首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between ubiquitin specific protease 7 (USP7) and radio-sensitivity in laryngeal squamous cell carcinoma (LSCC) has not been reported yet. Using gene chip and Label-Free mass spectrometry, we found that USP7 was significantly increased both in radioresistant LSCC patients and LSCC cells receiving irradiation. Since p53 is the most important downstream gene of USP7 and is frequently mutated in LSCC, we investigated the effects of USP7 on radioresistance of LSCC cells with or without p53 mutation. We found that knockdown of USP7 increased the radio-sensitivity in p53-mutated LSCC cells, while inhibiting the radio-sensitivity in p53-wild type cells. Knockdown of USP7 significantly inhibited the expression of the p53 and p53 pathway. Overexpressing endogenous p53 by CRISPR/dCas9 could reverse the effects of USP7 on radiosensitivity both in vitro and in vivo. Our results demonstrated the irradiation-induced USP7 led to radioresistance in p53-mutated LSCC cells but radio-sensitivity in p53-wild type cells. Therefore, the clinical application of USP7 inhibitors may improve the effects of radiotherapy in LSCC with p53 mutations and reduce the side effects on surrounding normal tissues without p53 mutation.  相似文献   

2.
3.
Defects in apoptosis are frequently the cause of cancer emergence, as well as cellular resistance to chemotherapy. These phenotypes may be due to mutations of the tumor suppressor TP53 gene. In this study, we examined the effect of various mitotic spindle poisons, including the new isocombretastatin derivative isoNH2CA-4 (a tubulin-destabilizing molecule, considered to bind to the colchicine site by analogy with combretastatin A-4), on BL (Burkitt lymphoma) cells. We found that resistance to spindle poison-induced apoptosis could be reverted in tumor protein p53 (TP53)-mutated cells by EBV (Epstein Barr virus) infection. This reversion was due to restoration of the intrinsic apoptotic pathway, as assessed by relocation of the pro-apoptotic molecule Bax to mitochondria, loss of mitochondrial integrity and activation of the caspase cascade with PARP (poly ADP ribose polymerase) cleavage. EBV sensitized TP53-mutated BL cells to all spindle poisons tested, including vincristine and taxol, an effect that was systematically downmodulated by pretreatment of cells with inhibitors of p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases. Exogenous activation of p38 and JNK pathways by dihydrosphingosine reverted resistance of TP53-mutated BL cells to spindle poisons. Dihydrosphingosine treatment of TP53-deficient Jurkat and K562 cell lines was also able to induce cell death. We conclude that activation of p38 and JNK pathways may revert resistance of TP53-mutated cells to spindle poisons. This opens new perspectives for developing alternative therapeutic strategies when the TP53 gene is inactivated.  相似文献   

4.
Non-thermal atmospheric pressure plasma (NTAPP) is an ionized gas at room temperature and has potential as a new apoptosis-promoting cancer therapy that acts by generating reactive oxygen species (ROS). However, it is imperative to determine its selectivity and standardize the components and composition of NTAPP. Here, we designed an NTAPP-generating apparatus combined with a He gas feeding system and demonstrated its high selectivity toward p53-mutated cancer cells. We first determined the proper conditions for NTAPP exposure to selectively induce apoptosis in cancer cells. The apoptotic effect of NTAPP was greater for p53-mutated cancer cells; artificial p53 expression in p53-negative HT29 cells decreased the pro-apoptotic effect of NTAPP. We also examined extra- and intracellular ROS levels in NTAPP-treated cells to deduce the mechanism of NTAPP action. While NTAPP-mediated increases in extracellular nitric oxide (NO) did not affect cell viability, intracellular ROS increased under NTAPP exposure and induced apoptotic cell death. This effect was dose-dependently reduced following treatment with ROS scavengers. NTAPP induced apoptosis even in doxorubicin-resistant cancer cell lines, demonstrating the feasibility of NTAPP as a potent cancer therapy. Collectively, these results strongly support the potential of NTAPP as a selective anticancer treatment, especially for p53-mutated cancer cells.  相似文献   

5.
The treatment of many diseases is highly dependent on natural products and natural products can also be used as design templates for future anticancer drugs. Thirteen Amaryllidaceae alkaloids possessing α-crinane, β-crinane, galantamine, lycorine and tazettine-type skeleton have been isolated in our laboratory, and their cytotoxicity against p53-mutated gastrointestinal cancer cells were evaluated. At the same time, healthy small intestine cells were used to determine overall toxicity against noncancerous cells. In this study, we demonstrated that haemanthamine, haemanthidine and lycorine showed strong cytotoxicity against p53-mutated Caco-2 and HT-29 colorectal adenocarcinoma cells as quantified in terms of IC50 values. We for the first time observed approximately 20 times higher IC50values against normal intestine epithelial cells FHs-74 Int after haemanthamine and lycorine treatment when compared with Caco-2 and HT-29 cancer cells. In conclusion, our data indicate that α-C2 bridged haemanthamine may be perspective anticancer drug candidate for further semisynthetic modification and structure-activity relationship study.  相似文献   

6.
Allelic loss and translocation are critical mutational events in human tumorigenesis. Allelic loss, which is usually identified as loss of heterozygosity (LOH), is frequently observed at tumor suppressor loci in various kinds of human tumors. It is generally thought to result from deletion or mitotic recombination between homologous chromosomes. In this report, we demonstrate that illegitimate (nonhomologous) recombination strongly contributes to the generation of allelic loss in p53-mutated cells. Spontaneous and X-ray-induced LOH mutations at the heterozygous thymidine kinase (tk) gene, which is located on the long arm of chromosome 17, from normal (TK6) and p53-mutated (WTK-1) human lymphoblastoid cells were cytogenetically analyzed by chromosome 17 painting. We observed unbalanced translocations in 53% of LOH mutants spontaneously arising from WTK-1 cells but none spontaneously arising from TK6 cells. We postulate that illegitimate recombination was occurring between nonhomologous chromosomes after DNA replication, leading to allelic loss and unbalanced translocations in p53-mutated WTK-1 cells. X-ray irradiation, which induces DNA double-strand breaks (DSBs), enhanced the generation of unbalanced translocation more efficiently in WTK-1 than in TK6 cells. This observation implicates the wild-type p53 protein in the regulation of homologous recombination and recombinational DNA repair of DSBs and suggests a possible mechanism by which loss of p53 function may cause genomic instability.  相似文献   

7.
Carcinogenesis is a multistage process, involving oncogene activation and tumor suppressor gene inactivation as well as complex interactions between tumor and host tissues, leading ultimately to an aggressive metastatic phenotype. Among many genetic lesions, mutational inactivation of p53 tumor suppressor, the “guardian of the genome,” is the most frequent event found in 50% of human cancers. p53 plays a critical role in tumor suppression mainly by inducing growth arrest, apoptosis, and senescence, as well as by blocking angiogenesis. In addition, p53 generally confers the cancer cell sensitivity to chemoradiation. Thus, p53 becomes the most appealing target for mechanism-driven anticancer drug discovery. This review will focus on the approaches currently undertaken to target p53 and its regulators with an overall goal either to activate p53 in cancer cells for killing or to inactivate p53 temporarily in normal cells for chemoradiation protection. The compounds that activate wild type (wt) p53 would have an application for the treatment of wt p53-containing human cancer. Likewise, the compounds that change p53 conformation from mutant to wt p53 (p53 reactivation) or that kill the cancer cells with mutant p53 using a synthetic lethal mechanism can be used to selectively treat human cancer harboring a mutant p53. The inhibitors of wt p53 can be used on a temporary basis to reduce the normal cell toxicity derived from p53 activation. Thus, successful development of these three classes of p53 modulators, to be used alone or in combination with chemoradiation, will revolutionize current anticancer therapies and benefit cancer patients.  相似文献   

8.
9.
Chemoresistance is a key cause of treatment failure in colon cancer. MiR-22 is a tumor-suppressing microRNA. To explore whether miR-22 is an important player in the development of chemoresistance in colon cancer, we overexpressed miR-22 and subsequently tested its role in cell proliferation, apoptosis, survival, and associated signaling in p53-mutated HT-29 and HCT-15 cells, and p53 wild-type HCT-116 cells. We further investigated the role of miR-22 on cytotoxicity of paclitaxel in both the p53-mutated and p53 wild-type colon cancer cells. Results showed that HT-29 and HCT-15 cells were resistant to paclitaxel-induced cytotoxicity, which normally inhibits cell proliferation and survival, and induces apoptosis. Conversely, HCT-116 was relatively sensitive to the cytotoxicity of paclitaxel. Overexpression of miR-22 significantly decreased cell proliferation and survival, and induced cell apoptosis in the p53-mutated colon cancer cells, but played no role in the p53 wild-type cells. Importantly, miR-22 overexpression enhanced the cytotoxic role of paclitaxel in p53-mutated HT-29 and HCT-15 cells, but not in p53 wild-type HCT-116 cell. We further demonstrated that the tumor-suppressive role of miR-22 in p53-mutated colon cancer cells was mediated by upregulating PTEN expression, which negatively regulated Akt phosphorylation at Ser(473) and MTDH expression, and subsequently increased Bax and active caspase-3 levels. Our study is the first to identify the tumor-suppressive role of miR-22 and its associated signaling in the p53-mutated colon cancer cells and highlighted the chemosensitive role of miR-22.  相似文献   

10.
Stathmin/Oncoprotein 18, a microtubule destabilizing protein, is required for survival of p53-deficient cells. Stathmin-depleted cells are slower to enter mitosis, but whether delayed mitotic entry triggers cell death or whether stathmin has a separate pro-survival function was unknown. To test these possibilities, we abrogated the cell cycle delay by inhibiting Wee1 in synchronized, stathmin-depleted cells and found that apoptosis was reduced to control levels. Synchronized cells treated with a 4 hour pulse of inhibitors to CDK1 or both Aurora A and PLK1 delayed mitotic entry and apoptosis was triggered only in p53-deficient cells. We did not detect mitotic defects downstream of the delayed mitotic entry, indicating that cell death is activated by a mechanism distinct from those activated by prolonged mitotic arrest. Cell death is triggered by initiator caspase 8, based on its cleavage to the active form and by rescue of viability after caspase 8 depletion or treatment with a caspase 8 inhibitor. In contrast, initiator caspase 9, activated by prolonged mitotic arrest, is not activated and is not required for apoptosis under our experimental conditions. P53 upregulates expression of cFLIPL, a protein that blocks caspase 8 activation. cFLIPL levels are lower in cells lacking p53 and these levels are reduced to a greater extent after stathmin depletion. Expression of FLAG-tagged cFLIPL in p53-deficient cells rescues them from apoptosis triggered by stathmin depletion or CDK1 inhibition during G2. These data indicate that a cell cycle delay in G2 activates caspase 8 to initiate apoptosis specifically in p53-deficient cells.  相似文献   

11.
12.
13.
Recent studies indicate that p53-dependent apoptosis induced in normal tissues during chemo- and radiotherapy can cause severe side effects of anti-cancer treatments that limit their efficiency.The aim of the present work was to further characterise the role of p53 in maintaining genomic stability and to verify whether the inhibition of p53 function in normal cells by pifithrin-alpha (PFT-alpha) may contribute in reducing the side effects of cancer therapy. Two human lymphoblastoid cell lines, derived from the same donor, TK6 (p53 wild type) and WTK1 (p53 mutated) have been treated with an anti-neoplastic drug, the etoposide (VP16), an inhibitor of DNA topoisomerase II in presence or in absence of the p53 inhibitor PFT-alpha. Following treatments with VP16 on TK6 and WTK1, we observed a higher induction of chromosome aberrations in WTK1 (p53 mutated) and of apoptosis in TK6 (p53 wild-type) cells. The p53 inhibition by PFT-alpha in VP16 treated TK6 cells produced an increase of chromosomal aberrations and a reduction of apoptosis. Therefore, the temporary suppression of the function of p53 by PFT-alpha, increasing the survival of the normal cells, could be a promising approach to reduce the side-effects of cancer therapy but it is important to consider that the surviving cells could be genetically modified and consequently the risk of secondary tumours could be increased.  相似文献   

14.
Exosomes are nanosized vesicles that are secreted by many types of cells. We have found that exosomes secreted by HEK293 and HT-1080 can suppress growth and proliferation of p53-deficient cells. Upon overexpression of exogenous p53-GFP in HEK293 cells, we observed p53 protein in exosomes that were secreted by these cells. We also found endogenous p53 in exosomes that were secreted by HT-1080 cells with a higher level of p53 expression. We were able to detect endogenous p53 protein in exosomes that originated from human plasma and were transferred to p53-deficient cells. Our findings indicate that p53 protein can be transferred between cells and may play an important physiological role.  相似文献   

15.
16.
17.
Much effort was expended to develop anti-cancer drugs that restore the function of the p53 tumor suppressor protein. However, the p53 activity might be harmful to the organism by amplifying side effects of chemotherapy. Therefore, under certain conditions, inhibition of p53 can serve to prevent inappropriately triggered apoptosis in normal tissues. We have identified a short 22-mer peptide derived from the p53 core domain (peptide 14), which can inhibit p53 specific DNA binding. Upon introduction in living cells, peptide 14 inhibited the ability of p53 to transactivate a reporter gene. Moreover, peptide 14 blocked p53-induced apoptosis in two different cell lines. Peptide 14-mediated inhibition of p53 activity appears to operate via the binding of peptide to the core and/or C-terminal domains of the p53 protein. Our findings provide a basis for the development of a novel approach aimed at the inhibition of p53. This could be essential for the protection from cell death in tissues thus suppressing for example neurodegenerative process or side effects of radio- or chemotherapy.  相似文献   

18.
19.
p53, in addition to being a key cancer preventive factor, is also a determinant of cancer treatment side effects causing excessive apoptotic death in several normal tissues during cancer therapy. p53 inhibitory strategy has been suggested to protect normal tissues from chemo- and radiotherapy, and to treat other pathologies associated with stress-mediated activation of p53. This strategy was validated by isolation and testing of small molecule p53 inhibitor pifithrin-alpha that demonstrated broad tissue protecting capacity. However, in some normal tissues and tumors p53 plays protective role by inducing growth arrest and preventing cells from premature entrance into mitosis and death from mitotic catastrophe. Inhibition of this function of p53 can sensitize tumor cells to chemo- and radiotherapy, thus opening new potential application of p53 inhibitors and justifying the need in pharmacological agents targeting specifically either pro-apoptotic or growth arrest functions of p53.  相似文献   

20.
Six p53 wild-type cancer cell lines from infrequently p53-mutated entities (neuroblastoma, rhabdomyosarcoma, and melanoma) were continuously exposed to increasing concentrations of the murine double minute 2 inhibitor nutlin-3, resulting in the emergence of nutlin-3-resistant, p53-mutated sublines displaying a multi-drug resistance phenotype. Only 2 out of 28 sublines adapted to various cytotoxic drugs harboured p53 mutations. Nutlin-3-adapted UKF-NB-3 cells (UKF-NB-3rNutlin10 μM, harbouring a G245C mutation) were also radiation resistant. Analysis of UKF-NB-3 and UKF-NB-3rNutlin10 μM cells by RNA interference experiments and lentiviral transduction of wild-type p53 into p53-mutated UKF-NB-3rNutlin10 μM cells revealed that the loss of p53 function contributes to the multi-drug resistance of UKF-NB-3rNutlin10 μM cells. Bioinformatics PANTHER pathway analysis based on microarray measurements of mRNA abundance indicated a substantial overlap in the signalling pathways differentially regulated between UKF-NB-3rNutlin10 μM and UKF-NB-3 and between UKF-NB-3 and its cisplatin-, doxorubicin-, or vincristine-resistant sublines. Repeated nutlin-3 adaptation of neuroblastoma cells resulted in sublines harbouring various p53 mutations with high frequency. A p53 wild-type single cell-derived UKF-NB-3 clone was adapted to nutlin-3 in independent experiments. Eight out of ten resulting sublines were p53-mutated harbouring six different p53 mutations. This indicates that nutlin-3 induces de novo p53 mutations not initially present in the original cell population. Therefore, nutlin-3-treated cancer patients should be carefully monitored for the emergence of p53-mutated, multi-drug-resistant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号