疫微环境中,肿瘤来源外泌体不仅能够抑制树突状细胞(DC)、巨噬细胞、T细胞、NK细胞等免疫细胞功能,还能促进骨髓来源的抑制性细胞(MDSC)、调节性T细胞(Treg)等的免疫抑制功能,进而降低抗肿瘤免疫应答过程,帮助肿瘤细胞逃避机体免疫细胞识别.本文将概述肿瘤外泌体及其携带的关键介质分子在介导肿瘤免疫逃逸和耐受过程中扮演的角色,并对这一研究领域的最新进展作一综述.  相似文献   

2.
血管新生(angiogenesis)是机体内一个复杂的生理学和病理学过程,是治疗缺血性疾病的重要措施。大量实验研究已表明间充质干细胞(mesenchymal stem cells, MSCs)等干细胞移植可促进心肌梗死后血管新生,近期研究证实这一作用可能主要通过分泌外泌体形式介导。外泌体(exosome)通过传递与血管新生相关微RNA(microRNA, mi RNA)或蛋白质等生物活性物质,调控靶器官中与血管新生相关通路的基因表达,提高内皮细胞在缺血缺氧环境下的存活、迁移、成管能力,促进心肌梗死区域血管新生。通过基因修饰手段增强外泌体介导的心脏修复作用,以及将外泌体与生物活性肽结合形成工程外泌体来靶向缺血心肌治疗,是目前外泌体在心血管领域的热点研究方向。本文结合近年外泌体研究的相关文献,就MSCs来源外泌体促进心肌梗死血管新生的具体机制及现状研究作一综述。  相似文献   

3.
外泌体是由细胞分泌到胞外的囊泡状小体,体内多种细胞可以分泌外泌体,来源于树突状细胞(DC)和肿瘤细胞的外泌体表面表达MHC分子和抗原肽,体内外实验证明其具有抗肿瘤的作用,因此外泌体作为抗肿瘤疫苗被广泛研究。该文介绍外泌体的发现、蛋白质组成、体内抗肿瘤的机制,以及DC与肿瘤来源的外泌体的基础及临床研究。  相似文献   

4.
5.
外泌体是一类小型的细胞外囊泡,可以包裹蛋白质、核酸等生物活性分子随体液循环到达机体各处,具有广泛的信息传递作用。研究发现,外泌体在病毒感染宿主的过程中也扮演着重要的角色。病毒需要在宿主细胞内完成复制周期并释放子代病毒,而这一过程与外泌体的产生及分泌途径有共通的部分。一方面,病毒可以"挟持"外泌体并将自身成分装入其中,逃避宿主的免疫应答,促进其在细胞间的传播。另一方面,宿主细胞也可利用外泌体传递抗病毒因子以抑制病毒感染。文中旨在从病毒与宿主两方面阐述外泌体在病毒感染宿主过程中的作用,以期为该领域的研究提供新的思路。  相似文献   

6.
马久程  王兆楠  祁俊 《生命的化学》2021,41(11):2401-2410
创面愈合后期瘢痕增生较为常见,而传统的治疗方式存在些许弊端.外泌体作为旁分泌因子参与细胞间的信号传导,并促进血管生成和细胞增殖.外泌体作为无细胞衍生物的研究热点之一,在创面修复领域备受关注.多种干细胞来源的外泌体可通过多种途径抑制瘢痕增生,甚至可成为促进创面无瘢痕修复的治疗工具.未来,外泌体联合生物支架、增强靶向能力、...  相似文献   

7.
对原代培养的SD大鼠星形胶质细胞分泌的外泌体进行提取并鉴定.首先原代培养大鼠星形胶质细胞,免疫荧光鉴定星形胶质细胞标记性蛋白(胶质纤维酸性蛋白:glial fibrillary acidic protein,GFAP)以鉴定星形胶质细胞的纯度,然后采用超速离心法对大鼠原代星形胶质细胞培养上清液中的外泌体进行分离和提取;...  相似文献   

8.
外泌体是多种活细胞经过内吞-融合-外排等一系列过程主动向胞外分泌的纳米级双层膜结构小囊泡,广泛存在于血液和尿液等生物体液中.因其携带着多种蛋白质、核酸和脂质等生物活性分子,所以外泌体不仅在细胞间物质交换和信息传递中发挥重要作用,而且对疾病诊断、预后预测和治疗管理等均具有提示意义.外泌体的高效提取、分离和完整保存是研...  相似文献   

9.
肺脏在保证机体与外界进行气体交换的过程中,时刻面临着各种病原微生物、过敏原甚至是毒物的威胁.因此,肺脏免疫系统,尤其是固有免疫系统,在保护机体免于上述危害并维持状态稳定中发挥着关键作用.面对外来病原体入侵,肺泡上皮细胞(AECs)和肺泡巨噬细胞(AMs)相互协作,迅速识别入侵病原体并发出招募信号,进而中性粒细胞乃至适应...  相似文献   

10.
外泌体是来源于细胞内吞噬作用的细胞外囊泡(extracellular vesicles,EVs),其含有特定的蛋白质、脂质、RNA和DNA,能将信号传递给受体细胞,从而介导细胞通讯过程.缺氧作为一种严重的细胞应激,是脑部疾病的重要特征,可以诱导外泌体的释放并影响其内容物.越来越多的证据显示,外泌体携带的生物活性物质可以...  相似文献   

11.
After a myocardial infarction (MI), the inflammatory responses are induced and assist to repair ischaemic injury and restore tissue integrity, but excessive inflammatory processes promote abnormal cardiac remodelling and progress towards heart failure. Thus, a timely resolution of inflammation and a firmly regulated balance between regulatory and inflammatory mechanisms can be helpful. Molecular- and cellular-based approaches modulating immune response post-MI have emerged as a promising therapeutic strategy. Exosomes are essential mediators of cell-to-cell communications, which are effective in modulating immune responses and immune cells following MI, improving the repair process of infarcted myocardium and maintaining ventricular function via the crosstalk among immune cells or between immune cells and myocardial cells. The present review aimed to seek the role of immune cell-secreted exosomes in infarcted myocardium post-MI, together with mechanisms behind their repairing impact on the damaged myocardium. The exosomes we focus on are secreted by classic immune cells including macrophages, dendritic cells, regulatory T cells and CD4+ T cells; however, further research is demanded to determine the role of exosomes secreted by other immune cells, such as B cells, neutrophils and mast cells, in infarcted myocardium after MI. This knowledge can assist in the development of future therapeutic strategies, which may benefit MI patients.  相似文献   

12.
布鲁氏菌毒力因子研究进展   总被引:1,自引:0,他引:1  
布鲁氏菌是一种革兰氏阴性、兼性胞内寄生菌,可引起人畜共患病布鲁氏菌病。布鲁氏菌致病机制复杂,可通过表达多种毒力因子等方式躲避或抑制宿主免疫系统的攻击并发挥其对机体的致病效应,实现其在宿主体内的长期存活。因此,布鲁氏菌病易转化为慢性感染。本文对目前已发现的多种布鲁氏菌毒力因子相关研究进展进行综述,以期进一步认识布鲁氏菌病的致病机理,为布鲁氏菌病防治提供参考。  相似文献   

13.
Glioblastoma Multiforme (GBM) is an aggressive adult primary brain tumor with poor prognosis. GBM patients develop resistance to the frontline chemotherapy, temozolomide (TMZ). As the connexins (Cx) have been shown to have a complex role in GBM, we investigated the role of Cx43 in TMZ resistance. Cx43 was increased in the TMZ-resistant low passage and cell lines. This correlated with the data in The Cancer Genome Atlas. Cx43 knockdown, reporter gene assays, chromatin immunoprecipitation assay, real-time PCR and western blots verified a role for Cx43 in TMZ resistance. This occurred by TMZ-resistant GBM cells being able to activate epidermal growth factor receptor (EGFR). In turn, EGFR activated the JNK-ERK1/2-AP-1 axis to induce Cx43. The increased Cx43 was functional as indicated by gap junctional intercellular communication among the resistant GBM cells. Cell therapy could be a potential method to deliver drugs, such as anti-EGF to tumor cells. Similar strategies could be used to reverse the expression of Cx43 to sensitize GBM cells to TMZ. The studies showed the potential for targeting EGF in immune therapy. These agents can be used in conjunction with stem cell therapy to treat GBM.  相似文献   

14.
Glioblastomas (GBMs) are highly lethal primary brain tumors. Despite current therapeutic advances in other solid cancers, the treatment of these malignant gliomas remains essentially palliative. GBMs are extremely resistant to conventional radiation and chemotherapies. We and others have demonstrated that a highly tumorigenic subpopulation of cancer cells called GBM stem cells (GSCs) promotes therapeutic resistance. We also found that GSCs stimulate tumor angiogenesis by expressing elevated levels of VEGF and contribute to tumor growth, which has been translated into a useful therapeutic strategy in the treatment of recurrent or progressive GBMs. Furthermore, stem cell-like cancer cells (cancer stem cells) have been shown to promote metastasis. Although GBMs rarely metastasize beyond the central nervous system, these highly infiltrative cancers often invade into normal brain tissues preventing surgical resection, and GSCs display an aggressive invasive phenotype. These studies suggest that targeting GSCs may effectively reduce tumor recurrence and significantly improve GBM treatment. Recent studies indicate that cancer stem cells share core signaling pathways with normal somatic or embryonic stem cells, but also display critical distinctions that provide important clues into useful therapeutic targets. In this review, we summarize the current understanding and advances in glioma stem cell research, and discuss potential targeting strategies for future development of anti-GSC therapies.  相似文献   

15.
16.
17.
Recent studies have shown that pyroptosis, an inflammatory form of cell death, has a dual role in tumorigenesis and tumour progression and affects the prognosis of patients; however, the role of pyroptosis in glioblastoma (GBM) is still unclear. In this study, based on GBM patients'' data from two independent cohorts, we performed a comprehensive analysis of the expression and prognostic value of 33 pyroptosis‐associated genes (PAGs) in GBM, as well as their role in the tumour immune microenvironment (TIME) of GBM. We identified 29 PAGs that were differentially expressed between GBM and normal brain tissue, 18 of which were upregulated in GBM tissue. Most of the 33 PAGs were strongly correlated with the levels of immune cell infiltration. Based on the 33 PAGs, the GBM samples can be divided into two clusters (C1‐C2), with C1 having a ‘hot’ but immunosuppressive TIME and C2 having a ‘cold’ TIME, suggesting different immunotherapeutic responses in the two clusters. In addition, we identified four PAGs that were strongly associated with GBM prognosis and constructed a risk model based on these four PAGs. This risk model is an independent prognostic factor for GBM patients, and there is a different immune status between high‐ and low‐risk groups. In conclusion, this study demonstrates that pyroptosis is closely associated with the prognosis and TIME of GBM and provides an important basis for further studies on the relationship between pyroptosis and GBM.  相似文献   

18.
Drug resistance presents a major obstacle in the treatment of genitourinary cancers. Exosomes as the medium of intercellular communication serve important biological functions and play essential roles in pathological processes, including drug response. Through the transfer of bioactive cargoes, exosomes can modulate drug resistance via multiple mechanisms. This review attempts to elucidate the mechanisms of exosomal cargoes with reference to tumor drug resistance, their role in genitourinary cancers, and their potential clinical applications as candidate biomarkers in liquid biopsy.  相似文献   

19.
Glioblastoma (GBM) is the most aggressive cerebral gliomas. Moreover, the overall prognosis of GBM is still little. Baicalein (BA) is a flavonoid derived from the Scutellaria baicalensis root, and has historically been used in anticancer therapies. However, its apoptosis role and related mechanisms in GBM has not yet been researched clearly. Thus, this study aimed to investigate the effects of BA on human GBM U251 cell line. The effects of BA on proliferation of U251 cells were measured by Cell Counting Kit-8 assay. Cellular apoptosis was detected by flow cytometry with annexin V-FITC/propidium iodide staining. The expression of apoptosis-related protein Bcl-2, Bax and cleaved-caspase3 was detected by quantitative real-time PCR and western blot. The expression of nuclear p65 protein, the active subunit of nuclear factor-kappa B (NF-κB), was determined by immunofluorescence and western blot. Our results showed that the viability of U251 cells significantly decreased in a time- and dose-dependent manner after treated with BA, and the apoptotic ratio of BA-treated groups was significantly higher than that of control groups. Furthermore, the expression of NF-kB-p65 in the nucleus was remarkably reduced, and the activity of NF-kB-p65 was remarkably inhibited after BA treatment. Combined treatment with a NF-kB-P65 inhibitor (QNZ) and BA resulted in the synergistic reduction of Bcl-2 expression and then increase of Bax and cleaved-caspase3 expression; and the viability of U251 cells was also inhibited. In conclusion, BA inhibits GBM cells viability and induces apoptosis via inhibit the activity of NF-kB-p65, suggesting that BA is a potential therapeutic agent for GBM.  相似文献   

20.
The survival of patients with glioblastoma multiforme (GBM), the most common and invasive form of malignant brain tumors, remains poor despite advances in current treatment methods including surgery, radiotherapy, and chemotherapy. Minocycline is a semi-synthetic tetracycline derivative that has been widely used as an antibiotic and more recently, it has been utilized as an antiangiogenic factor to inhibit tumorigenesis. The objective of this study was to investigate the utilization of electrospraying process to fabricate minocycline-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles with high drug loading and loading efficiency and to evaluate their ability to induce cell toxicity in human glioblastoma (i.e., U87-MG) cells. The results from this study demonstrated that solvent mixture of dicholoromethane (DCM) and methanol is the optimal solvent combination for minocycline and larger amount of methanol (i.e., 70:30) resulted in a higher drug loading. All three solvent ratios of DCM:methanol tested produced microparticles that were both spherical and smooth, all in the micron size range. The electrosprayed microparticles were able to elicit a cytotoxic response in U87-MG glioblastoma cells at a lower concentration of drug compared to the free drug. This work provides proof of concept to the hypothesis that electrosprayed minocycline-loaded PLGA microparticles can be a promising agent for the treatment of GBM and could have potential application for cancer therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号