首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saubidet  María I.  Fatta  Nora  Barneix  Atilio J. 《Plant and Soil》2002,245(2):215-222
Azospirillium brasilense is a rhizosphere bacteria that has been reported to improve yield when inoculated on wheat plants. However, the mechanisms through which this effect is induced is still unclear. In the present work, we have studied the effects of inoculating a highly efficient A. brasilense strain on wheat plant grown in 5 kg pots with soil in a greenhouse, under three N regimes (0, 3 or 16 mM NO3 , 50 ml/pot once or twice-a -week), and in disinfected or non-disinfected soil. At the booting stage, the inoculated roots in both soils showed a similar colonization by Azospirillum sp. that was not affected by N addition. The plants grown in the disinfected soil showed a higher biomass, N content and N concentration than those in the non-disinfected soil, and in both soils the inoculation stimulated plant growth, N accumulation, and N and NO3 concentration in the tissues.At maturity, the inoculated plants showed a higher biomass, grain yield and N content than the uninoculated ones in both soils, and a higher grain protein concentration than the uninoculated. It is concluded that in the present experiments, A. brasilenseincreased plant growth by stimulating nitrogen uptake by the roots.  相似文献   

2.
Response of wheat to Azospirillum brasilense Sp-248 inoculation with different N-fertilizer levels using seawater irrigation was investigated. All inoculated treatments increased plant height, shoot and root dry weight, and tiller number in compared with uninoculated treatments. Yield parameters measured were also increased due to the inoculation. In terms of the effect of saline irrigation, there were no significant differences in growth and yield parameters in plants treated with tap water and others irrigated with 8.0% seawater concentration. This would indicate a relatively high tolerance of A. brasilense to saline irrigation and its ability to reduce the deleterious effects of saline on growth by increasing the plant’s adaptation. However, increasing the seawater concentration in the irrigation water to 16.0% significantly decreased all tested parameters. Inoculation treatments generally increased NPKCa contents and decreased sodium ratio of the grains in compared with the uninoculated treatments. Overall results clearly revealed that the Azospirillum inoculation saved about 20 units of N-fertilizer and that saving was made economically feasible by decreasing the chemical fertilizers needed, improving the nitrogen content and counteracting the effects of salinity.  相似文献   

3.
4.
5.

Background and Aims

Waxy proteins are responsible for amylose synthesis in wheat seeds, being encoded by three waxy genes (Wx-A1, Wx-B1 and Wx-D1) in hexaploid wheat. In addition to their role in starch quality, waxy loci have been used to study the phylogeny of wheat. The origin of European spelt (Triticum aestivum ssp. spelta) is not clear. This study compared waxy gene sequences of a Spanish spelt collection with their homologous genes in emmer (T. turgidum ssp. dicoccum), durum (T. turgidum ssp. durum) and common wheat (T. aestivum ssp. aestivum), together with other Asian and European spelt that could be used to determine the origin of European spelt.

Methods

waxy genes were amplified and sequenced. Geneious Pro software, DNAsp and MEGA5 were used for sequence, nucleotide diversity and phylogenetic analysis, respectively.

Key Results

Three, four and three new alleles were described for the Wx-A1, Wx-B1 and Wx-D1 loci, respectively. Spelt accessions were classified into two groups based on the variation in Wx-B1, which suggests that there were two different origins for the emmer wheat that has been found to be part of the spelt genetic make-up. One of these groups was only detected in Iberian material. No differences were found between the rest of the European spelt and the Asiatic spelt, which suggested that the Iberian material had a different origin from the other spelt sources.

Conclusions

The results suggested that the waxy gene variability present in wheat is undervalued. The evaluation of this variability has permitted the detection of ten new waxy alleles that could affect starch quality and thus could be used in modern wheat breeding. In addition, two different classes of Wx-B1 were detected that could be used for evaluating the phylogenetic relationships and the origins of different types of wheat.  相似文献   

6.
7.

Background and Aims

The phenotypes of grasses show differences depending on growth conditions and ontogenetic stage. Understanding these responses and finding suitable mathematical formalizations are an essential part of the development of plant and crop models. Usually, a marked change in architecture between juvenile and adult plants is observed, where dimension and shape of leaves are likely to change. In this paper, the plasticity of leaf shape is analysed according to growth conditions and ontogeny.

Methods

Leaf shape of Triticum aestivum, Hordeum vulgare and Zea mays cultivars grown under varying conditions was measured using digital image processing. An empirical leaf shape model was fitted to measured shape data of single leaves. Obtained values of model parameters were used to analyse the patterns in leaf shape.

Key Results

The model was able to delineate leaf shape of all studied species. The model error was small. Differences in leaf shape between juvenile and adult leaves in T. aestivum and H. vulgare were observed. Varying growth conditions impacted leaf dimensions but did not impact leaf shape of the respective species.

Conclusions

Leaf shape of the studied T. aestivum and H. vulgare cultivars was remarkably stable for a comparable ontogenetic stage (leaf rank), but differed between stages. Along with other aspects of grass architecture, leaf shape changed during the transition from juvenile to adult growth phase. Model-based analysis of leaf shape is a method to investigate these differences. Presented results can be integrated into architectural models of plant development to delineate leaf shape for different species, cultivars and environmental conditions.  相似文献   

8.
The behavior of glutathione reductase (GR, EC 1.6.4.2) activity and isoforms were analyzed in wheat (Triticum aestivum L.) leaves and roots exposed to a chronic treatment with a toxic cadmium (Cd) concentration. A significant growth inhibition (up to 55%) was found in leaves at 7, 14 and 21 days, whereas roots were affected (51%) only after three weeks. Wheat plants grown in the presence of 100microM Cd showed a time-dependent accumulation of this metal, with Cd concentration being 10-fold higher in roots than in leaves. Nevertheless, lipid peroxidation was augmented in leaves in all experiments, but not in roots until 21 days. Cadmium treatment altered neither the GR activity nor the isoform pattern in the leaves. However, GR activity increased 111% and 200% in roots at 7 and 14 days, respectively, returning to control levels after 21 days. Three GR isoforms were found in roots of control and treated plants, two of which were enhanced by Cd treatment at 7 and 14 days, as assessed by activity staining on native gels. The changes in the isoform pattern modified the global kinetic properties of GR, thereby decreasing significantly (2.5-fold) the Michaelis constant (K(m)) value for oxidized glutathione. Isozyme induction was not associated with an enhancement of GR mRNA and protein expression, indicating that post-translational modification could occur. Our data demonstrated that up-regulation of GR activity by the induction of distinctive isoforms occurs as a defense mechanism against Cd-generated oxidative stress in roots.  相似文献   

9.

Background

The ~17 Gb hexaploid bread wheat genome is a high priority and a major technical challenge for genomic studies. In particular, the D sub-genome is relatively lacking in genetic diversity, making it both difficult to map genetically, and a target for introgression of agriculturally useful traits. Elucidating its sequence and structure will therefore facilitate wheat breeding and crop improvement.

Results

We generated shotgun sequences from each arm of flow-sorted Triticum aestivum chromosome 5D using 454 FLX Titanium technology, giving 1.34× and 1.61× coverage of the short (5DS) and long (5DL) arms of the chromosome respectively. By a combination of sequence similarity and assembly-based methods, ~74% of the sequence reads were classified as repetitive elements, and coding sequence models of 1314 (5DS) and 2975 (5DL) genes were generated. The order of conserved genes in syntenic regions of previously sequenced grass genomes were integrated with physical and genetic map positions of 518 wheat markers to establish a virtual gene order for chromosome 5D.

Conclusions

The virtual gene order revealed a large-scale chromosomal rearrangement in the peri-centromeric region of 5DL, and a concentration of non-syntenic genes in the telomeric region of 5DS. Although our data support the large-scale conservation of Triticeae chromosome structure, they also suggest that some regions are evolving rapidly through frequent gene duplications and translocations.

Sequence accessions

EBI European Nucleotide Archive, Study no. ERP002330

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1080) contains supplementary material, which is available to authorized users.  相似文献   

10.
11.
12.

Background & objectives

To analyze the reversal gene pairs and identify featured reversal genes related to mitogen-activated protein kinases (MAPK) signaling pathway and cell cycle in Glioblastoma multiforme (GBM) to reveal its pathogenetic mechanism.

Methods

We downloaded the gene expression profile GSE4290 from the Gene Expression Omnibus database, including 81 gene chips of GBM and 23 gene chips of controls. The t test was used to analyze the DEGs (differentially expressed genes) between 23 normal and 81 GBM samples. Then some perturbing metabolic pathways, including MAPK (mitogen-activated protein kinases) and cell cycle signaling pathway, were extracted from KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway database. Cancer genes were obtained from the database of Cancer Gene Census. The reversal gene pairs between DEGs and cancer genes were further analyzed in MAPK and cell cycle signaling pathway.

Results

A total 8523 DEGs were obtained including 4090 up-regulated and 4433 down-regulated genes. Among them, ras-related protein rab-13(RAB13), neuroblastoma breakpoint family member 10 (NBPF10) and disks large homologue 4 (DLG4) were found to be involved in GBM for the first time. We obtained MAPK and cell cycle signaling pathways from KEGG database. By analyzing perturbing mechanism in these two pathways, we identified several reversal gene pairs, including NRAS (neuroblastoma RAS) and CDK2 (cyclin-dependent kinase 2), CCND1 (cyclin D1) and FGFR (fibroblast growth factor receptor). Further analysis showed that NRAS and CDK2 were positively related with GBM. However, FGFR2 and CCND1 were negatively related with GBM.

Interpretation & conclusions

These findings suggest that newly identified DEGs and featured reversal gene pairs participated in MAPK and cell cycle signaling pathway may provide a new therapeutic line of approach to GBM.  相似文献   

13.

Background and Aims

Cutting plant material is essential for observing internal structures and may be difficult for various reasons. Most fixation agents such as aldehydes, as well as embedding resins, do not allow subsequent use of fluorescent staining and make material too soft to make good-quality hand-sections. Moreover, cutting thin roots can be very difficult and time consuming. A new, fast and effective method to provide good-quality sections and fluorescent staining of fresh or fixed root samples, including those of very thin roots (such as Arabidopsis or Noccaea), is described here.

Methods

To overcome the above-mentioned difficulties the following procedure is proposed: fixation in methanol (when fresh material cannot be used) followed by en bloc staining with toluidine blue, embedding in 6 % agarose, preparation of free-hand sections of embedded material, staining with fluorescent dye, and observation in a microscope under UV light.

Key Results

Despite eventual slight deformation of primary cell walls (depending on the species and root developmental stage), this method allows effective observation of different structures such as ontogenetic changes of cells along the root axis, e.g. development of xylem elements, deposition of Casparian bands and suberin lamellae in endodermis or exodermis or peri-endodermal thickenings in Noccaea roots.

Conclusions

This method provides good-quality sections and allows relatively rapid detection of cell-wall modifications. Also important is the possibility of using this method for free-hand cutting of extremely thin roots such as those of Arabidopsis.  相似文献   

14.

Background

Trypanosomatid parasites possess a single mitochondrion which is classically involved in the energetic metabolism of the cell, but also, in a much more original way, through its single and complex DNA (termed kinetoplast), in the correct progress of cell division. In order to identify proteins potentially involved in the cell cycle, we performed RNAi knockdowns of 101 genes encoding mitochondrial proteins using procyclic cells of Trypanosoma brucei.

Results

A major cell growth reduction was observed in 10 cases and a moderate reduction in 29 other cases. These data are overall in agreement with those previously obtained by a case-by-case approach performed on chromosome 1 genes, and quantitatively with those obtained by “high-throughput phenotyping using parallel sequencing of RNA interference targets” (RIT-seq). Nevertheless, a detailed analysis revealed many qualitative discrepancies with the RIT-seq-based approach. Moreover, for 37 out of 39 mutants for which a moderate or severe growth defect was observed here, we noted abnormalities in the cell cycle progress, leading to increased proportions of abnormal cell cycle stages, such as cells containing more than 2 kinetoplasts (K) and/or more than 2 nuclei (N), and modified proportions of the normal phenotypes (1N1K, 1N2K and 2N2K).

Conclusions

These data, together with the observation of other abnormal phenotypes, show that all the corresponding mitochondrial proteins are involved, directly or indirectly, in the correct progress or, less likely, in the regulation, of the cell cycle in T. brucei. They also show how post-genomics analyses performed on a case-by-case basis may yield discrepancies with global approaches.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1505-5) contains supplementary material, which is available to authorized users.  相似文献   

15.

Background and Aims

A model to predict anthesis time of a wheat plant from environmental and genetic information requires integration of current concepts in physiological and molecular biology. This paper describes the structure of an integrated model and quantifies its response mechanisms.

Methods

Literature was reviewed to formulate the components of the model. Detailed re-analysis of physiological observations are utilized from a previous publication by the second two authors. In this approach measurements of leaf number and leaf and primordia appearance of near isogenic lines of spring and winter wheat grown for different durations in different temperature and photoperiod conditions are used to quantify mechanisms and parameters to predict time of anthesis.

Key Results

The model predicts the time of anthesis from the length of sequential phases: 1, embryo development; 2, dormant; 3, imbibed/emerging; 4, vegetative; 5, early reproductive; 6, pseudo-stem extension; and 7, ear development. Phase 4 ends with vernalization saturation (VS), Phase 5 with terminal spikelet (TS) and Phase 6 with flag leaf ligule appearance (FL). The durations of Phases 4 and 5 are linked to the expression of Vrn genes and are calculated in relation to change in Haun stage (HS) to account for the effects of temperature per se. Vrn1 must be expressed to sufficient levels for VS to occur. Vrn1 expression occurs at a base rate of 0·08/HS in winter ‘Batten’ and 0·17/HS in spring ‘Batten’ during Phases 1, 3 and 4. Low temperatures promote expression of Vrn1 and accelerate progress toward VS. Our hypothesis is that a repressor, Vrn4, must first be downregulated for this to occur. Rates of Vrn4 downregulation and Vrn1 upregulation have the same exponential response to temperature, but Vrn4 is quickly upregulated again at high temperatures, meaning short exposure to low temperature has no impact on the time of VS. VS occurs when Vrn1 reaches a relative expression of 0·76 and Vrn3 expression begins. However, Vrn2 represses Vrn3 expression so Vrn1 must be further upregulated to repress Vrn2 and enable Vrn3 expression. As a result, the target for Vrn1 to trigger VS was 0·76 in 8-h photoperiods (Pp) and increased at 0·026/HS under 16-h Pp as levels of Vrn2 increased. This provides a mechanism to model short-day vernalization. Vrn3 is expressed in Phase 5 (following VS), and apparent rates of Vrn3 expression increased from 0·15/HS at 8-h Pp to 0·33/HS at 16-h Pp. The final number of leaves is calculated as a function of the HS at which TS occurred (TSHS): 2·86 + 1·1 × TSHS. The duration of Phase 6 is then dependent on the number of leaves left to emerge and how quickly they emerge.

Conclusions

The analysis integrates molecular biology and crop physiology concepts into a model framework that links different developmental genes to quantitative predictions of wheat anthesis time in different field situations.  相似文献   

16.
MethodsThe lengths and numbers of epidermal and cortical cells of the first internodes in three wheat cultivars were measured. These parameters were compared in wheat seedlings treated with gibberellin A3 (GA3) or an inhibitor of GA biosynthesis, uniconazole.ConclusionsThe deep-sowing-tolerant cultivar ‘Hong Mang Mai’ is able to elongate the first internode to a greater degree due to enhanced cell division and a heightened response to GA. In addition, cell expansion in the epidermis and cell division in the cortex are synchronized for the elongation of the first internodes. In response to GA, this well-co-ordinated synchronization yields the rapid elongation of the first internodes in wheat seedlings.  相似文献   

17.
18.

Background and Aims

The relationship between Septoria tritici, a splash-dispersed disease, and its host is complex because of the interactions between the dynamic plant architecture and the vertical progress of the disease. The aim of this study was to test the capacity of a coupled virtual wheat–Septoria tritici epidemic model (Septo3D) to simulate disease progress on the different leaf layers for contrasted sowing density treatments.

Methods

A field experiment was performed with winter wheat ‘Soissons’ grown at three contrasted densities. Plant architecture was characterized to parameterize the wheat model, and disease dynamic was monitored to compare with simulations. Three simulation scenarios, differing in the degree of detail with which plant variability of development was represented, were defined.

Key Results

Despite architectural differences between density treatments, few differences were found in disease progress; only the lower-density treatment resulted in a slightly higher rate of lesion development. Model predictions were consistent with field measurements but did not reproduce the higher rate of lesion progress in the low density. The canopy reconstruction scenario in which inter-plant variability was taken into account yielded the best agreement between measured and simulated epidemics. Simulations performed with the canopy represented by a population of the same average plant deviated strongly from the observations.

Conclusions

It was possible to compare the predicted and measured epidemics on detailed variables, supporting the hypothesis that the approach is able to provide new insights into the processes and plant traits that contribute to the epidemics. On the other hand, the complex and dynamic responses to sowing density made it difficult to test the model precisely and to disentangle the various aspects involved. This could be overcome by comparing more contrasted and/or simpler canopy architectures such as those resulting from quasi-isogenic lines differing by single architectural traits.  相似文献   

19.
20.
Organic acids enhance the uptake of lead by wheat roots   总被引:2,自引:0,他引:2  
Wang H  Shan X  Liu T  Xie Y  Wen B  Zhang S  Han F  van Genuchten MT 《Planta》2007,225(6):1483-1494
The uptake and bioavailability of lead (Pb) in soil–plant systems remain poorly understood. This study indicates that acetic and malic acids enhance the uptake of Pb by wheat (Triticum aestivum L.) roots under hydroponic conditions. The net concentration-dependent uptake influx of Pb in the presence and absence of organic acids was characterized by Michaelis–Menten type nonsaturating kinetic curves that could be resolved into linear and saturable components. Fitted maximum uptake rates (V max) of the Michaelis–Menton saturable component in the presence of acetic and malic acids were, respectively, 2.45 and 1.63 times those of the control, while the Michaelis–Menten K m values of 5.5, 3.7 and 2.2 μM, respectively, remained unchanged. Enhanced Pb uptake by organic acids was partially mediated by Ca2+ and K+ channels, and also depended upon the physiological function of the plasma membrane P-type ATPase. Uptake may have been further enhanced by an effectively thinner unstirred layer of Pb adjacent to the roots, leading to more rapid diffusion towards roots. X-ray absorption spectroscopic studies provided evidence that the coordination environment of Pb in wheat roots was similar to that of Pb(CH3COO)2·3H2O in that one Pb atom was coordinated to four oxygen atoms via the carboxylate group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号