首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Breast cancer (BC) treatment frequently involves microtubule-targeting agents (MTAs), such as paclitaxel, that arrest cells in mitosis. Sensitivity to MTAs is defined by a subset of pro- and anti-apoptotic BCL2 family proteins controlling mitochondrial apoptosis. Here, we aimed to determine their prognostic value in primary tumour samples from 92 BC patients. Our analysis identified high NOXA/PMAIP mRNA expression levels as an independent prognostic marker for improved relapse-free survival (RFS) and overall survival (OS) in multivariate analysis in BC patients, independent of their molecular subtype. Analysis of available TCGA datasets of 1060 BC patients confirmed our results and added a clear predictive value of NOXA mRNA levels for patients who received MTA-based therapy. In this TCGA cohort, 122 patients received MTA-treatment and high NOXA mRNA levels correlated with their progression-free interval (PFI) and OS. Our follow-up analyses in a panel of BC cell lines of different molecular subtypes identified NOXA protein expression as a key determinant of paclitaxel sensitivity in triple-negative breast cancer (TNBC) cells. Moreover, we noted highest additive effects between paclitaxel and chemical inhibition of BCLX, but not BCL2 or MCL1, documenting dependence of TNBC cells on BCLX for survival and paclitaxel sensitivity defined by NOXA expression levels.Subject terms: Cancer, Translational research  相似文献   

2.
MLN4924, a newly discovered small molecule inhibitor of NEDD8-activating enzyme (NAE), inactivates Cullin-RING E3 ubiquitin Ligases (CRLs) by blocking cullin neddylation. As a result, MLN4924 causes accumulation of several key substrates of CRLs and effectively suppresses tumor cell growth by inducing apoptosis and senescence. However, the role of MLN4924 in induction of autophagy and its biological significance are totally unknown. Here we showed that MLN4924 effectively induces autophagy in both time- and dose-dependent manners in multiple human cancer lines, indicating a general phenomenon. Mechanistically, by inactivating CRLs, MLN4924 causes accumulation of DEPTOR and HIF1α. The siRNA knockdown and gene KO studies showed that DEPTOR and the HIF1-REDD1-TSC1 axis are responsible for MLN4924-induced autophagy via inhibiting mTORC1. Biologically, autophagy is a survival signal to tumor cells, and blockage of autophagy via siRNA knockdown, gene KO and small molecule inhibitor remarkably enhanced MLN4924-induced apoptosis. Our study reveals an uncharacterized mechanism of MLN4924 action and provides the proof-of-concept evidence for strategic drug combination of MLN4924 with an autophagy inhibitor for maximal killing of tumor cells via enhancing apoptosis.  相似文献   

3.
4.
Inhibition of protein neddylation, particularly cullin neddylation, has emerged as a promising anticancer strategy, as evidenced by the antitumor activity in preclinical studies of the Nedd8-activating enzyme (NAE) inhibitor MLN4924. This small molecule can block the protein neddylation pathway and is now in clinical trials. We and others have previously shown that the antitumor activity of MLN4924 is mediated by its ability to induce apoptosis, autophagy and senescence in a cell context-dependent manner. However, whether MLN4924 has any effect on tumor angiogenesis remains unexplored. Here we report that MLN4924 inhibits angiogenesis in various in vitro and in vivo models, leading to the suppression of tumor growth and metastasis in highly malignant pancreatic cancer, indicating that blockage of angiogenesis is yet another mechanism contributing to its antitumor activity. At the molecular level, MLN4924 inhibits Cullin–RING E3 ligases (CRLs) by cullin deneddylation, causing accumulation of RhoA at an early stage to impair angiogenic activity of vascular endothelial cells and subsequently DNA damage response, cell cycle arrest and apoptosis due to accumulation of other tumor-suppressive substrates of CRLs. Furthermore, we showed that inactivation of CRLs, via small interfering RNA (siRNA) silencing of its essential subunit ROC1/RBX1, recapitulates the antiangiogenic effect of MLN4924. Taken together, our study demonstrates a previously unrecognized role of neddylation in the regulation of tumor angiogenesis using both pharmaceutical and genetic approaches, and provides proof of concept evidence for future development of neddylation inhibitors (such as MLN4924) as a novel class of antiangiogenic agents.  相似文献   

5.
Aberrant expression of special AT-rich binding protein 1 (SATB1), a global genomic organizer, has been associated with various cancers, which raises the question of how higher-order chromatin structure contributes to carcinogenesis. Disruption of apoptosis is one of the hallmarks of cancer. We previously demonstrated that SATB1 mediated specific long-range chromosomal interactions between the mbr enhancer located within 3’-UTR of the BCL2 gene and the promoter to regulate BCL2 expression during early apoptosis. In the present study, we used chromosome conformation capture (3C) assays and molecular analyses to further investigate the function of the SATB1-mediated higher-order chromatin structure in co-regulation of the anti-apoptotic BCL2 gene and the pro-apoptotic NOXA gene located 3.4Mb downstream on Chromosome 18. We demonstrated that the mbr enhancer spatially juxtaposed the promoters of BCL2 and NOXA genes through SATB1-mediated chromatin-loop in Jurkat cells. Decreased SATB1 levels switched the mbr-BCL2 loop to mbr-NOXA loop, and thus changed expression of these two genes. The SATB1-mediated dynamic switch of the chromatin loop structures was essential for the cooperative expression of the BCL2 and NOXA genes in apoptosis. Notably, the role of SATB1 was specific, since inhibition of SATB1 degradation by caspase-6 inhibitor or caspase-6-resistant SATB1 mutant reversed expression of BCL-2 and NOXA in response to apoptotic stimulation. This study reveals the critical role of SATB1-organized higher-order chromatin structure in regulating the dynamic equilibrium of apoptosis-controlling genes with antagonistic functions and suggests that aberrant SATB1 expression might contribute to cancer development by disrupting the co-regulated genes in apoptosis pathways.  相似文献   

6.
MLN4924 is a potent and selective small-molecule inhibitor of NEDD8-activating enzyme, which showed antitumor effect in several types of malignant tumor types. However, the mechanism of action of MLN4924 in acute myeloid leukemia (AML) requires further investigation. Real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) was conducted to detect the mRNA levels of genes. Gene expression was knocked down by short hairpin RNA (shRNA). Moreover, the protein expression was detected by Western blotting (WB) assay. The proliferation and apoptosis of AML cells were measured by Cell Counting Kit-8 (CCK8) assay and flow cytometry (FCM). In the present study, we observed that the mRNA expression levels of NEDD8, UBA3, UBE2M and RBX1 in AML patients were up-regulated compared with healthy controls, which were correlated with worse overall survival (OS) of patients. Besides, knockdown of UBA3, UBE2M and RBX1 inhibited the NEDDylation of CULs and increased the protein expression of p53 and p21 in MOLM-13 cell line. In AML cells, MLN4924 inhibited cell proliferation, promoted cell apoptosis, and induced cell cycle arrest at the G2/M phase. As revealed by experiments in vivo and in vitro, the NEDDylation of CULs was significantly inhibited and the p53 signaling pathway was activated after MLN4924 treatment. So, we concluded that NEDD8, UBA3, UBE2M and RBX1 may serve as the prognostic biomarkers and novel therapeutic targets for AML. Inhibition of the NEDDylation pathway resulted in an anti-leukemia effect by activating the p53 signaling pathway.  相似文献   

7.
A cyclometallated rhodium(III) complex [Rh(ppy)2(dppz)]+ (1) (where ppy = 2-phenylpyridine and dppz = dipyrido[3,2-a:2′,3′-c]phenazine dipyridophenazine) has been prepared and identified as an inhibitor of NEDD8-activating enzyme (NAE). The complex inhibited NAE activity in cell-free and cell-based assays, and suppressed the CRL-regulated substrate degradation and NF-κB activation in human cancer cells with potency comparable to known NAE inhibitor MLN4924. Molecular modeling analysis suggested that the overall binding mode of 1 within the binding pocket of the APPBP1/UBA3 heterodimer resembled that for MLN4924. Complex 1 is the first metal complex reported to suppress the NEDDylation pathway via inhibition of the NEDD8-activating enzyme.  相似文献   

8.
Cullin-RING ubiquitin ligases (CRLs) are the largest family of E3 ligases and require cullin neddylation for their activation. The NEDD8-activating enzyme inhibitor MLN4924 reportedly blocked cullin neddylation and inactivated CRLs, which resulted in apoptosis induction and tumor suppression. However, CRL roles in ovarian cancer cell survival and the ovarian tumor repressing effects of MLN4924 are unknown. We show here that CRL4 components are highly expressed in human epithelial ovarian cancer tissues. MLN4924-induced DNA damage, cell cycle arrest, and apoptosis in ovarian cancer cells in a time- and dose-dependent manner. In addition, MLN4924 sensitized ovarian cancer cells to other chemotherapeutic drug treatments. Depletion of CRL4 components Roc1/2, Cul4a, and DDB1 had inhibitory effects on ovarian cancer cells similar to MLN4924 treatment, which suggested that CRL4 inhibition contributed to the chemotherapeutic effect of MLN4924 in ovarian cancers. We also investigated for key CRL4 substrate adaptors required for ovarian cancer cells. Depleting Vprbp/Dcaf1 did not significantly affect ovarian cancer cell growth, even though it was expressed by ovarian cancer tissues. However, depleting Cdt2/Dcaf2 mimicked the pharmacological effects of MLN4924 and caused the accumulation of its substrate, CDT1, both in vitro and in vivo. MLN4924-induced DNA damage and apoptosis were partially rescued by Cdt1 depletion, suggesting that CRL4CDT2 repression and CDT1 accumulation were key biochemical events contributing to the genotoxic effects of MLN4924 in ovarian cancer cells. Taken together, these results indicate that CRL4CDT2 is a potential drug target in ovarian cancers and that MLN4924 may be an effective anticancer agent for targeted ovarian cancer therapy.  相似文献   

9.
The central regulator of adipogenesis, PPARγ, is a nuclear receptor that is linked to obesity and metabolic diseases. Here we report that MKRN1 is an E3 ligase of PPARγ that induces its ubiquitination, followed by proteasome-dependent degradation. Furthermore, we identified two lysine sites at 184 and 185 that appear to be targeted for ubiquitination by MKRN1. Stable overexpression of MKRN1 reduced PPARγ protein levels and suppressed adipocyte differentiation in 3T3-L1 and C3H10T1/2 cells. In contrast, MKRN1 depletion stimulated adipocyte differentiation in these cells. Finally, MKRN1 knockout MEFs showed an increased capacity for adipocyte differentiation compared with wild-type MEFs, with a concomitant increase of PPARγ and adipogenic markers. Together, these data indicate that MKRN1 is an elusive PPARγ E3 ligase that targets PPARγ for proteasomal degradation by ubiquitin-dependent pathways, and further depict MKRN1 as a novel target for diseases involving PPARγ.  相似文献   

10.
Microenvironment-mediated upregulation of the B-cell receptor (BCR) and nuclear factor-κB (NF-κB) signaling in CLL cells resident in the lymph node and bone marrow promotes apoptosis evasion and clonal expansion. We recently reported that MLN4924 (pevonedistat), an investigational agent that inhibits the NEDD8-activating enzyme (NAE), abrogates stromal-mediated NF-κB pathway activity and CLL cell survival. However, the NAE pathway also assists degradation of multiple other substrates. MLN4924 has been shown to induce DNA damage and cell cycle arrest, but the importance of this mechanism in primary neoplastic B cells has not been studied. Here we mimicked the lymph node microenvironment using CD40 ligand (CD40L)-expressing stroma and interleukin-21 (IL-21) to find that inducing proliferation of the primary CLL cells conferred enhanced sensitivity to NAE inhibition. Treatment of the CD40-stimulated CLL cells with MLN4924 resulted in deregulation of Cdt1, a DNA replication licensing factor, and cell cycle inhibitors p21 and p27. This led to DNA damage, checkpoint activation and G2 arrest. Alkylating agents bendamustine and chlorambucil enhanced MLN4924-mediated DNA damage and apoptosis. These events were more prominent in cells stimulated with IL-21 compared with CD40L alone, indicating that, following NAE inhibition, the culture conditions were able to direct CLL cell fate from an NF-κB inhibition to a Cdt1 induction program. Our data provide insight into the biological consequences of targeting NAE in CLL and serves as further rationale for studying the clinical activity of MLN4924 in CLL, particularly in combination with alkylating agents.The ubiquitin–proteasome system ensures timely destruction of intracellular proteins. In the past decade, protein degradation has become a pharmacologic target: proteasome inhibitors (e.g., bortezomib) are currently being used in therapy of plasma and B-cell neoplasms. Inhibiting the ubiquitination process upstream of the proteasome represents a promising alternative approach. In this regard, ubiquitin-like modifiers (Ubl) such as NEDD8, ISG15 (interferon-stimulated gene 15), and SUMO (small ubiquitin-like modifier) regulate diverse cellular processes, depending on the exact Ubl and substrate involved. One such Ubl, NEDD8, modulates Cullin-RING E3 ubiquitin ligase (CRL) activity through covalent modification, neddylation.1Chronic lymphocytic leukemia (CLL) B cells are highly dependent on cell–cell interactions in the lymph node and bone marrow microenvironment.2 Stromal-mediated upregulation of B-cell receptor (BCR) and nuclear factor-κB (NF-κB) signaling in CLL cells resident in these niches ensures apoptosis evasion and promotes proliferation and clonal expansion.3 We recently reported that MLN4924 (pevonedistat), an investigational inhibitor of the NEDD8-activating enzyme (NAE), successfully abrogates NF-κB pathway activity, CLL cell survival and chemoresistance in an in vitro co-culture model that mimics the lymph node microenvironment.4 NAE adenylates NEDD8 at its C-terminus and allows its transfer to a specific cysteine within NAE, thus initiating a process of neddylation. Active NEDD8 is then transferred to the cysteine of the ubiquitin-conjugating enzyme (E2) specific for the pathway (Ubc12), and is finally conjugated to the CRLs.5 CRLs are responsible for ubiquitination and degradation of their substrate proteins. NAE–NEDD8 interaction is disrupted when a covalent adduct is formed between NEDD8 and MLN4924.6 Ultimately, this prevents ubiqitination of CRL target proteins, extending their half-life, thereby increasing levels of inhibitor of NF-κB (IκB), a negative pathway modulator.6, 7, 8 However, CRLs process a variety of proteins that, in addition to signal transduction (IκBα, DEPTOR, β-catenin, hypoxia-inducible factor-1α) and apoptosis (NOXA, BimEL), are important regulators of cell cycle and DNA replication (e.g., p21Cip1, p27Kip1, Wee1, Cyclin D1 and Cdt1).9, 10, 11, 12, 13, 14 Because of the diversity of CRL target substrates, the biological consequences of their inhibition are tissue dependent. In adherent solid tumor cell lines, inhibition of neddylation resulted in characteristic deregulation of cell cycle with DNA re-replication, checkpoint activation and cell cycle arrest, thought to be secondary to stabilization of the replication-licensing protein Cdt1 (chromatin licensing and DNA replication factor 1) and cyclin-dependent kinase (CDK) inhibitor p21Cip1.11, 15, 16, 17 However, the importance of this mechanism in primary neoplastic B cells has not been studied. Here we determined that, under the conditions promoting cell replication and growth, MLN4924 induces checkpoint activation and cell cycle arrest in primary CLL B -cells. This mechanism complements abrogation of NF-κB pathway activity to induce apoptosis in CLL.  相似文献   

11.
12.
The NEDD8-activating enzyme (NAE) initiates neddylation, the cascade of post-translational NEDD8 conjugation onto target proteins. MLN4924, a selective NAE inhibitor, has displayed preclinical anti-tumor activity in vitro and in vivo, and promising clinical activity has been reported in patients with refractory hematologic malignancies. Here, we sought to understand the mechanisms of resistance to MLN4924. K562 and U937 leukemia cells were exposed over a 6 month period to MLN4924 and populations of resistant cells (R-K562MLN, R-U937MLN) were selected. R-K562MLN and R-U937MLN cells contain I310N and Y352H mutations in the NAE catalytic subunit UBA3, respectively. Biochemical analyses indicate that these mutations increase the enzyme’s affinity for ATP while decreasing its affinity for NEDD8. These mutations effectively contribute to decreased MLN4924 potency in vitro while providing for sufficient NAE function for leukemia cell survival. Finally, R-K562MLN cells showed cross-resistance to other NAE-selective inhibitors, but remained sensitive to a pan-E1 (activating enzyme) inhibitor. Thus, our work provides insight into mechanisms of MLN4924 resistance to facilitate the development of more effective second-generation NAE inhibitors.  相似文献   

13.
《Autophagy》2013,9(11):1677-1679
The multiunit Cullin (CUL)-RING E3 ligase (CRL) controls diverse biological processes by targeting a mass of substrates for ubiquitination and degradation, whereas its dysfunction causes carcinogenesis. Post-translational neddylation of CUL, a process triggered by the NEDD8-activating enzyme E1 subunit 1 (NAE1), is required for CRL activation. Recently, MLN4924 was discovered via a high-throughput screen as a specific NAE1 inhibitor and first-in-class anticancer drug. By blocking CUL neddylation, MLN4924 inactivates CRL and causes the accumulation of CRL substrates that trigger cell cycle arrest, senescence and/or apoptosis to suppress the growth of cancer cells in vitro and in vivo. Recently, we found that MLN4924 also triggers protective autophagy in response to CRL inactivation. MLN4924-induced autophagy is attributed partially to the inhibition of mechanistic target of rapamycin (also known as mammalian target of rapamycin, MTOR) activity by the accumulation of the MTOR inhibitory protein DEPTOR, as well as reactive oxygen species (ROS)-induced stress. Moreover, the blockage of autophagy response enhances apoptosis in MLN4924-treated cells. Together, our findings not only reveal autophagy as a novel cellular response to CRL inactivation by MLN4924, but also provide a piece of proof-of-concept evidence for the combination of MLN4924 with autophagy inhibitors to enhance therapeutic efficacy.  相似文献   

14.
MicroRNAs (miRNA) are generally described as negative regulators of gene expression. However, some evidence suggests that they may also play positive roles. As such, we reported that miR-1291 leads to a GPC3 mRNA expression increase in hepatoma cells through a 3′ untranslated region (UTR)-dependent mechanism. In the absence of any direct interaction between miR-1291 and GPC3 mRNA, we hypothesized that miR-1291 could act by silencing a negative regulator of GPC3 mRNA expression. Based on in silico predictions and experimental validation, we demonstrate herein that miR-1291 represses the expression of the mRNA encoding the endoplasmic reticulum (ER)-resident stress sensor IRE1α by interacting with a specific site located in the 5′ UTR. Moreover, we show, in vitro and in cultured cells, that IRE1α cleaves GPC3 mRNA at a 3′ UTR consensus site independently of ER stress, thereby prompting GPC3 mRNA degradation. Finally, we show that the expression of a miR-1291-resistant form of IRE1α abrogates the positive effects of miR-1291 on GPC3 mRNA expression. Collectively, our data demonstrate that miR-1291 is a biologically relevant regulator of GPC3 expression in hepatoma cells and acts through silencing of the ER stress sensor IRE1α.  相似文献   

15.
The multiunit Cullin (CUL)-RING E3 ligase (CRL) controls diverse biological processes by targeting a mass of substrates for ubiquitination and degradation, whereas its dysfunction causes carcinogenesis. Post-translational neddylation of CUL, a process triggered by the NEDD8-activating enzyme E1 subunit 1 (NAE1), is required for CRL activation. Recently, MLN4924 was discovered via a high-throughput screen as a specific NAE1 inhibitor and first-in-class anticancer drug. By blocking CUL neddylation, MLN4924 inactivates CRL and causes the accumulation of CRL substrates that trigger cell cycle arrest, senescence and/or apoptosis to suppress the growth of cancer cells in vitro and in vivo. Recently, we found that MLN4924 also triggers protective autophagy in response to CRL inactivation. MLN4924-induced autophagy is attributed partially to the inhibition of mechanistic target of rapamycin (also known as mammalian target of rapamycin, MTOR) activity by the accumulation of the MTOR inhibitory protein DEPTOR, as well as reactive oxygen species (ROS)-induced stress. Moreover, the blockage of autophagy response enhances apoptosis in MLN4924-treated cells. Together, our findings not only reveal autophagy as a novel cellular response to CRL inactivation by MLN4924, but also provide a piece of proof-of-concept evidence for the combination of MLN4924 with autophagy inhibitors to enhance therapeutic efficacy.  相似文献   

16.
17.
18.
Mantle cell lymphomas (MCL), characterized by the t(11;14)(q13;q32), frequently carry secondary genetic alterations such as deletions in chromosome 17p involving the TP53 locus. Given that the association between TP53-deletions and concurrent mutations of the remaining allele is weak and based on our recent report that the Hypermethylated in Cancer 1 (HIC1) gene, that is located telomeric to the TP53 gene, may be targeted by deletions in 17p in diffuse large B-cell lymphoma (DLBCL), we investigated whether HIC1 inactivations might also occur in MCL. Monoallelic deletions of the TP53 locus were detected in 18 out of 59 MCL (31%), while overexpression of p53 protein occurred in only 8 out of 18 of these MCL (44%). In TP53-deleted MCL, the HIC1 gene locus was co-deleted in 11 out of 18 cases (61%). However, neither TP53 nor HIC1 deletions did affect survival of MCL patients. In most analyzed cases, no hypermethylation of the HIC1 exon 1A promoter was observed (17 out of 20, 85%). However, in MCL cell lines without HIC1-hypermethylation, the mRNA expression levels of HIC1 were nevertheless significantly reduced, when compared to reactive lymph node specimens, pointing to the occurrence of mechanisms other than epigenetic or genetic events for the inactivation of HIC1 in this entity.  相似文献   

19.
A growing body of evidence supports that the epithelial-to-mesenchymal transition (EMT), which occurs during cancer development and progression, has a crucial role in metastasis by enhancing the motility of tumor cells. Transforming growth factor-β (TGF-β) is known to induce EMT in a number of cancer cell types; however, the mechanism underlying this transition process is not fully understood. In this study we have demonstrated that TGF-β upregulates the expression of tumor suppressor protein Par-4 (prostate apoptosis response-4) concomitant with the induction of EMT. Mechanistic investigations revealed that exogenous treatment with each TGF-β isoform upregulates Par-4 mRNA and protein levels in parallel levels of phosphorylated Smad2 and IκB-α increase. Disruption of TGF-β signaling by using ALK5 inhibitor, neutralizing TGF-β antibody or phosphoinositide 3-kinase inhibitor reduces endogenous Par-4 levels, suggesting that both Smad and NF-κB pathways are involved in TGF-β-mediated Par-4 upregulation. NF-κB-binding sites in Par-4 promoter have previously been reported; however, using chromatin immunoprecipitation assay we showed that Par-4 promoter region also contains Smad4-binding site. Furthermore, TGF-β promotes nuclear localization of Par-4. Prolonged TGF-β3 treatment disrupts epithelial cell morphology, promotes cell motility and induces upregulation of Snail, vimentin, zinc-finger E-box binding homeobox 1 and N-Cadherin and downregulation of Claudin-1 and E-Cadherin. Forced expression of Par-4, results in the upregulation of vimentin and Snail expression together with increase in cell migration. In contrast, small interfering RNA-mediated silencing of Par-4 expression results in decrease of vimentin and Snail expression and prevents TGF-β-induced EMT. We have also uncovered a role of X-linked inhibitor of apoptosis protein in the regulation of endogenous Par-4 levels through inhibition of caspase-mediated cleavage. In conclusion, our findings suggest that Par-4 is a novel and essential downstream target of TGF-β signaling and acts as an important factor during TGF-β-induced EMT.  相似文献   

20.
The Xenopus Cripto-1 protein is confined to the cells of the animal hemisphere during early embryogenesis where it regulates the formation of anterior structures. Cripto-1 protein accumulates only in animal cells because cripto-1 mRNA in cells of the vegetal hemisphere is translationally repressed. Here, we show that the RNA binding protein, Bicaudal-C (Bic-C), functioned directly in this vegetal cell-specific repression. While Bic-C protein is normally confined to vegetal cells, ectopic expression of Bic-C in animal cells repressed a cripto-1 mRNA reporter and associated with endogenous cripto-1 mRNA. Repression by Bic-C required its N-terminal domain, comprised of multiple KH motifs, for specific binding to relevant control elements within the cripto-1 mRNA and a functionally separable C-terminal translation repression domain. Bic-C-mediated repression required the 5′ CAP and translation initiation factors, but not a poly(A) tail or the conserved SAM domain within Bic-C. Bic-C-directed immunoprecipitation followed by deep sequencing of associated mRNAs identified multiple Bic-C-regulated mRNA targets, including cripto-1 mRNA, providing new insights and tools for understanding the role of Bic-C in vertebrate development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号