首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
La antigen (Sjögren''s syndrome antigen B) is a phosphoprotein associated with nascent precursor tRNAs and other RNAs, and it is targeted by autoantibodies in patients with Sjögren''s syndrome, systemic lupus erythematosus, and neonatal lupus. Increased levels of La are associated with leukemias and other cancers, and various viruses usurp La to promote their replication. Yeast cells (Saccharomyces cerevisiae and Schizosaccharomyces pombe) genetically depleted of La grow and proliferate, whereas deletion from mice causes early embryonic lethality, raising the question of whether La is required by mammalian cells generally or only to surpass a developmental stage. We developed a conditional La allele and used it in mice that express Cre recombinase in either B cell progenitors or the forebrain. B cell Mb1Cre La-deleted mice produce no B cells. Consistent with αCamKII Cre, which induces deletion in hippocampal CA1 cells in the third postnatal week and later throughout the neocortex, brains develop normally in La-deleted mice until ∼5 weeks and then lose a large amount of forebrain cells and mass, with evidence of altered pre-tRNA processing. The data indicate that La is required not only in proliferating cells but also in nondividing postmitotic cells. Thus, La is essential in different cell types and required for normal development of various tissue types.  相似文献   

2.
3.
The ability to genetically remove specific components of various cell signalling cascades has been an integral tool in modern signal transduction analysis. One particular method to achieve this conditional deletion is via the use of the Cre-loxP system. This method involves flanking the gene of interest with loxP sites, which are specific recognition sequences for the Cre recombinase protein. Exposure of the so-called floxed (flanked by loxP site) DNA to this enzyme results in a Cre-mediated recombination event at the loxP sites, and subsequent excision of the intervening gene3. Several different methods exist to administer Cre recombinase to the site of interest. In this video, we demonstrate the use of an adenovirus containing the Cre recombinase gene to infect primary mouse embryonic fibroblasts (MEFs) obtained from embryos containing a floxed Rac1 allele1. Our rationale for selecting Rac1 MEFs for our experiments is that clear morphological changes can be seen upon deletion of Rac1, due to alterations in the actin cytoskeleton2,5. 72 hours following viral transduction and Cre expression, cells were stained using the actin dye phalloidin and imaged using confocal laser scanning microscopy. It was observed that MEFs which had been exposed to the adeno-Cre virus appeared contracted and elongated in morphology compared to uninfected cells, consistent with previous reports2,5. The adenovirus method of Cre recombinase delivery is advantageous as the adeno-Cre virus is easily available, and gene deletion via Cre in nearly 100% of the cells can be achieved with optimized adenoviral infection.  相似文献   

4.
5.
CXXC finger protein 1 (Cfp1), encoded by the Cxxc1 gene, binds to DNA sequences containing an unmethylated CpG dinucleotide and is an epigenetic regulator of both cytosine and histone methylation. Cxxc1-null mouse embryos fail to gastrulate, and Cxxc1-null embryonic stem cells are viable but cannot differentiate, suggesting that Cfp1 is required for chromatin remodeling associated with stem cell differentiation and embryogenesis. Mice homozygous for a conditional Cxxc1 deletion allele and carrying the inducible Mx1-Cre transgene were generated to assess Cfp1 function in adult animals. Induction of Cre expression in adult animals led to Cfp1 depletion in hematopoietic cells, a failure of hematopoiesis with a nearly complete loss of lineage-committed progenitors and mature cells, elevated levels of apoptosis, and death within two weeks. A similar pathology resulted following transplantation of conditional Cxxc1 bone marrow cells into wild type recipients, demonstrating this phenotype is intrinsic to Cfp1 function within bone marrow cells. Remarkably, the LinSca-1+c-Kit+ population of cells in the bone marrow, which is enriched for hematopoietic stem cells and multi-potential progenitor cells, persists and expands in the absence of Cfp1 during this time frame. Thus, Cfp1 is necessary for hematopoietic stem and multi-potential progenitor cell function and for the developmental potential of differentiating hematopoietic cells.  相似文献   

6.
7.
8.
9.
Corticotropin releasing factor (CRF) dysregulation is implicated in mood and anxiety disorders such as posttraumatic stress disorder (PTSD). CRF is expressed in areas engaged in fear and anxiety processing including the central amygdala (CeA). Complicating our ability to study the contribution of CRF-containing neurons to fear and anxiety behavior is the wide variety of cell types in which CRF is expressed. To manipulate specific subpopulations of CRF containing neurons, our lab has developed a mouse with a Cre recombinase gene driven by a CRF promoter (CRFp3.0Cre) (Martin et al., 2010). In these studies, mice that have the gene that encodes NR1 (Grin1) flanked by loxP sites (floxed) were crossed with our previously developed CRFp3.0Cre mouse to selectively disrupt Grin1 within CRF containing neurons (Cre+/fGrin1+). We find that disruption of Grin1 in CRF neurons did not affect baseline levels of anxiety, locomotion, pain sensitivity or exploration of a novel object. However, baseline expression of Grin1 was decreased in Cre+/fGrin1+ mice as measured by RTPCR. Cre+/fGrin1+ mice showed enhanced auditory fear acquisition and retention without showing any significant effect on fear extinction. We measured Gria1, the gene that encodes AMPAR1 and the CREB activator Creb1 in the amygdala of Cre+/fGrin1+ mice after fear conditioning. Both Gria1 and Creb1 were enhanced in the amygdala after training. To determine if the Grin1-expressing CRF neurons within the CeA are responsible for the enhancement of fear memory in adults, we infused a lentivirus with Cre driven by a CRF promoter (LV pCRF-Cre/fGrin1+) into the CeA of floxed Grin1 mice. Cre driven deletion of Grin1 specifically within CRF expressing cells in the CeA also resulted in enhanced fear memory acquisition and retention. Altogether, these findings suggest that selective disruption of Grin1 within CeA CRF neurons strongly enhances fear memory.  相似文献   

10.
Hesx1 has been shown to be essential for normal pituitary development. The homeobox gene Six3 is expressed in the developing pituitary gland during mouse development but its function in this tissue has been precluded by the fact that in the Six3-deficient embryos the pituitary gland is not induced. To gain insights into the function of Six3 during pituitary development we have generated Six3+/−;Hesx1Cre/+ double heterozygous mice. Strikingly, these mice show marked dwarfism, which is first detectable around weaning, and die by the 5th-6th week of age. Thyroid and gonad development is also impaired in these animals. Analysis of Six3+/−;Hesx1Cre/+ compound embryos indicates that hypopituitarism is the likely cause of these defects since pituitary development is severely impaired in these mutants. Similar to the Hesx1-deficient embryos, Rathke's pouch is initially expanded in Six3+/−;Hesx1Cre/+ compound embryos due to an increase in cell proliferation. Subsequently, the anterior pituitary gland appears bifurcated, dysmorphic and occasionally ectopically misplaced in the nasopharyngeal cavity, but cell differentiation is unaffected. Our research has revealed a role for Six3 in normal pituitary development, which has likely been conserved during evolution as SIX3 is also expressed in the pituitary gland of the human embryo.  相似文献   

11.
Summary: Mouse embryos homozygous for the allele eedl7Rn5‐3354SB of the Polycomb Group gene embryonic ectoderm development (eed) display a gastrulation defect in which epiblast cells move through the streak and form extraembryonic mesoderm derivatives at the expense of development of the embryo proper. Here we demonstrate that homozygous mutant ES cells have the capacity to differentiate embryonic cell types both in vitro as embryoid bodies and in vivo as chimeric embryos. In chimeric embryos, eed mutant cells can respond to wild‐type signals and participate in normal gastrulation movements. These results indicate a non–cell‐autonomous function for eed. Evidence of mutant cell exclusion from the forebrain and segregation within somites, however, suggests that eed has cell‐autonomous roles in aspects of organogenesis. A requirement for eed in the epiblast during embryonic development is supported by the fact that high‐contribution chimeras could not be rescued by a wild‐type extraembryonic environment. genesis 31:142–146, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

12.
The paraxial mesoderm of the somites of the vertebrate embryo contains the precursors of the axial skeleton, skeletal muscles and dermis. The Meox1 and Meox2 homeobox genes are expressed in the somites and their derivatives during embryogenesis. Mice homozygous for a null mutation in Meox1 display relatively mild defects in sclerotome derived vertebral and rib bones, whereas absence of Meox2 function leads to defective differentiation and morphogenesis of the limb muscles. By contrast, mice carrying null mutations for both Meox genes display a dramatic and wide-ranging synthetic phenotype associated with extremely disrupted somite morphogenesis, patterning and differentiation. Mutant animals lack an axial skeleton and skeletal muscles are severely deficient. Our results demonstrate that Meox1 and Meox2 genes function together and upstream of several genetic hierarchies that are required for the development of somites. In particular, our studies place Meox gene function upstream of Pax genes in the regulation of chondrogenic and myogenic differentiation of paraxial mesoderm.  相似文献   

13.
14.
Mutations of the CUL4B ubiquitin ligase gene are causally linked to syndromic X-linked mental retardation (XLMR). However, the pathogenic role of CUL4B mutations in neuronal and developmental defects is not understood. We have generated mice with targeted disruption of Cul4b, and observed embryonic lethality with pronounced growth inhibition and increased apoptosis in extra-embryonic tissues. Cul4b, but not its paralog Cul4a, is expressed at high levels in extra-embryonic tissues post implantation. Silencing of CUL4B expression in an extra-embryonic cell line resulted in the robust accumulation of the CUL4 substrate p21Cip1/WAF and G2/M cell cycle arrest, which could be partially rescued by silencing of p21Cip1/WAF. Epiblast-specific deletion of Cul4b prevented embryonic lethality and gave rise to viable Cul4b null mice. Therefore, while dispensable in the embryo proper, Cul4b performs an essential developmental role in the extra-embryonic tissues. Our study offers a strategy to generate viable Cul4b-deficient mice to model the potential neuronal and behavioral deficiencies of human CUL4B XLMR patients.  相似文献   

15.
Embryonic deletion of mouse Chk1 is lethal; however, whether Chk1 is essential in all individual tissues is unknown. By breeding C57Bl/ 6 mice homozygous for a conditional allele of Chk1 (Chk1fl/fl) and bearing melanocyte‐specific Tyr::Cre and DCT:: LacZ transgenes, we investigated the consequences of Chk1 deletion in the melanocytic lineage. We show that adult Tyr::Cre; Chk1fl/fl mice lack coat pigmentation and epidermal melanocytes in the hair follicles, but retain eye pigmentation in the retinal pigmented epithelium (RPE). Melanoblasts formed normally during embryogenesis in Tyr::Cre; Chk1fl/fl mice at early times (embryonic day 10.5; E10.5) but were completely absent by stage E13.5, most probably as a consequence of spontaneous DNA damage and apoptosis. By contrast, melanoblast numbers were only slightly reduced in heterozygous Tyr::Cre; Chk1fl/ + embryos, and these mice exhibited normal coat pigmentation as adults. Thus, Chk1 is essential for the developmental formation of murine epidermal melanocytes but hemizygosity has little, if any, permanent developmental consequence in this cell type.  相似文献   

16.
In the Cre–loxp system, expression level and activity of Cre recombinase in a Cre deleter line are critical because these determine not only the cell specificity of gene knockout (KO), but also the efficiency of Cre‐mediated excision in a specific cell lineage. Although the spatiotemporal expression pattern of a Cre transgene is usually defined upon the generation of the mouse line, the Cre excision efficiency in a specific targeted cell lineage is rarely evaluated and often assumed to be 100%. Incomplete excision can lead to highly variable phenotypes owing to mosaicism (i.e., coexistence of cells with the flox or the recombined flox allele) and this problem has long been overlooked. Here, we report that Stra8‐codon‐improved Cre recombinase (iCre), a transgenic allele expressing iCre under the control of the male germ cell‐specific Stra8 promoter, could efficiently delete one Mov10l1 flox allele in spermatogenic cells, whereas the excision was incomplete when two Mov10l1 flox alleles were present. The incomplete Cre‐mediated excision led to a testicular phenotype that was much less severe than that in the true conditional KO (inactivation, 100%) mice. Our findings suggest that it is essential to determine the efficiency of Cre excision when Cre–loxp system is used for deleting genes in a specific cell lineage and the Cre; genelox/Δ genotype should be used to evaluate phenotypes instead of Cre; genelox/lox owing to the fact that the latter usually bears incomplete deletion of the flox allele(s). genesis 51:481–490. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
The exocyst, an octameric protein complex consisting of Exoc1 through Exoc8, was first determined to regulate exocytosis by targeting vesicles to the plasma membrane in yeast to mice. In addition to this fundamental role, the exocyst complex has been implicated in other cellular processes. In this study, we investigated the role of the exocyst in cochlear development and hearing by targeting EXOC5, a central exocyst component. Deleting Exoc5 in the otic epithelium with widely used Cre lines resulted in early lethality. Thus, we generated two different inner ear-specific Exoc5 knockout models by crossing Gfi1Cre mice with Exoc5f/f mice for hair cell-specific deletion (Gfi1Cre/+;Exoc5f/f) and by in utero delivery of rAAV-iCre into the otocyst of embryonic day 12.5 for deletion throughout the otic epithelium (rAAV2/1-iCre;Exoc5f/f). Gfi1Cre/+;Exoc5f/f mice showed relatively normal hair cell morphology until postnatal day 20, after which hair cells underwent apoptosis accompanied by disorganization of stereociliary bundles, resulting in progressive hearing loss. rAAV2/1-iCre;Exoc5f/f mice exhibited abnormal neurite morphology, followed by apoptotic degeneration of spiral ganglion neurons (SGNs) and hair cells, which led to profound and early-onset hearing loss. These results demonstrate that Exoc5 is essential for the normal development and survival of cochlear hair cells and SGNs, as well as the functional maintenance of hearing.  相似文献   

18.
To study gene function in neural progenitors and radial glia of the retina and hypothalamus, we developed a Rax-CreERT2 mouse line in which a tamoxifen-inducible Cre recombinase is inserted into the endogenous Rax locus. By crossing Rax-CreERT2 with the Cre-dependent Ai9 reporter line, we demonstrate that tamoxifen-induced Cre activity recapitulates the endogenous Rax mRNA expression pattern. During embryonic development, Cre recombinase activity in Rax-CreERT2 is confined to retinal and hypothalamic progenitor cells, as well as progenitor cells of the posterior pituitary. At postnatal time points, selective Cre recombinase activity is seen in radial glial-like cell types in these organs – specifically Müller glia and tanycytes – as well as pituicytes. We anticipate that this line will prove useful for cell lineage analysis and investigation of gene function in the developing and mature retina, hypothalamus and pituitary.  相似文献   

19.
20.
Lymphatic vessels play an important role in the regulation of tissue fluid balance, immune responses, and fat adsorption and are involved in diseases including lymphedema and tumor metastasis. Vascular endothelial growth factor (VEGF) receptor 3 (VEGFR-3) is necessary for development of the blood vasculature during early embryogenesis, but later, VEGFR-3 expression becomes restricted to the lymphatic vasculature. We analyzed mice deficient in both of the known VEGFR-3 ligands, VEGF-C and VEGF-D. Unlike the Vegfr3−/− embryos, the Vegfc−/−; Vegfd−/− embryos displayed normal blood vasculature after embryonic day 9.5. Deletion of Vegfr3 in the epiblast, using keratin 19 (K19) Cre, resulted in a phenotype identical to that of the Vegfr3−/− embryos, suggesting that this phenotype is due to defects in the embryo proper and not in placental development. Interestingly, the Vegfr3neo hypomorphic mutant mice carrying the neomycin cassette between exons 1 and 2 showed defective lymphatic development. Overexpression of human or mouse VEGF-D in the skin, under the K14 promoter, rescued the lymphatic hypoplasia of the Vegfc+/− mice in the K14-VEGF-D; Vegfc+/− compound mice, suggesting that VEGF-D is functionally redundant with VEGF-C in the stimulation of developmental lymphangiogenesis. Our results suggest VEGF-C- and VEGF-D-independent functions for VEGFR-3 in the early embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号