首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We assessed the reactivity of Sb(V) in human blood. Sb(V) reactivity was determined using an HPLC-HG-AFS hyphenated system. Sb(V) was partially reduced to Sb(III) in blood incubation experiments; however, Sb(III) was a highly unstable species. The addition of 0.1 mol L−1 EDTA prevented Sb(III) oxidation, thus enabling the detection of the reduction of Sb(V) to Sb(III). The transformation of Sb(V) to Sb(III) in human whole blood was assessed because the reduction of Sb(V) in human blood may likely generate redox side effects. Our results indicate that glutathione was the reducing agent in this reaction and that Sb(V) significantly decreased the GSH/GSSG ratio from 0.32±0.09 to 0.07±0.03. Moreover, the presence of 200 ng mL−1 of Sb(V) increased the activity of superoxide dismutase from 4.4±0.1 to 7.0±0.4 U mL−1 and decreased the activity of glutathione peroxidase from 62±1 to 34±2 nmol min−1 mL−1.  相似文献   

2.
Dickeya zeae strain EC1 was recently shown to produce a new type of phytotoxins designated as zeamine and zeamine II, which are potent wide-spectrum antibiotics against Gram-positive and Gram-negative bacterial pathogens, suggesting their promising potential as clinical medicines. In this study, the optimized medium composition and culture conditions for biosynthesis of novel antibiotics zeamines have been established by using response surface methodology, largely increasing the yield of zeamines from original about 7.35 µg·mL−1 in minimal medium to about 150 µg·mL−1 in LS5 medium. The study identified the major factors contributing to zeamines production, which include nitrate, sucrose, asparaginate, mineral elements Mg2+ and K+, and optimized amount of phosphate. In addition, the results showed that overexpression of zmsK in D. zeae strain EC1 could further increase zeamines yield to about 180 µg·mL−1 in LS5 medium. The findings from this study could facilitate further characterization and utilization of these two novel antibiotics, and also provide useful clues for understanding the regulatory mechanisms that govern D. zeae virulence.  相似文献   

3.
Cylindrical or taper-and-cylinder combination optical fiber probe based on evanescent wave has been widely used for immunofluorescence biosensor to detect various analytes. In this study, in contrast to the contradiction between penetration depth and analyte diameter of optical fiber probe-based evanescent wave, we demonstrate that double-taper optical fiber used in a radiation wave-based all-fiber immunofluorescence biosensor (RWAIB) can detect micron-scale analytes using Escherichia coli O157:H7 as representative target. Finite-difference time-domain method was used to compare the properties of evanescent wave and radiation wave (RW). Ray-tracing model was formulated to optimize the taper geometry of the probe. Based on a commercial multi-mode fiber, a double-taper probe was fabricated and connected with biosensor through a “ferrule connector” optical fiber connector. The RWAIB configuration was accomplished using commercial multi-mode fibers and fiber-based devices according to the “all-fiber” method. The standard sample tests revealed that the sensitivity of the proposed technique for E. coli O157:H7 detection was 103 cfu·mL−1. Quantitation could be achieved within the concentration range of 103 cfu·mL−1 to 107 cfu·mL−1. No non-specific recognition to ten kinds of food-borne pathogens was observed. The results demonstrated that based on the double-taper optical fiber RWAIB can be used for the quantitative detection of micron-scale targets, and RW sensing is an alternative for traditional evanescent wave sensing during the fabrication of fiber-optic biosensors.  相似文献   

4.
The basidiomycete fungus Gloeophyllum trabeum causes a typical brown rot and is known to use reactive oxygen species in the degradation of cellulose. The extracellular Cel12A is one of the few endo-1,4-β-glucanase produced by G. trabeum. Here we cloned cel12A and heterologously expressed it in Aspergillus niger. The identity of the resulting recombinant protein was confirmed by mass spectrometry. We used the purified GtCel12A to determine its substrate specificity and basic biochemical properties. The G. trabeum Cel12A showed highest activity on β-glucan, followed by lichenan, carboxymethylcellulose, phosphoric acid swollen cellulose, microcrystalline cellulose, and filter paper. The optimal pH and temperature for enzymatic activity were, respectively, 4.5 and 50°C on β-glucan. Under these conditions specific activity was 239.2±9.1 U mg−1 and the half-life of the enzyme was 84.6±3.5 hours. Thermofluor studies revealed that the enzyme was most thermal stable at pH 3. Using β-glucan as a substrate, the Km was 3.2±0.5 mg mL−1 and the Vmax was 0.41±0.02 µmol min−1. Analysis of the effects of GtCel12A on oat spelt and filter paper by scanning electron microscopy revealed the morphological changes taking place during the process.  相似文献   

5.
Synthetic and natural polymers are often used as drug delivery systems in vitro and in vivo. Biodegradable chitosan of different sizes were used to encapsulate antitumor drug tamoxifen (Tam) and its metabolites 4-hydroxytamoxifen (4-Hydroxytam) and endoxifen (Endox). The interactions of tamoxifen and its metabolites with chitosan 15, 100 and 200 KD were investigated in aqueous solution, using FTIR, fluorescence spectroscopic methods and molecular modeling. The structural analysis showed that tamoxifen and its metabolites bind chitosan via both hydrophilic and hydrophobic contacts with overall binding constants of K tam-ch-15  = 8.7 (±0.5)×103 M−1, K tam-ch-100  = 5.9 (±0.4)×105 M−1, K tam-ch-200  = 2.4 (±0.4)×105 M−1 and K hydroxytam-ch-15  = 2.6(±0.3)×104 M−1, K hydroxytam – ch-100  = 5.2 (±0.7)×106 M−1 and K hydroxytam-ch-200  = 5.1 (±0.5)×105 M−1, K endox-ch-15  = 4.1 (±0.4)×103 M−1, K endox-ch-100  = 1.2 (±0.3)×106 M−1 and K endox-ch-200  = 4.7 (±0.5)×105 M−1 with the number of drug molecules bound per chitosan (n) 2.8 to 0.5. The order of binding is ch-100>200>15 KD with stronger complexes formed with 4-hydroxytamoxifen than tamoxifen and endoxifen. The molecular modeling showed the participation of polymer charged NH2 residues with drug OH and NH2 groups in the drug-polymer adducts. The free binding energies of −3.46 kcal/mol for tamoxifen, −3.54 kcal/mol for 4-hydroxytamoxifen and −3.47 kcal/mol for endoxifen were estimated for these drug-polymer complexes. The results show chitosan 100 KD is stronger carrier for drug delivery than chitosan-15 and chitosan-200 KD.  相似文献   

6.
The formation of reactive oxygen species (ROS) within cells causes damage to biomolecules, including membrane lipids, DNA, proteins and sugars. An important type of oxidative damage is DNA base hydroxylation which leads to the formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) and 5-hydroxymethyluracil (5-HMUra). Measurement of these biomarkers in urine is challenging, due to the low levels of the analytes and the matrix complexity. In order to simultaneously quantify 8-oxodG and 5-HMUra in human urine, a new, reliable and powerful strategy was optimised and validated. It is based on a semi-automatic microextraction by packed sorbent (MEPS) technique, using a new digitally controlled syringe (eVol®), to enhance the extraction efficiency of the target metabolites, followed by a fast and sensitive ultrahigh pressure liquid chromatography (UHPLC). The optimal methodological conditions involve loading of 250 µL urine sample (1∶10 dilution) through a C8 sorbent in a MEPS syringe placed in the semi-automatic eVol® syringe followed by elution using 90 µL of 20% methanol in 0.01% formic acid solution. The obtained extract is directly analysed in the UHPLC system using a binary mobile phase composed of aqueous 0.1% formic acid and methanol in the isocratic elution mode (3.5 min total analysis time). The method was validated in terms of selectivity, linearity, limit of detection (LOD), limit of quantification (LOQ), extraction yield, accuracy, precision and matrix effect. Satisfactory results were obtained in terms of linearity (r2 > 0.991) within the established concentration range. The LOD varied from 0.00005 to 0.04 µg mL−1 and the LOQ from 0.00023 to 0.13 µg mL−1. The extraction yields were between 80.1 and 82.2 %, while inter-day precision (n = 3 days) varied between 4.9 and 7.7 % and intra-day precision between 1.0 and 8.3 %. This approach presents as main advantages the ability to easily collect and store urine samples for further processing and the high sensitivity, reproducibility, and robustness of eVol®MEPS combined with UHPLC analysis, thus retrieving a fast and reliable assessment of oxidatively damaged DNA.  相似文献   

7.
The present study aimed to investigate the pharmacokinetic properties of febuxostat in healthy Chinese male volunteers and evaluate whether the two formulations of febuxostat 40-mg and 80-mg tablets are bioequivalent. A randomized, open-label, 4-way crossover study was conducted in healthy Chinese male volunteers under fasting conditions. 24 eligible subjects were randomized in a 1:1:1:1 ratio to receive a single dose of test or reference formulation of febuxostat 40-mg or 80-mg tablet. The washout period between each administration was 1 week. Plasma febuxostat was quantified by a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Tolerability was evaluated by monitoring adverse events, physical examinations, 12-lead ECG and laboratory tests. After single-dosing of 1 tablet of 40-mg febuxostat, the pharmacokinetic parameters of test and reference formulations were: Tmax 1.22±0.87 and 1.85±1.03 h, Cmax 1689.16±461.31 and 1613.80±608.43 ng·mL-1, AUC0-t 5139.87±1349.28 and 5517.91±2024.26 ng·mL-1·h, AUC0−∞ 5263.06±1339.16 and 5640.48±2040.22 ng·mL-1·h, t1/2 4.82±2.61 and 4.85±1.78 h, respectively. After single-dosing of 1 tablet of 80-mg febuxostat, the pharmacokinetic parameters of test and reference formulations were: Tmax 1.71±1.21 and 2.23±1.55 h, Cmax 2744.47±1157.44 and 2998.17±1200.13 ng·mL-1, AUC0-t 9634.03±2768.25 and 10467.95±3501.65 ng·mL-1·h, AUC0−∞ 9834.32±2730.51 and 10626.63±3504.08 ng·mL-1·h, t1/2 6.25±2.44 and 5.46±1.65 h, respectively. For single-dosing of 1 tablet of 40-mg febuxostat, 90% CIs for the test/reference ratio of AUC0-t, AUC0−∞ and Cmax were 89.79 to 102.55, 90.14 to 102.56 and 93.99 to 129.63, respectively. For single-dosing of 1 tablet of 80-mg febuxostat, 90% CIs for the test/reference ratio of AUC0-t, AUC0−∞ and Cmax were 86.67 to 100.00, 87.50 to 100.51 and 79.48 to 105.99, respectively. This single dose study revealed similar pharmacokinetic properties in healthy Chinese male volunteers as those found in Caucasic population. The test and reference febuxostat tablets formulations met the regulatory criteria for bioequivalence at 40-mg and 80-mg strengths in fasting healthy Chinese male volunteers.Trial Registration: Chictr.org ChiCTR-TTRCC-14004288  相似文献   

8.
Chronic kidney disease (CKD) is part of a number of systemic and renal diseases and may reach epidemic proportions over the next decade. Efforts have been made to improve diagnosis and management of CKD. We hypothesised that combining metabolomic and proteomic approaches could generate a more systemic and complete view of the disease mechanisms. To test this approach, we examined samples from a cohort of 49 patients representing different stages of CKD. Urine samples were analysed for proteomic changes using capillary electrophoresis-mass spectrometry and urine and plasma samples for metabolomic changes using different mass spectrometry-based techniques. The training set included 20 CKD patients selected according to their estimated glomerular filtration rate (eGFR) at mild (59.9±16.5 mL/min/1.73 m2; n = 10) or advanced (8.9±4.5 mL/min/1.73 m2; n = 10) CKD and the remaining 29 patients left for the test set. We identified a panel of 76 statistically significant metabolites and peptides that correlated with CKD in the training set. We combined these biomarkers in different classifiers and then performed correlation analyses with eGFR at baseline and follow-up after 2.8±0.8 years in the test set. A solely plasma metabolite biomarker-based classifier significantly correlated with the loss of kidney function in the test set at baseline and follow-up (ρ = −0.8031; p<0.0001 and ρ = −0.6009; p = 0.0019, respectively). Similarly, a urinary metabolite biomarker-based classifier did reveal significant association to kidney function (ρ = −0.6557; p = 0.0001 and ρ = −0.6574; p = 0.0005). A classifier utilising 46 identified urinary peptide biomarkers performed statistically equivalent to the urinary and plasma metabolite classifier (ρ = −0.7752; p<0.0001 and ρ = −0.8400; p<0.0001). The combination of both urinary proteomic and urinary and plasma metabolic biomarkers did not improve the correlation with eGFR. In conclusion, we found excellent association of plasma and urinary metabolites and urinary peptides with kidney function, and disease progression, but no added value in combining the different biomarkers data.  相似文献   

9.
The transformation of 1,2,4-trichlorobenzene (1,2,4-TCB) at initial concentrations in nano- and micromolar ranges was studied in batch experiments with Burkholderia sp. strain PS14. 1,2,4-TCB was metabolized from nano- and micromolar concentrations to below its detection limit of 0.5 nM. At low initial 1,2,4-TCB concentrations, a first-order relationship between specific transformation rate and substrate concentration was observed with a specific affinity (a0A) of 0.32 liter · mg (dry weight)−1 · h−1 followed by a second one at higher concentrations with an aoA of 0.77 liter · mg (dry weight)−1 · h−1. This transition from the first-order kinetics at low initial 1,2,4-TCB concentrations to the second first-order kinetics at higher 1,2,4-TCB concentrations was shifted towards higher initial 1,2,4-TCB concentrations with increasing cell mass. At high initial concentrations of 1,2,4-TCB, a maximal transformation rate of approximately 37 nmol · min−1 · mg (dry weight)−1 was measured, irrespective of the cell concentration.  相似文献   

10.
1. Purified rabbit-muscle and -liver glucose phosphate isomerase, free of contaminating enzyme activities that could interfere with the assay procedures, were tested for inhibition by fructose, fructose 1-phosphate and fructose 1,6-diphosphate. 2. Fructose 1-phosphate and fructose 1,6-diphosphate are both competitive with fructose 6-phosphate in the enzymic reaction, the apparent Ki values being 1·37×10−3−1·67×10−3m for fructose 1-phosphate and 7·2×10−3−7·9×10−3m for fructose 1,6-diphosphate; fructose and inorganic phosphate were without effect. 3. The apparent Km values for both liver and muscle enzymes at pH7·4 and 30° were 1·11×10−4−1·29×10−4m for fructose 6-phosphate, determined under the conditions in this paper. 4. In the reverse reaction, fructose, fructose 1-phosphate and fructose 1,6-diphosphate did not significantly inhibit the conversion of glucose 6-phosphate into fructose 6-phosphate. 5. The apparent Km values for glucose 6-phosphate were in the range 5·6×10−4−8·5×10−4m. 6. The competitive inhibition of hepatic glucose phosphate isomerase by fructose 1-phosphate is discussed in relation to the mechanism of fructose-induced hypoglycaemia in hereditary fructose intolerance.  相似文献   

11.
Pyrophosphorylytic kinetic constants (S0.5, Vmax) of partially purified UDP-glucose- and ADP-glucose pyrophosphorylases from potato tubers were determined in the presence of various intermediary metabolites. The S0.5 of UDP-glucose pyrophosphorylase for UDP-glucose (0.17 millimolar) or pyrophosphate (0.30 millimolar) and the Vmax were not influenced by high concentrations (2 millimolar) of these substances. The most efficient activator of ADP-glucose pyrophosphorylase was 3-P-glycerate (A0.5 = 4.5 × 10−6 molar). The S0.5 for ADP-glucose and pyrophosphate was increased 3.5-fold (0.83 to 0.24 millimolar) and 1.8-fold (0.18 to 0.10 millimolar), respectively, with 0.1 millimolar 3-P-glycerate while the Vmax was increased nearly 4-fold. The magnitude of 3-P-glycerate stimulation was dependent upon the integrity of key sulfhydryl groups (−SH) and pH. Oxidation or blockage of −SH groups resulted in a marked reduction of enzyme activity. Stimulations of 3.1-, 2.9-, 4.8-, and 9.5-fold were observed at pH 7.5, 8.0, 8.5, and 9.0, respectively, in the presence of 3-P-glycerate (2 millimolar). The most potent inhibitor of ADP-glucose pyrophosphorylase was orthophosphate (I0.5 = 8.8 × 10−5. molar). This inhibition was reversed with 3-P-glycerate (1.2 × 10−4 molar), resulting in an increased I0.5 value of 1.5 × 10−3 molar. Likewise, orthophosphate (7.5 × 10−4 molar) caused a decrease in the activation efficiency of 3-P-glycerate (A0.5 from 4.5 × 10−6 molar to 6.7 × 10−5 molar). The significance of 3-P-glycerate activation and orthophosphate inhibition in the regulation of α-glucan biosynthesis in Solanum tuberosum is discussed.  相似文献   

12.
Bacterial steroid catabolism is an important component of the global carbon cycle and has applications in drug synthesis. Pathways for this catabolism involve multiple acyl coenzyme A (CoA) synthetases, which activate alkanoate substituents for β-oxidation. The functions of these synthetases are poorly understood. We enzymatically characterized four distinct acyl-CoA synthetases from the cholate catabolic pathway of Rhodococcus jostii RHA1 and the cholesterol catabolic pathway of Mycobacterium tuberculosis. Phylogenetic analysis of 70 acyl-CoA synthetases predicted to be involved in steroid metabolism revealed that the characterized synthetases each represent an orthologous class with a distinct function in steroid side-chain degradation. The synthetases were specific for the length of alkanoate substituent. FadD19 from M. tuberculosis H37Rv (FadD19Mtb) transformed 3-oxo-4-cholesten-26-oate (kcat/Km = 0.33 × 105 ± 0.03 × 105 M−1 s−1) and represents orthologs that activate the C8 side chain of cholesterol. Both CasGRHA1 and FadD17Mtb are steroid-24-oyl-CoA synthetases. CasG and its orthologs activate the C5 side chain of cholate, while FadD17 and its orthologs appear to activate the C5 side chain of one or more cholesterol metabolites. CasIRHA1 is a steroid-22-oyl-CoA synthetase, representing orthologs that activate metabolites with a C3 side chain, which accumulate during cholate catabolism. CasI had similar apparent specificities for substrates with intact or extensively degraded steroid nuclei, exemplified by 3-oxo-23,24-bisnorchol-4-en-22-oate and 1β(2′-propanoate)-3aα-H-4α(3″-propanoate)-7aβ-methylhexahydro-5-indanone (kcat/Km = 2.4 × 105 ± 0.1 × 105 M−1 s−1 and 3.2 × 105 ± 0.3 × 105 M−1 s−1, respectively). Acyl-CoA synthetase classes involved in cholate catabolism were found in both Actinobacteria and Proteobacteria. Overall, this study provides insight into the physiological roles of acyl-CoA synthetases in steroid catabolism and a phylogenetic classification enabling prediction of specific functions of related enzymes.  相似文献   

13.
The ability to detect sequence-specific single-strand DNA (ssDNA) in complex, contaminant-ridden samples, using a fluorescent method directly without a DNA extraction and PCR step could simplify the detection of pathogens in the field and in the clinic. Here, we have demonstrated a simple label-free sensing strategy to detect ssDNA by employing its complementary ssDNA, S1 nuclease and nucleic acid fluorescent dyes. Upon clearing away redundant complementary ssDNA and possibly mismatched double strand DNA by using S1 nuclease, the fluorescent signal-to-noise ratio could be increased dramatically. It enabled the method to be adaptable to three different types of DNA fluorescent dyes and the ability to detect target ssDNA in complex, multicomponent samples, like tissue homogenate. The method can distinguish a two-base mismatch from avian influenza A (H1N1) virus. Also, it can detect the appearance of 50 pM target ssDNA in 0.5 µg·mL−1 Lambda DNA, and 50 nM target ssDNA in 5 µg·mL−1 Lambda DNA or in tissue homogenate. It is facile and cost-effective, and could be easily extended to detect other ssDNA with many common nucleic acid fluorescent dyes.  相似文献   

14.
This study aimed to compare the effects of different velocities of eccentric muscle actions on acute blood lactate and serum growth hormone (GH) concentrations following free weight bench press exercises performed by resistance-trained men. Sixteen healthy men were divided into two groups: slow eccentric velocity (SEV; n = 8) and fast eccentric velocity (FEV; n = 8). Both groups performed four sets of eight eccentric repetitions at an intensity of 70% of their one repetition maximum eccentric (1RMecc) test, with 2-minute rest intervals between sets. The eccentric velocity was controlled to 3 seconds per range of motion for SEV and 0.5 seconds for the FEV group. There was a significant difference (P < 0.001) in the kinetics of blood lactate removal (at 3, 6, 9, 15, and 20 min) and higher mean values for peak blood lactate (P = 0.001) for the SEV group (9.1 ± 0.5 mM) compared to the FEV group (6.1 ± 0.4 mM). Additionally, serum GH concentrations were significantly higher (P < 0.001) at 15 minutes after bench press exercise in the SEV group (1.7 ± 0.6 ng · mL−1) relative to the FEV group (0.1 ± 0.0 ng · mL−1). In conclusion, the velocity of eccentric muscle action influences acute responses following bench press exercises performed by resistance-trained men using a slow velocity resulting in a greater metabolic stress and hormone response.  相似文献   

15.
The specific growth rate is a key control parameter in the industrial production of baker’s yeast. Nevertheless, quantitative data describing its effect on fermentative capacity are not available from the literature. In this study, the effect of the specific growth rate on the physiology and fermentative capacity of an industrial Saccharomyces cerevisiae strain in aerobic, glucose-limited chemostat cultures was investigated. At specific growth rates (dilution rates, D) below 0.28 h−1, glucose metabolism was fully respiratory. Above this dilution rate, respirofermentative metabolism set in, with ethanol production rates of up to 14 mmol of ethanol · g of biomass−1 · h−1 at D = 0.40 h−1. A substantial fermentative capacity (assayed offline as ethanol production rate under anaerobic conditions) was found in cultures in which no ethanol was detectable (D < 0.28 h−1). This fermentative capacity increased with increasing dilution rates, from 10.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.025 h−1 to 20.5 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.28 h−1. At even higher dilution rates, the fermentative capacity showed only a small further increase, up to 22.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.40 h−1. The activities of all glycolytic enzymes, pyruvate decarboxylase, and alcohol dehydrogenase were determined in cell extracts. Only the in vitro activities of pyruvate decarboxylase and phosphofructokinase showed a clear positive correlation with fermentative capacity. These enzymes are interesting targets for overexpression in attempts to improve the fermentative capacity of aerobic cultures grown at low specific growth rates.  相似文献   

16.

Introduction

Our objective was to investigate whether a lack of frizzled-related protein B (FrzB), an extracellular antagonist of the Wnt signaling pathways, could enhance cartilage degradation by facilitating the expression, release and activation of matrix metalloproteinases (MMPs) by chondrocytes in response to tissue-damaging stimuli.

Methods

Cartilage explants from FrzB−/− and wild-type mice were challenged by excessive dynamic compression (0.5 Hz and 1 MPa for 6 hours). Load-induced glycosaminoglycan (GAG) release and MMP enzymatic activity were assessed. Interleukin-1β (IL-1β) (10, 100 and 1000 pg/mL for 24 hours) was used to stimulate primary cultures of articular chondrocytes from FrzB−/− and wild-type mice. The expression and release of MMP-3 and −13 were determined by RT-PCR, western blot and ELISA. The accumulation of β-catenin was assessed by RT-PCR and western blot.

Results

Cartilage degradation, as revealed by a significant increase in GAG release (2.8-fold, P = 0.014) and MMP activity (4.5-fold, P = 0.014) by explants, was induced by an excessive load. Load-induced MMP activity appeared to be enhanced in FrzB−/− cartilage explants compared to wild-type (P = 0.17). IL-1β dose-dependently induced Mmp-13 and −3 gene expression and protein release by cultured chondrocytes. IL-1β-mediated increase in MMP-13 and −3 was slightly enhanced in FrzB−/− chondrocytes compared to wild-type (P = 0.05 and P = 0.10 at gene level, P = 0.17 and P = 0.10 at protein level, respectively). Analysis of Ctnn1b and Lef1 gene expression and β-catenin accumulation at protein level suggests that the enhanced catabolic response of FrzB−/− chondrocytes to IL-1β and load may be associated with an over-stimulation of the canonical Wnt/β-catenin pathway.

Conclusions

Our results suggest that FrzB may have a protective role on cartilage degradation and MMP induction in mouse chondrocytes by attenuating deleterious effects of the activation of the canonical Wnt/β-catenin pathway.  相似文献   

17.
A strain of Synechococcus sp. PCC7942 lacking functional Fe superoxide dismutase (SOD), designated sodB, was characterized by its growth rate, photosynthetic pigments, inhibition of photosynthetic electron transport activity, and total SOD activity at 0°C, 10°C, 17°C, and 27°C in moderate light. At 27°C, the sodB and wild-type strains had similar growth rates, chlorophyll and carotenoid contents, and cyclic photosynthetic electron transport activity. The sodB strain was more sensitive to chilling stress at 17°C than the wild type, indicating a role for FeSOD in protection against photooxidative damage during moderate chilling in light. However, both the wild-type and sodB strains exhibited similar chilling damage at 0°C and 10°C, indicating that the FeSOD does not provide protection against severe chilling stress in light. Total SOD activity was lower in the sodB strain than in the wild type at 17°C and 27°C. Total SOD activity decreased with decreasing temperature in both strains but more so in the wild type. Total SOD activity was equal in the two strains when assayed at 0°C.  相似文献   

18.
With the consumption of energy and the spread of COVID-19, the demand for ethanol production is increasing in the world. The industrial ethanol fermentation microbes cannot metabolize the alginate component of macro algae, which affects the ethanol yield. In this research, the ethanol production process from macro algae by an alginate fermentation yeast Meyerozyma guilliermondii, especially the pretreatment process of Colpomenia sinuosa, was studied. At the same time, the experimental design of Box-Behnken was carried out to achieve the optimum fermentation performance. The concentration of KH2PO4 (A: 2–6 g.L−1), pH (B: 4–7), reaction time (C: 60–120 h) and temperature (D: 24–34 °C) were variable input parameters. During the ethanol production process, the algae powder was firstly mixed with water at 90 °C for 0.5 h. Later the fermentation culture medium was prepared and then it was fermented by the yeast Meyerozyma guilliermondii to produce ethanol. And the optimal fermentation parameters were as follows: fermentation temperature of 28 °C, KH2PO4 dosage of 4.7 g.L−1, initial pH of 6, and fermentation time of 99 h. The ethanol yield reached 0.268 g.g−1 (ethanol to algae), close to the predicted value of model. The generation of alginate lyase during the fermentation of algae was also examined. The highest alginate lyase activity reached 46.42 U.mL−1.  相似文献   

19.
Working memory (WM) refers to the temporary storage and manipulation of information necessary for performance of complex cognitive tasks. There is a growing interest in whether and how propofol anesthesia inhibits WM function. The aim of this study is to investigate the possible inhibition mechanism of propofol anesthesia based on the functional connections of multi-local field potentials (LFPs) and behavior during WM tasks. Adult SD rats were randomly divided into 3 groups: pro group (0.5 mg·kg−1·min−1,2 h), PRO group (0.9 mg·kg−1·min−1, 2 h) and control group. The experimental data were 16-channel LFPs obtained at prefrontal cortex with implanted microelectrode array in SD rats during WM tasks in Y-maze at 24, 48, 72, 96, 120 hours (day 1-day 5) after propofol anesthesia, and the behavior results of WM were recoded at the same time. Directed transfer function (DTF) method was applied to analyze the connections among LFPs directly. Furthermore, the causal networks were identified by DTF. The clustering coefficient (C), network density (D) and global efficiency (Eglobal) were selected to describe the functional connectivity quantitatively. The results show that: comparing with the control group, the LFPs functional connectivity in pro group were no significantly difference (p>0.05); the connectivity in PRO group were significantly decreased (p<0.05 at 24 hours, p<0.05 at 48 hours), while no significant difference at 72, 96 and 120 hours for rats (p>0.05), which were consistent with the behavior results. These findings could lead to improved understanding the mechanism of inhibition of anesthesia on WM functions from the view of connections among LFPs.  相似文献   

20.
Ice Nucleation Activity in Lichens   总被引:7,自引:0,他引:7       下载免费PDF全文
A newly discovered form of biological ice nucleus associated with lichens is described. Ice nucleation spectra of a variety of lichens from the southwestern United States were measured by the drop-freezing method. Several epilithic lichen samples of the genera Rhizoplaca, Xanthoparmelia, and Xanthoria had nuclei active at temperatures as warm as −2.3°C and had densities of 2.3 × 106 to more than 1 × 108 nuclei g−1 at −5°C (2 to 4 orders of magnitude higher than any plants infected with ice nucleation-active bacteria). Most lichens tested had nucleation activity above −8°C. Lichen substrates (rocks, plants, and soil) showed negligible activity above −8°C. Ice nucleation-active bacteria were not isolated from the lichens, and activity was not destroyed by heat (70°C) or sonication, indicating that lichen-associated ice nuclei are nonbacterial in origin and differ chemically from previously described biological ice nuclei. An axenic culture of the lichen fungus Rhizoplaca chrysoleuca showed detectable ice nucleation activity at −1.9°C and an ice nucleation density of 4.5 × 106 nuclei g−1 at −5°C. It is hypothesized that these lichens, which are both frost tolerant and dependent on atmospheric moisture, derive benefit in the form of increased moisture deposition as a result of ice nucleation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号