首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated the involvement of tPA after SCI in rats and effect of treatment with human umbilical cord blood derived stem cells. tPA expression and activity were determined in vivo after SCI in rats and in vitro in rat embryonic spinal neurons in response to injury with staurosporine, hydrogen peroxide and glutamate. The activity and/or expression of tPA increased after SCI and reached peak levels on day 21 post-SCI. Notably, the tPA mRNA activity was upregulated by 310-fold compared to controls on day 21 post-SCI. As expected, MBP expression is minimal at the time of peak tPA activity and vice versa. Implantation of hUCB after SCI resulted in the downregulation of elevated tPA activity/expression in vivo in rats as well as in vitro in spinal neurons. Our results demonstrated the involvement of tPA in the secondary pathogenesis after SCI as well as the therapeutic potential of hUCB.  相似文献   

2.
目的:观察eritoran对大鼠肾脏缺血再灌注损伤模型的.方法:建立SD大鼠缺血再灌注模型,给予eritoran治疗而对照组给予生理盐水治疗,观察各组的肾功能情况、肾组织光镜病理,并采用核糖核酸酶保护测定检测肾组织炎症因子/趋化因子的表达.结果:与模型组相比,eritoran预处理可显著改善大鼠的肾功能,减轻缺血再灌注引起的肾小管损伤,减轻肾组织病变,减少肾组织单核细胞浸润并下调多种炎症因子的表达(TNF-α,IL-6,IL-1β和MCP-1).结论:本研究证实通过eritoran抑制Toll样受体4,可减轻大鼠肾脏缺血再灌注损伤中的炎症反应,减轻肾脏缺血再灌注损伤,eritoran可望成为肾脏I/R损伤的新治疗手段.  相似文献   

3.
目的:探讨丹酚酸A对大鼠脑缺血/再灌注(cerebral ischemia/reperfusion,CI/R)损伤及抗氧化酶活性的影响。方法:采用大鼠脑中动脉闭塞(middle cerebral arteryocclusion,MCAO)2 h再灌注24 h模型。实验终末,检测脑梗死面积,脑水肿以及评价神经功能损伤,并进一步分析脑组织中三种抗氧化酶的活性水平。结果:与模型组相比,丹酚酸A组大鼠脑梗死面积显著减少(P〈0.05),水肿程度显著减轻(P〈0.05),神经功能学评分显著下降(P〈0.05)。模型组再灌注24 h后,SOD,GSH-PX及CAT活性显著下降(P〈0.05);丹酚酸A组SOD,GSH-PX及CAT活性则显著升高(P〈0.05)。结论:丹酚酸A对大鼠CI/R损伤具有保护作用,可能与CI/R损伤时的脑组织SOD,GSH-PX及CAT活性显著升高相关。  相似文献   

4.
目的:探讨丹酚酸A对大鼠脑缺血/再灌注(cerebral ischemia/reperfusion,CI/R)损伤及抗氧化酶活性的影响。方法:采用大鼠脑中动脉闭塞(middle cerebral arteryocclusion,MCAO)2 h再灌注24 h模型。实验终末,检测脑梗死面积,脑水肿以及评价神经功能损伤,并进一步分析脑组织中三种抗氧化酶的活性水平。结果:与模型组相比,丹酚酸A组大鼠脑梗死面积显著减少(P0.05),水肿程度显著减轻(P0.05),神经功能学评分显著下降(P0.05)。模型组再灌注24 h后,SOD,GSH-PX及CAT活性显著下降(P0.05);丹酚酸A组SOD,GSH-PX及CAT活性则显著升高(P0.05)。结论:丹酚酸A对大鼠CI/R损伤具有保护作用,可能与CI/R损伤时的脑组织SOD,GSH-PX及CAT活性显著升高相关。  相似文献   

5.

Purpose

Retinal ischemia and reperfusion injuries (IRI) permanently affect neuronal tissue and function by apoptosis and inflammation due to the limited regenerative potential of neurons. Recently, evidence emerged that the noble gas Argon exerts protective properties, while lacking any detrimental or adverse effects. We hypothesized that Argon inhalation after IRI would exert antiapoptotic effects in the retina, thereby protecting retinal ganglion cells (RGC) of the rat''s eye.

Methods

IRI was performed on the left eyes of rats (n = 8) with or without inhaled Argon postconditioning (25, 50 and 75 Vol%) for 1 hour immediately or delayed after ischemia (i.e. 1.5 and 3 hours). Retinal tissue was harvested after 24 hours to analyze mRNA and protein expression of Bcl-2, Bax and Caspase-3, NF-κB. Densities of fluorogold-prelabeled RGCs were analyzed 7 days after injury in whole-mounts. Histological tissue samples were prepared for immunohistochemistry and blood was analyzed regarding systemic effects of Argon or IRI. Statistics were performed using One-Way ANOVA.

Results

IRI induced RGC loss was reduced by Argon 75 Vol% inhalation and was dose-dependently attenuated by lower concentrations, or by delayed Argon inhalation (1504±300 vs. 2761±257; p<0.001). Moreover, Argon inhibited Bax and Bcl-2 mRNA expression significantly (Bax: 1.64±0.30 vs. 0.78±0.29 and Bcl-2: 2.07±0.29 vs. 0.99±0.22; both p<0.01), as well as caspase-3 cleavage (1.91±0.46 vs. 1.05±0.36; p<0.001). Expression of NF-κB was attenuated significantly. Immunohistochemistry revealed an affection of Müller cells and astrocytes. In addition, IRI induced leukocytosis was reduced significantly after Argon inhalation at 75 Vol%.

Conclusion

Immediate and delayed Argon postconditioning protects IRI induced apoptotic loss of RGC in a time- and dose-dependent manner, possibly mediated by the inhibition of NF-κB. Further studies need to evaluate Argon''s possible role as a therapeutic option.  相似文献   

6.

Background and Purpose

Ischemic stroke provokes severe brain damage and remains a predominant disease in industrialized countries. The coagulation factor XII (FXII)-driven contact activation system plays a central, but not yet fully defined pathogenic role in stroke development. Here, we investigated the efficacy of the FXIIa inhibitor rHA-Infestin-4 in a rat model of ischemic stroke using both a prophylactic and a therapeutic approach.

Methods

For prophylactic treatment, animals were treated intravenously with 100 mg/kg rHA-Infestin-4 or an equal volume of saline 15 min prior to transient middle cerebral artery occlusion (tMCAO) of 90 min. For therapeutic treatment, 100 mg/kg rHA-Infestin-4, or an equal volume of saline, was administered directly after the start of reperfusion. At 24 h after tMCAO, rats were tested for neurological deficits and blood was drawn for coagulation assays. Finally, brains were removed and analyzed for infarct area and edema formation.

Results

Within prophylactic rHA-Infestin-4 treatment, infarct areas and brain edema formation were reduced accompanied by better neurological scores and survival compared to controls. Following therapeutic treatment, neurological outcome and survival were still improved although overall effects were less pronounced compared to prophylaxis.

Conclusions

With regard to the central role of the FXII-driven contact activation system in ischemic stroke, inhibition of FXIIa may represent a new and promising treatment approach to prevent cerebral ischemia/reperfusion injury.  相似文献   

7.
杜小燕  覃华  韩艳  张琰 《生物磁学》2011,(22):4218-4221
目的:探讨黄芪皂苷Ⅳ对大鼠心肌缺血/再灌注损伤的保护作用及抗凋亡作用。方法:研究黄芪皂苷Ⅳ对大鼠收缩压和舒张压的作用;建立大鼠心肌缺血/再灌注模型,在缺血前给予黄芪皂苷Ⅳ处理,观察心律失常的改变,测定血液中乳酸脱氢酶(LDH)、超氧化物歧化酶(SOD)和丙二醛(MDA)的变化,检测计算凋亡心肌细胞百分比及对P-STAT1、P-STAT3蛋白表达的调控作用。结果:黄芪皂苷Ⅳ可降低大鼠收缩压和舒张压,心肌缺血/再灌注前,预先给予黄芪皂苷Ⅳ有抗心律失常作用,降低血液中LDH和MDA含量,提高SOD活性,降低凋亡心肌细胞百分比,显著增加P-STAT1蛋白表达而同时降低P-STAT3蛋白表达。结论:黄芪皂苷Ⅳ对心肌缺血/再灌注损伤具有一定的保护作用,减少心肌细胞凋亡,其机制可能与抑制P—STAT1,诱导P—STAT3表达有关。  相似文献   

8.
Changes of metabolism have been implicated in renal ischemia/reperfusion injury (IRI). However, a global analysis of the metabolic changes in renal IRI is lacking and the association of the changes with ischemic kidney injury and subsequent recovery are unclear. In this study, mice were subjected to 25 minutes of bilateral renal IRI followed by 2 hours to 7 days of reperfusion. Kidney injury and subsequent recovery was verified by serum creatinine and blood urea nitrogen measurements. The metabolome of plasma, kidney cortex, and medulla were profiled by the newly developed global metabolomics analysis. Renal IRI induced overall changes of the metabolome in plasma and kidney tissues. The changes started in renal cortex, followed by medulla and plasma. In addition, we identified specific metabolites that may contribute to early renal injury response, perturbed energy metabolism, impaired purine metabolism, impacted osmotic regulation and the induction of inflammation. Some metabolites, such as 3-indoxyl sulfate, were induced at the earliest time point of renal IRI, suggesting the potential of being used as diagnostic biomarkers. There was a notable switch of energy source from glucose to lipids, implicating the importance of appropriate nutrition supply during treatment. In addition, we detected the depressed polyols for osmotic regulation which may contribute to the loss of kidney function. Several pathways involved in inflammation regulation were also induced. Finally, there was a late induction of prostaglandins, suggesting their possible involvement in kidney recovery. In conclusion, this study demonstrates significant changes of metabolome kidney tissues and plasma in renal IRI. The changes in specific metabolites are associated with and may contribute to early injury, shift of energy source, inflammation, and late phase kidney recovery.  相似文献   

9.
目的:探讨梓醇对缺血再灌注大鼠脑损伤后的保护作用.方法:采用传统大脑中动脉阻塞(MCAO)方法制备大鼠局灶性缺血模型,根据随机数字表法将SD大鼠分为MCAO组、对照组(vehicle组)及梓醇处理组(catalpol组),缺血再灌注48 h后观察各组大鼠神经功能学评分和脑梗死容积.分别于术前、术后6h、24 h、48 h取大鼠脑组织样本,检测匀浆中谷胱甘肽过氧化物酶(GSH-PX)和丙二醛(MDA)的变化情况.结果:与vehicle组和MCAO组相比,catalpol处理组神经功能学评分降低(P<0.05);其梗死容积较小(P<0.05).组织匀浆结果显示catalpol处理组脑匀浆中GSH-PX活力升高,MDA含量下降(P<0.05).结论:梓醇可能通过降低脑内自由基水平、控制脂质过氧化程度,对缺血再灌注引起的大鼠脑损伤产生神经保护作用.  相似文献   

10.
葛根素对大鼠肝脏缺血再灌注损伤的保护作用   总被引:1,自引:0,他引:1  
目的:观察葛根素预处理时大鼠肝脏缺血再灌注损伤的保护作用.方法:雄性SD大鼠,建立肝脏缺血再灌注模型(HIR).随机分为假手术组、HIR组和HIR-葛根素预处理组.分析各组动物血清中谷草转氨酶(AST)、谷丙转氨酶(ALT)及乳酸脱氢酶(LDH)含量的变化,观察肝组织病理学的改变.结果:肝脏缺血再灌注损伤后,与假手术组比较,血清中AST、ALT、LDH含量均显著增加,同时肝脏门静脉周围瘀血明显,可见少量散在的肝细胞片状坏死灶,有少量炎性细胞和单核细胞浸润,肝细胞肿胀、脂肪空泡变性、核浓缩;经40mg/kg剂量的葛根素预处理7天后,与模型组相比,血清中AST、ALT、LDH均显著降低,肝脏的瘀血明显较模型组轻,肝小叶结构基本正常,微血管未见明显损伤,窦间隙稍宽,细胞变性坏死不明显,偶见少量肝细胞坏死.结论:葛根素预处理对大鼠缺血再灌注肝脏损伤有一定的保护作用.  相似文献   

11.
Sulfur dioxide (SO2) is naturally synthesized by glutamate‐oxaloacetate transaminase (GOT) from l ‐cysteine in mammalian cells. We aim to investigate the role of SO2 in inflammation in acute lung injury (ALI) following limb ischemia/reperfusion (I/R). Male Wistar rats were subjected to limb I/R and were injected with saline, GOT inhibitor hydroxamate (HDX, 0.47 mmol/kg), or the SO2 donor Na2SO3/NaHSO3 (0.54 mmol/kg/0.18 mmol/kg). Compared with the sham operation, the plasma SO2 levels were significantly decreased by limb I/R treatment. In addition, SO2 concentration and GOT activity in the lung tissue were also reduced in ALI. The occurrence of ALI following limb I/R can be prevented by Na2SO3/NaHSO3 treatment, whereas it can be significantly aggravated by HDX. The plasma IL‐1β, IL‐6, and IL‐10 levels were consistent with myeloperoxidase activity and inflammation in lung tissue. In conclusion, our data suggest that downregulation of endogenous SO2 production might be involved in pathogenesis of ALI following limb I/R in rats. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:389‐397, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21492  相似文献   

12.

Background

Many donor organs come from youths involved in alcohol-related accidental death. The use of cardiac allografts for transplantation from donors after acute poisoning is still under discussion while acute ethanol intoxication is associated with myocardial functional and morphological changes. The aims of this work were 1) to evaluate in rats the time-course cardiac effects of acute ethanol-exposure and 2) to explore how its abuse by donors might affect recipients in cardiac pump function after transplantation.

Methods

Rats received saline or ethanol (3.45 g/kg, ip). We evaluated both the mechanical and electrical aspects of cardiac function 1 h, 6 h or 24 h after injection. Plasma cardiac troponin-T and glucose-levels were measured and histological examination of the myocardium was performed. In addition, heart transplantation was performed, in which donors received ethanol 6 h or 24 h prior to explantation. Graft function was measured 1 h or 24 h after transplantation. Myocardial TBARS-concentration was measured; mRNA and protein expression was assessed by quantitative real-time PCR and Western blot, respectively.

Results

Ethanol administration resulted in decreased load-dependent (−34±9%) and load-independent (−33±12%) contractility parameters, LV end-diastolic pressure and elevated blood glucose levels at 1 h, which were reversed to the level of controls after 6 h and 24 h. In contrast to systolic dysfunction, active relaxation and passive stiffness are slowly recovered or sustained during 24 h. Moreover, troponin-T-levels were increased at 1 h, 6 h and 24 h after ethanol injection. ST-segment elevation (+47±10%), elongated QT-interval (+38±4%), enlarged cardiomyocyte, DNA-strand breaks, increased both mRNA and protein levels of superoxide dismutase-1, glutathione peroxydase-4, cytochrome-c-oxidase and metalloproteinase-9 were observed 24 h following ethanol-exposure. After heart transplantation, decreased myocardial contractility and relaxation, oxidative stress and altered protein expression were observed.

Conclusions

These results demonstrate acute alcohol abuse increases the susceptibility of donor hearts to ischemia/reperfusion in a rat heart transplant model even though the global contractile function recovers 6 h after ethanol-administration.  相似文献   

13.
Abstract

Marmocets were used in a structure activity study of the ability of vaso-pressin analogues to activate plasminogen activator (tPA). In evaluation of dDAVP analogues with L – alanine migrating from position 2 to 9 we found [L – Ala4]dDAVP and [L – Ala5]dDAVP to be potent activators of tPA. Double substitutions in dDAVP showed that combinations of a modification in position 4 valine with a change at position 2 (2 – O – methyltyrosine) generated tPA releasing activity. On the other hand enlargement of the substituent at position 2 (2 – O – ethyltyrosine) completely eliminated the activity of [L – Val4]dDAVP. The tPA activity is dependent on the position of a positively charged group at the amino acid in position 8 of the peptide chain. A shift of the guanido group further away from the backbone (D – arginine to D – homoarginine) resulted in a loss of tPA activating properties.  相似文献   

14.
《Free radical research》2013,47(1):737-743
The objective of this study was to test the hypothesis that the extracellular oxidation of glutathione (GSH) may represent an important mechanism to limit hepatic ischemia/reperfusion injury in male Fischer rats in vivo. Basal plasma levels of glutatione disulfide (GSSG: 1.5 ± 0.2μM GSH-equivalents), glutathione (GSH: 6.2 ± 0.4 μM) and alanine aminotransferase activities (ALT 12 ± 2U/I) were significantly increased during the l h reperfusion period following l h of partial hepatic no-flow ischemia (GSSG: 19.7 ± 2.2μM; GSH 36.9 ± 7.4μM; ALT: 2260 ± 355 U/l). Pretreatment with 1,3-bis-(2-chloroethyl)-I-nitrosourea (40mg BCNU/kg), which inhibited glutathione reductase activity in the liver by 60%. did not affect any of these parameters. Biliary GSSG and GSH efflux rates were reduced and the GSSG-to-GSH ratio was not altered in controls and BCNU-treated rats at any time during ischemia and reperfusion. A 90% depletion of the hepatic glutathione content by phorone treatment (300 mg/kg) reduced the increase of plasma GSSG levels by 54%, totally suppressed the rise of plasma GSH concentrations and increased plasma ALT to 4290 ± 755 U/I during reperfusion. The data suggest that hepatic glutathione serves to limit ischemialreperfusion injury as a source of extracellular glutathione, not as a cofactor for the intracellular enzymatic detoxification of reactive oxygen species.  相似文献   

15.
16.
Lack of pharmacological strategies in clinics restricts the patient prognosis with myocardial ischemia/reperfusion (I/R) injury. The aim of this study was to evaluate the cardioprotection of combined salvianolic acid B (SalB) and ginsenoside Rg1 (Rg1) against myocardial I/R injury and further investigate the underlying mechanism. I/R injury was induced by coronary artery ligation for Wistar male rats and hypoxia/reoxygenation injury was induced on H9c2 cells. Firstly, the best ratio between SalB and Rg1was set as 2:5 based on their effects on heart function detected by hemodynamic measurement. Then SalB-Rg1 (2:5) was found to maintain mitochondrial membrane potential and resist apoptosis and necrosis in H9c2 cell with hypoxia/reoxygenation injury. Companying with same dose of SalB or Rg1 only, SalB-Rg1 showed more significant effects on down-regulation of myocardial infarct size, maintenance of myocardium structure, improvement on cardiac function, decrease of cytokine secretion including TNF-α, IL-1β, RANTES and sVCAM-1. Finally, the SalB-Rg1 improved the viability of cardiac myocytes other than cardiac fibroblasts in rats with I/R injury using flow cytometry. Our results revealed that SalB-Rg1 was a promising strategy to prevent myocardial I/R injury.  相似文献   

17.
Exercise training offers cardioprotection against ischemia and reperfusion (I/R) injury. However, few essential signals have been identified to underscore the protection from injury. In the present study, we hypothesized that exercise-induced acceleration of myocardial tissue oxygenation recovery contributes to this protection. C57BL/6 mice (4 weeks old) were trained on treadmills for 45 min/day at a treading rate of 15 m/min for 8 weeks. At the end of 8-week exercise training, mice underwent 30-min left anterior descending coronary artery occlusion followed by 60-min or 24-h reperfusion. Electron paramagnetic resonance oximetry was performed to measure myocardial tissue oxygenation. Western immunoblotting analyses, gene transfection, and myography were examined. The oximetry study demonstrated that exercise markedly shortened myocardial tissue oxygenation recovery time following reperfusion. Exercise training up-regulated Kir6.1 protein expression (a subunit of ATP-sensitive K+ channel on vascular smooth muscle cells, VSMC sarc-KATP) and protected the heart from I/R injury. In vivo gene transfer of dominant negative Kir6.1AAA prolonged the recovery time and enlarged infarct size. In addition, transfection of Kir6.1AAA increased the stiffness and reduced the relaxation capacity in the vasculature. Together, our study demonstrated that exercise training up-regulated Kir6.1, improved tissue oxygenation recovery, and protected the heart against I/R injury. This exercise-induced cardioprotective mechanism may provide a potential therapeutic intervention targeting VSMC sarc-KATP channels and reperfusion recovery.  相似文献   

18.

Aim

20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) are cytochrome P450 (CYP)-dependent eicosanoids that play opposite roles in the regulation of vascular tone, inflammation, and apoptosis. 20-HETE aggravates, whereas EETs ameliorate ischemia/reperfusion (I/R)-induced organ damage. EETs are rapidly metabolized to dihydroxyeicosatrienoic acids (DHETs) by the soluble epoxide hydrolase (sEH). We hypothesized that sEH gene (EPHX2) deletion would increase endogenous EET levels and thereby protect against I/R-induced acute kidney injury (AKI).

Methods

Kidney damage was evaluated in male wildtype (WT) and sEH-knockout (KO)-mice that underwent 22-min renal ischemia followed by two days of reperfusion. CYP-eicosanoids were analyzed by liquid chromatography tandem mass spectrometry.

Results

Contrary to our initial hypothesis, renal function declined more severely in sEH-KO mice as indicated by higher serum creatinine and urea levels. The sEH-KO-mice also featured stronger tubular lesion scores, tubular apoptosis, and inflammatory cell infiltration. Plasma and renal EET/DHET-ratios were higher in sEH-KO than WT mice, thus confirming the expected metabolic consequences of sEH deficiency. However, CYP-eicosanoid profiling also revealed that renal, but not plasma and hepatic, 20-HETE levels were significantly increased in sEH-KO compared to WT mice. In line with this finding, renal expression of Cyp4a12a, the murine 20-HETE-generating CYP-enzyme, was up-regulated both at the mRNA and protein level, and Cyp4a12a immunostaining was more intense in the renal arterioles of sEH-KO compared with WT mice.

Conclusion

These results indicate that the potential beneficial effects of reducing EET degradation were obliterated by a thus far unknown mechanism leading to kidney-specific up-regulation of 20-HETE formation in sEH-KO-mice.  相似文献   

19.
20.
本文探讨三七皂苷Rg1对局灶性脑缺血再灌注损伤大鼠海马部位的脑源性神经营养因子(brain-derivedneurotrophic factor,BDNF)阳性蛋白的含量和阳性神经元数目是否具有上调作用。实验结果表明三七皂苷Rg1高、中、低剂量组和阳性对照组均能明显改善脑缺血的神经缺失症状,并能上调大鼠脑缺血再灌注损伤海马部位的BDNF阳性蛋白的含量和阳性神经元数量(P<0.05);与阳性对照组(尼莫地平1 mg/kg)相比,用药7 d时,Rg1中剂量组(100 mg/kg)在改善脑缺血的神经缺失症状以及上调大鼠脑缺血再灌注损伤海马部位的BDNF阳性蛋白的含量和阳性神经元数量方面,作用上强于尼莫地平(P<0.05)。三七皂苷Rg1能上调BDNF阳性蛋白的表达,通过BDNF对脑缺血再灌注神经元损伤所起的保护作用,从而发挥其对脑缺血的治疗作用,这可能是三七皂苷Rg1对脑缺血保护作用的机制之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号