首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.

Background

Mycobacterium avium subsp. paratuberculosis (MAP) is an obligate intracellular pathogen that infects many ruminant species. The acquisition of foreign genes via horizontal gene transfer has been postulated to contribute to its pathogenesis, as these genetic elements are absent from its putative ancestor, M. avium subsp. hominissuis (MAH), an environmental organism with lesser pathogenicity. In this study, high-throughput sequencing of MAP transposon libraries were analyzed to qualitatively and quantitatively determine the contribution of individual genes to bacterial survival during infection.

Results

Out of 52384 TA dinucleotides present in the MAP K-10 genome, 12607 had a MycoMarT7 transposon in the input pool, interrupting 2443 of the 4350 genes in the MAP genome (56%). Of 96 genes situated in MAP-specific genomic islands, 82 were disrupted in the input pool, indicating that MAP-specific genomic regions are dispensable for in vitro growth (odds ratio = 0.21). Following 5 independent in vivo infections with this pool of mutants, the correlation between output pools was high for 4 of 5 (R = 0.49 to 0.61) enabling us to define genes whose disruption reproducibly reduced bacterial fitness in vivo. At three different thresholds for reduced fitness in vivo, MAP-specific genes were over-represented in the list of predicted essential genes. We also identified additional genes that were severely depleted after infection, and several of them have orthologues that are essential genes in M. tuberculosis.

Conclusions

This work indicates that the genetic elements required for the in vivo survival of MAP represent a combination of conserved mycobacterial virulence genes and MAP-specific genes acquired via horizontal gene transfer. In addition, the in vitro and in vivo essential genes identified in this study may be further characterized to offer a better understanding of MAP pathogenesis, and potentially contribute to the discovery of novel therapeutic and vaccine targets.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-415) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background and Aims

Adventitious embryony from nucellar cells is the mechanism leading to apomixis in Citrus sp. However, singular cases of polyembryony have been reported in non-apomictic genotypes as a consequence of 2x × 4x hybridizations and in vitro culture of isolated nucelli. The origin of the plants arising from the aforementioned processes remains unclear.

Methods

The genetic structure (ploidy and allelic constitution with microsatellite markers) of plants obtained from polyembryonic seeds arising from 2x × 4x sexual hybridizations and those regenerated from nucellus culture in vitro was systematically analysed in different non-apomictic citrus genotypes. Histological studies were also conducted to try to identify the initiation process underlying polyembryony.

Key Results

All plants obtained from the same undeveloped seed in 2x × 4x hybridizations resulted from cleavage of the original zygotic embryo. Also, the plants obtained from in vitro nucellus culture were recovered by somatic embryogenesis from cells that shared the same genotype as the zygotic embryos of the same seed.

Conclusions

It appears that in non-apomictic citrus genotypes, proembryos or embryogenic cells are formed by cleavage of the zygotic embryos and that the development of these adventitious embryos, normally hampered, can take place in vivo or in vitro as a result of two different mechanisms that prevent the dominance of the initial zygotic embryo.  相似文献   

5.
6.
7.
8.
9.

Background and Aims

How plant cell-cycle genes interface with development is unclear. Preliminary evidence from our laboratory suggested that over-expression of the cell cycle checkpoint gene, WEE1, repressed growth and development. Here the hypothesis is tested that the level of WEE1 has a dosage effect on growth and development in Arabidospis thaliana. To do this, a comparison was made of the development of gain- and loss-of-function WEE1 arabidopsis lines both in vivo and in vitro.

Methods

Hypocotyl explants from an over-expressing Arath;WEE1 line (WEE1oe), two T-DNA insertion lines (wee1-1 and wee1-4) and wild type (WT) were cultured on two-way combinations of kinetin and naphthyl acetic acid. Root growth and meristematic cell size were also examined.

Key Results

Quantitative data indicated a repressive effect in WEE1oe and a significant increase in morphogenetic capacity in the two T-DNA insertion lines compared with WT. Compared with WT, WEE1oe seedlings exhibited a slower cell-doubling time in the root apical meristem and a shortened primary root, with fewer laterals, whereas there were no consistent differences in the insertion lines compared with WT. However, significantly fewer adventitious roots were recorded for WEE1oe and significantly more for the insertion mutant wee1-1. Compared with WT there was a significant increase in meristem cell size in WEE1oe for all three ground tissues but for wee1-1 only cortical cell size was reduced.

Conclusions

There is a gene dosage effect of WEE1 on morphogenesis from hypocotyls both in vitro and in vivo.  相似文献   

10.

Background

The white mold fungus Sclerotinia sclerotiorum is a devastating necrotrophic plant pathogen with a remarkably broad host range. The interaction of necrotrophs with their hosts is more complex than initially thought, and still poorly understood.

Results

We combined bioinformatics approaches to determine the repertoire of S. sclerotiorum effector candidates and conducted detailed sequence and expression analyses on selected candidates. We identified 486 S. sclerotiorum secreted protein genes expressed in planta, many of which have no predicted enzymatic activity and may be involved in the interaction between the fungus and its hosts. We focused on those showing (i) protein domains and motifs found in known fungal effectors, (ii) signatures of positive selection, (iii) recent gene duplication, or (iv) being S. sclerotiorum-specific. We identified 78 effector candidates based on these properties. We analyzed the expression pattern of 16 representative effector candidate genes on four host plants and revealed diverse expression patterns.

Conclusions

These results reveal diverse predicted functions and expression patterns in the repertoire of S. sclerotiorum effector candidates. They will facilitate the functional analysis of fungal pathogenicity determinants and should prove useful in the search for plant quantitative disease resistance components active against the white mold.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-336) contains supplementary material, which is available to authorized users.  相似文献   

11.
Hsieh CH  Shyu WC  Chiang CY  Kuo JW  Shen WC  Liu RS 《PloS one》2011,6(9):e23945

Background

Cycling and chronic tumor hypoxia are involved in tumor development and growth. However, the impact of cycling hypoxia and its molecular mechanism on glioblastoma multiforme (GBM) progression remain unclear.

Methodology

Glioblastoma cell lines, GBM8401 and U87, and their xenografts were exposed to cycling hypoxic stress in vitro and in vivo. Reactive oxygen species (ROS) production in glioblastoma cells and xenografts was assayed by in vitro ROS analysis and in vivo molecular imaging studies. NADPH oxidase subunit 4 (Nox4) RNAi-knockdown technology was utilized to study the role of Nox4 in cycling hypoxia-mediated ROS production and tumor progression. Furthermore, glioblastoma cells were stably transfected with a retroviral vector bearing a dual reporter gene cassette that allowed for dynamic monitoring of HIF-1 signal transduction and tumor cell growth in vitro and in vivo, using optical and nuclear imaging. Tempol, an antioxidant compound, was used to investigate the impact of ROS on cycling hypoxia-mediated HIF-1 activation and tumor progression.

Principal Findings

Glioblastoma cells and xenografts were compared under cycling hypoxic and normoxic conditions; upregulation of NOX4 expression and ROS levels were observed under cycling hypoxia in glioblastoma cells and xenografts, concomitant with increased tumor cell growth in vitro and in vivo. However, knockdown of Nox4 inhibited these effects. Moreover, in vivo molecular imaging studies demonstrated that Tempol is a good antioxidant compound for inhibiting cycling hypoxia-mediated ROS production, HIF-1 activation, and tumor growth. Immunofluorescence imaging and flow cytometric analysis for NOX4, HIF-1 activation, and Hoechst 3342 in glioblastoma also revealed high localized NOX4 expression predominantly in potentially cycling hypoxic areas with HIF-1 activation and blood perfusion within the endogenous solid tumor microenvironment.

Conclusions

Cycling hypoxia-induced ROS via Nox4 is a critical aspect of cancer biology to consider for therapeutic targeting of cycling hypoxia-promoted HIF-1 activation and tumor progression in GBM.  相似文献   

12.
13.
14.

Background and Aims

To date, current research involving pollen viability has been evaluated in a relatively low number of orchid species. In the present study, we focused on five related Mediterranean orchid genera (Anacamptis, Orchis, Dactylorhiza, Ophrys and Serapias) that are characterized by different types of deceptive pollination.

Methods

The in vitro germination ability of increasingly aged pollinaria of eight food-, seven sexually and two shelter-deceptive species was evaluated. Pollination experiments on two food-, one sexually and one shelter-deceptive species were also performed and the percentage of embryonate seeds derived from the increasingly aged pollinaria was checked.

Key Results

All of the examined species showed long-term viabilities (=50 % pollen tube growth) that ranged from 8 to 35 d. Species with the same deceptive pollination strategies exhibited the same pollen viability trends. Interestingly, pollen viabilities of species groups with different deception types have shown significant differences, with sexually and shelter- deceptive species exhibiting a shorter life span than food-deceptive species.

Conclusions

This study confirms the prolonged germination and fertilization capacities of orchid pollinaria, and to our knowledge is the first report demonstrating a clear relationship between pollen viability and pollination system. It is proposed that this relationship is attributed to the different types of reproductive barriers, pre- or post-zygotic, that characterixe Ophrys and Serapias and the food-deceptive species, respectively.  相似文献   

15.

Objective

The role of Quercetin in ovarian cancer treatment remains controversial, and the mechanism is unknown. The aim of this study was to investigate the therapeutic effects of Quercetin in combination with Cisplatin and other anti-neoplastic drugs in ovarian cancer cells both in vitro and in vivo, along with the molecular mechanism of action.

Methods

Quercetin treatment at various concentrations was examined in combination with Cisplatin, taxol, Pirarubicin and 5-Fu in human epithelial ovarian cancer C13* and SKOV3 cells. CCK8 assay and Annexin V assay were for cell viability and apoptosis analysis, immunofluorescence assay, DCFDA staining and realtime PCR were used for reactive oxygen species (ROS)-induced injury detection and endogenous antioxidant enzymes expression. Athymic BALB/c-nu nude mice were injected with C13*cells to obtain a xenograft model for in vivo studies. Immunohistochemical analysis was carried out to evaluate the ROS-induced injury and SOD1 activity of xenograft tumors.

Results

Contrary to the pro-apoptotic effect of high concentration (40 µM–100 µM) of Quercetin, low concentrations (5 µM–30 µM) of Quercetin resulted in varying degrees of attenuation of cytotoxicity of Cisplatin treatment when combined with Cisplatin. Similar anti-apoptotic effects were observed when Quercetin was combined with other anti-neoplastic agents: Taxol, Pirarubicin and 5-Fluorouracil (5-Fu). Low concentrations of Quercetin were observed to suppress ROS-induced injury, reduce intracellular ROS level and increase the expression of endogenous antioxidant enzymes, suggesting a ROS-mediated mechanism of attenuating anti-neoplastic drugs. In xenogeneic model, Quercetin led to a substantial reduction of therapeutic efficacy of Cisplatin along with enhancing the endogenous antioxidant enzyme expression and reducing ROS-induced damage in xenograft tumor tissue.

Conclusion

Taken together, these data suggest that Quercetin at low concentrations attenuate the therapeutic effects of Cisplatin and other anti-neoplastic drugs in ovarian cancer cells by reducing ROS damage. Quercetin supplementation during ovarian cancer treatment may detrimentally affect therapeutic response.  相似文献   

16.

Purpose

Amplification of the HER2/neu gene and/or overexpression of the corresponding protein have been identified in approximately 20% of invasive breast carcinomas. Assessment of HER2 expression in vivo would advance development of new HER2-targeted therapeutic agents and, potentially, facilitate choice of the proper treatment strategy offered to the individual patient. We present novel HER2-specific probes for in vivo evaluation of the receptor status by near-infrared (NIR) optical imaging.

Experimental Design

Affibody molecules were expressed, purified, and labeled with NIR-fluorescent dyes. The binding affinity and specificity of the obtained probe were tested in vitro. For in vivo validation, the relationship of the measured NIR signal and HER2 expression was characterized in four breast cancer xenograft models, expressing different levels of HER2. Accumulation of Affibody molecules in tumor tissue was further confirmed by ex vivo analysis.

Results

Affibody-DyLight conjugates showed high affinity to HER2 (KD = 3.66±0.26). No acute toxicity resulted from injection of the probes (up to 0.5 mg/kg) into mice. Pharmacokinetic studies revealed a relatively short (37.53±2.8 min) half-life of the tracer in blood. Fluorescence accumulation in HER2-positive BT-474 xenografts was evident as soon as a few minutes post injection and reached its maximum at 90 minutes. On the other hand, no signal retention was observed in HER2-negative MDA-MB-468 xenografts. Immunostaining of extracted tumor tissue confirmed penetration of the tracer into tumor tissue.

Conclusions

The results of our studies suggest that Affibody-DyLight-750 conjugate is a powerful tool to monitor HER2 status in a preclinical setting. Following clinical validation, it might provide complementary means for assessment of HER2 expression in breast cancer patients (assuming availability of proper NIR scanners) and/or be used to facilitate detection of HER2-positive metastatic lesions during NIR-assisted surgery.  相似文献   

17.

Background

Hypoxia-inducible factor (HIF) is an attractive therapeutic target for renal cell carcinoma (RCC) as its high expression due to the loss of von Hippel-Lindau (VHL) promotes RCC progression. Considering this, we hypothesized that ELR510444, a novel orally available small molecule inhibitor of HIF activity, would reduce angiogenesis and possess significant activity in RCC. The mechanism of action and therapeutic efficacy of ELR510444 were investigated in in vitro and in vivo models of RCC.

Principal Findings

ELR510444 decreased HIF-1α and HIF-2α levels, reduced RCC cell viability and clonogenic survival, and induced apoptosis. VHL-deficient RCC cells were more sensitive to ELR510444-mediated apoptosis and restoration of VHL promoted drug resistance. Higher concentrations of ELR51044 promoted apoptosis independently of VHL status, possibly due to the microtubule destabilizing properties of this agent. ELR510444 significantly reduced tumor burden in the 786-O and A498 RCC xenograft models. These effects were associated with increased necrosis and apoptosis and inhibition of angiogenesis.

Conclusions

ELR510444 is a promising new HIF inhibitor that reduced RCC cell viability, induced apoptosis, and diminished tumor burden in RCC xenograft models. ELR510444 also destabilized microtubules suggesting that it possesses vascular disrupting and anti-angiogenic properties. Further investigation of ELR510444 for the therapy of RCC is warranted.  相似文献   

18.
19.
20.
Semaphorin 3A suppresses tumor growth and metastasis in mice melanoma model   总被引:1,自引:0,他引:1  

Background

Recent understanding on cancer therapy indicated that targeting metastatic signature or angiogenic switch could be a promising and rational approach to combat cancer. Advancement in cancer research has demonstrated the potential role of various tumor suppressor proteins in inhibition of cancer progression. Current studies have shown that axonal sprouting inhibitor, semaphorin 3A (Sema 3A) acts as a potent suppressor of tumor angiogenesis in various cancer models. However, the function of Sema 3A in regulation of melanoma progression is not well studied, and yet to be the subject of intense investigation.

Methodology/Principal Findings

In this study, using multiple in vitro and in vivo approaches we have demonstrated that Sema 3A acts as a potent tumor suppressor in vitro and in vivo mice (C57BL/6) models. Mouse melanoma (B16F10) cells overexpressed with Sema 3A resulted in significant inhibition of cell motility, invasiveness and proliferation as well as suppression of in vivo tumor growth, angiogenesis and metastasis in mice models. Moreover, we have observed that Sema 3A overexpressed melanoma clone showed increased sensitivity towards curcumin and Dacarbazine, anti-cancer agents.

Conclusions

Our results demonstrate, at least in part, the functional approach underlying Sema 3A mediated inhibition of tumorigenesis and angiogenesis and a clear understanding of such a process may facilitate the development of novel therapeutic strategy for the treatment of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号