首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Caspase-8 plays the role of initiator in the caspase cascade and is a key molecule in death receptor-induced apoptotic pathways. To investigate the physiological roles of caspase-8 in vivo, we have generated caspase-8-deficient mice by gene targeting. The first signs of abnormality in homozygous mutant embryos were observed in extraembryonic tissue, the yolk sac. By embryonic day (E) 10.5, the yolk sac vasculature had begun to form inappropriately, and subsequently the mutant embryos displayed a variety of defects in the developing heart and neural tube. As a result, all mutant embryos died at E11.5. Importantly, homozygous mutant neural and heart defects were rescued by ex vivo whole-embryo culture during E10.5-E11.5, suggesting that these defects are most likely secondary to a lack of physiological caspase-8 activity. Taken together, these results suggest that caspase-8 is indispensable for embryonic development.  相似文献   

2.
The qkI gene encodes an RNA binding protein which was identified as a candidate for the classical neurologic mutation, qkv. Although qkI is involved in glial cell differentiation in mice, qkI homologues in other species play important roles in various developmental processes. Here, we show a novel function of qkI in smooth muscle cell differentiation during embryonic blood vessel formation. qkI null embryos died between embryonic day 9.5 and 10.5. Embryonic day 9.5 qkI null embryos showed a lack of large vitelline vessels in the yolk sacs, kinky neural tubes, pericardial effusion, open neural tubes and incomplete embryonic turning. Using X-gal and immunohistochemical staining, qkI is first shown to be expressed in endothelial cells and smooth muscle cells. Analyses of qkI null embryos in vivo and in vitro revealed that the vitelline artery was too thin to connect properly to the yolk sac, thereby preventing remodeling of the yolk sac vasculature, and that the vitelline vessel was deficient in smooth muscle cells. Addition of QKI and platelet-endothelial cell adhesion molecule-1 positive cells to an in vitro para-aortic splanchnopleural culture of qkI null embryos rescued the vascular remodeling deficit. These data suggest that QKI protein has a critical regulatory role in smooth muscle cell development, and that smooth muscle cells play an important role in inducing vascular remodeling.  相似文献   

3.
Inactivation of specific genes in mammals by gene targeting has accelerated our ability to determine gene function. Nearly all genes involved in the blood coagulation system have been knocked out in mice. Tissue factor (TF) is the main initiator of the coagulation system and functions as a cell surface receptor for coagulation factor VII (FVII). Knockout studies have shown that TF deficiency results in lethality around embryonic day (E) 8.5-10.5. The results suggest a role for TF in embryonic blood vessel development and maintenance of vascular integrity in the yolk sac. In addition, TF may be involved in the maintenance of the placental labyrinth. Factor X (FX) deficiency causes partial embryonic lethality between E11.5-12.5.FX–/– mice that were born died from fatal neonatal bleeding. In contrast, FVII deficiency is not embryonic lethal, but FVII–/– neonates died from hemorrhage within the first days after birth. The various lethal phenotypes of deficiencies of the different coagulation factors suggest involvement in processes beyond hemostasis. Both TF/FVIIa and FXa can trigger intracellular signaling events in certain cell types. Signaling by coagulation proteases and protease activated receptors (PARs) may have important roles in embryonic development.  相似文献   

4.
Calumin is an endoplasmic reticulum (ER)-transmembrane protein, and little is known about its physiological roles. Here we showed that calumin homozygous mutant embryos die at embryonic days (E) 10.5−11.5. At mid-gestation, calumin was expressed predominantly in the yolk sac. Apoptosis was enhanced in calumin homozygous mutant yolk sacs at E9.5, pointing to a possible link to the embryonic lethality. Calumin co-immunoprecipitated with ERAD components such as p97, BIP, derlin-1, derlin-2 and VIMP, suggesting its involvement in ERAD. Indeed, calumin knockdown in HEK 293 cells resulted in ERAD being less efficient, as demonstrated by attenuation in both degradations of a misfolded α1-antitrypsin variant and the ER-to-cytosol dislocation of cholera toxin A1 subunit. In calumin homozygous mutant yolk sac endoderm cells, ER stress-associated alterations were observed, including lipid droplet accumulation, fragmentation of the ER and dissociation of ribosomes from the ER. In this context, the ER-overload response, assumed to be cytoprotective, was also triggered in the mutant endoderm cells, but seemed to fully counteract the excessive ER stress generated due to defective ERAD. Taken together, our findings suggested that calumin serves to maintain the yolk sac integrity through participation in the ERAD activity, contributing to embryonic development.  相似文献   

5.
Alternatively spliced variants of fibronectin (FN) containing exons EIIIA and EIIIB are expressed around newly forming vessels in development and disease but are downregulated in mature vasculature. The sequences and patterns of expression of these splice variants are highly conserved among vertebrates, suggestive of their biological importance; however the functions of EIIIA and EIIIB-containing FNs are unknown. To understand the role(s) of these splice variants, we deleted both EIIIA and EIIIB exons from the FN gene and observed embryonic lethality with incomplete penetrance by embryonic day 10.5. Deletion of both EIIIA and EIIIB exons did not affect synthesis or cell surface deposition of FN, indicating that embryonic lethality was due specifically to the absence of EIIIA and EIIIB exons from FN. EIIIA/EIIIB double-null embryos displayed multiple embryonic cardiovascular defects, including vascular hemorrhage, failure of remodeling embryonic and yolk sac vasculature, defective placental angiogenesis and heart defects. In addition, we observed defects in coverage and association with dorsal aortae of alpha-smooth-muscle-actin-positive cells. Our studies indicate that the presence or absence of EIIIA and EIIIB exons alters the function of FN and demonstrate the requirement for these alternatively spliced exons in cardiovascular development.  相似文献   

6.
7.
Defective vascular development in connexin 45-deficient mice   总被引:14,自引:0,他引:14  
In order to reveal the biological function(s) of the gap-junction protein connexin 45 (Cx45), we generated Cx45-deficient mice with targeted replacement of the Cx45-coding region with the lacZ reporter gene. Heterozygous Cx45(+/)(-) mice showed strong expression of the reporter gene in vascular and visceral smooth muscle cells. Cx45-deficient embryos exhibited striking abnormalities in vascular development and died between embryonic day (E) 9.5 and 10.5. Differentiation and positioning of endothelial cells appeared to be normal, but subsequent development of blood vessels revealed impaired formation of vascular trees in the yolk sac, impaired allantoic mesenchymal ingrowth and capillary formation in the labyrinthine part of the placenta, and arrest of arterial growth, including a failure to develop a smooth muscle layer surrounding the major arteries of the embryo proper. As a consequence, the hearts of most Cx45-deficient embryos were dilated. The abnormal development of the vasculature in the yolk sac of Cx45(-)(/)(-) embryos could be caused by defective TGFbeta signalling, as the amount of TGF beta1 protein in the epithelial layer of the yolk sac was largely decreased in the E9.5 Cx45(-)(/)(-) embryo, compared with the wild-type embryo. The defective vascular development was accompanied by massive apoptosis, which began in some embryos at E8.5 and was abundant in virtually all tissues of the embryos at E9.5. We conclude that in Cx45(-)(/)(-) embryos, vasculogenesis was normal, but subsequent transformation into mature vessels was interrupted. Development of different types of vessels was impaired to a varying extent, which possibly reflects the complementation by other connexin(s).  相似文献   

8.
9.
PTP (protein-tyrosine phosphatase)-PEST is a ubiquitously expressed cellular regulator of integrin signalling. It has been shown to bind several molecules such as Shc, paxillin and Grb2, that are involved downstream of FAK (focal adhesion kinase) pathway. Through its specific association to p130cas and further dephosphorylation, PTP-PEST plays a critical role in cell-matrix interactions, which are essential during embryogenesis. We report here that ablation of the gene leads to early embryonic lethality, correlating well with the high expression of the protein during embryonic development. We observed an increased level of tyrosine phosphorylation of p130cas protein in E9.5 PTP-PEST(-/-) embryos, a first evidence of biochemical defect leading to abnormal growth and development. Analysis of null mutant embryos revealed that they reach gastrulation, initiate yolk sac formation, but fail to progress through normal subsequent developmental events. E9.5-10.5 PTP-PEST(-/-) embryos had morphological abnormalities such as defective embryo turning, improper somitogenesis and vasculogenesis, impaired liver development, accompanied by degeneration in both neuroepithelium and somatic epithelia. Moreover, in embryos surviving until E10.5, the caudal region was truncated, with severe mesenchyme deficiency and no successful liver formation. Defects in embryonic mesenchyme as well as subsequent failure of proper vascularization, liver development and somatogenesis, seemed likely to induce lethality at this stage of development, and these results confirm that PTP-PEST plays an essential function in early embryogenesis.  相似文献   

10.
11.
Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is a membrane-associated Kunitz-type serine proteinase inhibitor that was initially identified as a potent inhibitor of hepatocyte growth factor activator. HAI-1 is also a cognate inhibitor of matriptase, a membrane-associated serine proteinase. HAI-1 is expressed predominantly in epithelial cells in the human body. Its mRNA is also abundant in human placenta, with HAI-1 specifically expressed by villous cytotrophoblasts. In order to address the precise roles of HAI-1 in vivo, we generated HAI-1 mutant mice by homozygous recombination. Heterozygous HAI-1+/- mice underwent normal organ development. However, homozygous HAI-1-/- mice experienced embryonic lethality which became evident at embryonic day 10.5 postcoitum (E10.5). As early as E9.5, HAI-1-/- embryos showed growth retardation that did not reflect impaired cell proliferation but resulted instead from failed placental development and function. Histological analysis revealed severely impaired formation of the labyrinth layer, in contrast all other placental layers, such as the spongiotrophoblast layer and giant cell layer, which were formed. Our results indicate that mouse HAI-1 is essential for branching morphogenesis in the chorioallantoic placenta and lack of HAI-1 function may result in placental failure.  相似文献   

12.
Feto-maternal transfer of lipophilic nutrients is an important factor in the normal development of the fetus and may be mediated by lipoproteins as carriers of these nutrients. Two proteins that may be important in this process are apolipoprotein B (apoB, the major structural protein of secreted lipoproteins) and microsomal triglyceride transfer protein (MTP) whose normal activity is required for the secretion of apoB-containing lipoproteins. Although no abnormalities of conception and embryonic lethality are known in humans who inherit genetic deficiencies of either of these proteins, homozygous mice bearing knockouts of either apoB or MTP show early embryonic lethality. To characterize the ontogeny of MTP expression during embryonic mouse development, we have used in situ hybridization to characterize the pattern of expression. By using microwave heating of tissue sections to optimize hybridization, we show that there is robust MTP expression in the yolk sac tissues followed by expression in the primordial liver cell nests as early as day 9 post-coitum (E9.5). Intestinal expression is detected around E12.5 and attains full adult expression patterns by E14.5. No expression in any other tissues was observed, including developing heart, kidney, placenta, and maternal decidua.Thus the pattern of MTP expression is compatible with a role in the transfer of lipophilic nutrients from the yolk sac, prior to hepatic development and to the liver, once the circulatory system has been established.  相似文献   

13.
Wnts are secreted signaling molecules implicated in various developmental processes and frizzled proteins are the receptors for these Wnt ligands. To investigate the physiological roles of frizzled proteins, we isolated and characterized a novel mouse frizzled gene Fzd5. Fzd5 mRNA was expressed in the yolk sac, eye and lung bud at 9.5 days post coitum. Fzd5 specifically synergized with Wnt2, Wnt5a and Wnt10b in ectopic axis induction assays in Xenopus embryos. Using homologous recombination in embryonic stem cells, we have generated Fzd5 knockout mice. While the heterozygotes were viable, fertile and appeared normal, the homozygous embryos died in utero around 10.75 days post coitum, owing to defects in yolk sac angiogenesis. At 10.25 days post coitum, prior to any morphological changes, endothelial cell proliferation was markedly reduced in homozygous mutant yolk sacs, as measured by BrdU labeling. By 10.75 days post coitum, large vitelline vessels were poorly developed, and the capillary plexus was disorganized. At this stage, vasculogenesis in the placenta was also defective, although that in the embryo proper was normal. Because Wnt5a and Wnt10b co-localized with Fzd5 in the developing yolk sac, these two Wnts are likely physiological ligands for the Fzd5-dependent signaling for endothelial growth in the yolk sac.  相似文献   

14.
HoxA3 is an apical regulator of haemogenic endothelium   总被引:1,自引:0,他引:1  
  相似文献   

15.
BACKGROUND: Diabetic teratogenicity relates, partly, to embryonic oxidative stress and the extent of the embryonic damage can apparently be reduced by antioxidants. We investigated the effects of superoxide dismutase-mimics nitroxides, 2,2,6,6-tetramethyl piperidine-N-oxyl (TPL) as an effective antioxidant, on diabetes-induced embryopathy. METHODS: Embryos (10.5 day old) and their yolk sacs from Sabra female rats were cultured for 28 h in the absence or in the presence of nitroxides at 0.05-0.4 mM in control, diabetic subteratogenic, or diabetic teratogenic media, and monitored for growth retardation and congenital anomalies. The oxidant/antioxidant status was examined by oxygen radical absorbance capacity and lipid peroxidation assays, whereas the yolk sac function was evaluated by endocytosis assay. RESULTS: Diabetic culture medium inhibited embryonic and yolk sac growth, induced a high rate of NTDs, reduced yolk sac endocytosis and embryonic antioxidant capacity, and increased lipid peroxidation. These effects were more prominent in the embryos with NTD compared to those without NTD. TPL added to diabetic teratogenic medium improved embryonic and yolk sac growth, reduced the rate of NTDs, and improved yolk sac function. The oxidant/antioxidant status of embryos was also improved. TPL at 1 mM did not damage the embryos cultured in control medium. CONCLUSIONS: In diabetic culture medium, oxidative damage is higher in the malformed rat embryos compared to those without anomalies; the nitroxide provides protection against diabetes-induced teratogenicity in a dose-dependent manner. The yolk sac damage, apparently caused by the same mechanism, might be an additional contributor to the embryonic damage observed in diabetes.  相似文献   

16.
We have previously shown that the targeted deletions of both type I keratins (K) 18 and 19 cause lethality by embryonic day (e) 9.5 due to fragility and cytolysis of trophoblast giant cells. The development of the embryo proper appeared to be unaffected and its death was caused by nutrient deficiency. In order to address the function of keratins within the embryo proper, lethality due to extraembryonic tissue failure must be overcome. One approach to rescue doubly deficient embryos is by aggregating knockout embryos with tetraploid wild-type embryos. As a general tool, tetraploid aggregation can be used to rescue embryonic lethality caused by defects in extraembryonic tissues like the placenta, trophoblast or yolk sac. We rescued K18-/- K19-/- embryos until e11.5, using this approach, proving that the loss of the keratin cytoskeleton causes defects in the trophoblast giant cell layer, but has no effect on early development of the embryo proper.  相似文献   

17.
Zonula occludens (ZO)-1/2/3 are the members of the TJ-MAGUK family of membrane-associated guanylate kinases associated with tight junctions. To investigate the role of ZO-1 (encoded by Tjp1) in vivo, ZO-1 knockout (Tjp1(-/-)) mice were generated by gene targeting. Although heterozygous mice showed normal development and fertility, delayed growth and development were evident from E8.5 onward in Tjp1(-/-) embryos, and no viable Tjp1(-/-) embryos were observed beyond E11.5. Tjp1(-/-) embryos exhibited massive apoptosis in the notochord, neural tube area, and allantois at embryonic day (E)9.5. In the yolk sac, the ZO-1 deficiency induced defects in vascular development, with impaired formation of vascular trees, along with defective chorioallantoic fusion. Immunostaining of wild-type embryos at E8.5 for ZO-1/2/3 revealed that ZO-1/2 were expressed in almost all embryonic cells, showing tight junction-localizing patterns, with or without ZO-3, which was confined to the epithelial cells. ZO-1 deficiency depleted ZO-1-expression without influence on ZO-2/3 expression. In Tjp1(+/+) yolk sac extraembryonic mesoderm, ZO-1 was dominant without ZO-2/3 expression. Thus, ZO-1 deficiency resulted in mesoderms with no ZO-1/2/3, associated with mislocalization of endothelial junctional adhesion molecules. As a result, angiogenesis was defected in Tjp1(-/-) yolk sac, although differentiation of endothelial cells seemed to be normal. In conclusion, ZO-1 may be functionally important for cell remodeling and tissue organization in both the embryonic and extraembryonic regions, thus playing an essential role in embryonic development.  相似文献   

18.
19.
There is incomplete penetrance to Tgfb1 knockout phenotypes. About 50% of Tgfb1 homozygous mutant (Tgfb1-/-) and 25% of Tgfb1 heterozygous (Tgfb1+/-) embryos die during embryogenesis. In a mixed NIH/Ola x C57BL/6J/Ola x 129 background partial embryonic lethality of the Tgfb1-/-embryos occurs due to defective yolk sac vasculopoiesis and/or hematopoiesis. We show here that on a predominantly CF-1 genetic background, lack of TGFbeta1 causes a pre-morula lethality in about 50% of the null embryos. This partial lethality is not reversed by transfer of Tgfb1-/- embryos to Tgfb1-/+ hosts. The extent of embryonic lethality in Tgfb1-/- embryos ranges in a background dependent manner from 20% to 100%. Based on these and other studies it is clear that TGFbeta1 acts at two distinct phases of embryogenesis: pre-implantation development and yolk sac vasculogenesis/hematopoiesis. The susceptibility for the pre-implantation lethality depends on a small number of genetic modifiers since a small number of backcrosses onto the high susceptibility strain C57BL/6 leads to complete penetrance of the lethality.  相似文献   

20.
Tissue factor (coagulation factor III) is a cell surface receptor for coagulation factor VII/VIIa; it was initially recognized as an initiator of the extrinsic coagulation pathway. Recently, the zebrafish tissue factor gene (TF) has been cloned. Paralogs encode coagulation factors IIIa and IIIb; both show remarkable sequence identity to the human and mouse coagulation factor III gene. It has been reported that TF could have additional properties that are essential for normal embryonic development, since knockout of the murine coagulation factor III gene resulted in 90% embryonic lethality. We examined the role of coagulation factor IIIb (f3b) during zebrafish embryonic development. Expression analysis revealed that endogenous f3b was chronologically expressed in the pectoral fins and in the vicinity of the pharynx. Knockout of f3b by injection of an f3b morpholino at the one-to-two cell stage caused distinctive morphological defects in embryos, including edema in the fourth brain ventricle at early embryonic stages and occasional bleeding at later stages. Furthermore, f3b morphants displayed abnormal vascular patterning. We conclude that f3b is required for brain vascular development and for development of part of the somatic vasculature during embryogenesis in the zebrafish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号