首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In numerous species, egg chemoattractants play a critical role in guiding sperm towards unfertilized eggs (sperm chemotaxis). Until now, the known functions of sperm chemotaxis include increasing the effective target size of eggs, thereby promoting sperm-egg encounters, and facilitating species recognition. Here, we report that in the broadcast spawning mussel, Mytilus galloprovincialis, egg chemoattractants may play an unforeseen role in sexual selection by enabling sperm to effectively 'choose' between the eggs of different conspecific females. In an initial experiment, we confirmed that sperm chemotaxis occurs in M. galloprovincialis by showing that sperm are attracted towards unfertilized eggs when given the choice of eggs or no eggs in a dichotomous chamber. We then conducted two cross-classified mating experiments, each comprising the same individual males and females crossed in identical male × female combinations, but under experimental conditions that offered sperm 'no-choice' (each fertilization trial took place in a Petri dish and involved a single male and female) or a 'choice' of a female's eggs (sperm were placed in the centre of a dichotomous choice chamber and allowed to choose eggs from different females). We show that male-by-female interactions characterized fertilization rates in both experiments, and that there was remarkable consistency between patterns of sperm migration in the egg-choice experiment and fertilization rates in the no-choice experiment. Thus, sperm appear to exploit chemical cues to preferentially swim towards eggs with which they are most compatible during direct sperm-to-egg encounters. These results reveal that sperm differentially select eggs on the basis of chemical cues, thus exposing the potential for egg chemoattractants to mediate mate choice for genetically compatible partners. Given the prevalence of sperm chemotaxis across diverse taxa, our findings may have broad implications for sexual selection in other mating systems.  相似文献   

2.
Despite evidence that variation in male–female reproductive compatibility exists in many fertilization systems, identifying mechanisms of cryptic female choice at the gamete level has been a challenge. Here, under risks of genetic incompatibility through hybridization, we show how salmon and trout eggs promote fertilization by conspecific sperm. Using in vitro fertilization experiments that replicate the gametic microenvironment, we find complete interfertility between both species. However, if either species’ ova were presented with equivalent numbers of both sperm types, conspecific sperm gained fertilization precedence. Surprisingly, the species’ identity of the eggs did not explain this cryptic female choice, which instead was primarily controlled by conspecific ovarian fluid, a semiviscous, protein‐rich solution that bathes the eggs and is released at spawning. Video analyses revealed that ovarian fluid doubled sperm motile life span and straightened swimming trajectory, behaviors allowing chemoattraction up a concentration gradient. To confirm chemoattraction, cell migration tests through membranes containing pores that approximated to the egg micropyle showed that conspecific ovarian fluid attracted many more spermatozoa through the membrane, compared with heterospecific fluid or water. These combined findings together identify how cryptic female choice can evolve at the gamete level and promote reproductive isolation, mediated by a specific chemoattractive influence of ovarian fluid on sperm swimming behavior.  相似文献   

3.
Both gamete competition and gamete limitation can generate anisogamy from ancestral isogamy, and both sperm competition (SC) and sperm limitation (SL) can increase sperm numbers. Here, we compare the marginal benefits due to these two components at any given population level of sperm production using the risk and intensity models in sperm economics. We show quite generally for the intensity model (where N males compete for each set of eggs) that however severe the degree of SL, if there is at least one competitor for fertilization (N − 1 ≥ 1), the marginal gains through SC exceed those for SL, provided that the relationship between the probability of fertilization (F) and increasing sperm numbers (x) is a concave function. In the risk model, as fertility F increases from 0 to 1.0, the threshold SC risk (the probability q that two males compete for fertilization) for SC to be the dominant force drops from 1.0 to 0. The gamete competition and gamete limitation theories for the evolution of anisogamy rely on very similar considerations: our results imply that gamete limitation could dominate only if ancestral reproduction took place in highly isolated, small spawning groups.  相似文献   

4.
The continued emissions of anthropogenic carbon dioxide are causing progressive ocean acidification (OA). While deleterious effects of OA on biological systems are well documented in the growth of calcifying organisms, lesser studied impacts of OA include potential effects on gamete interactions that determine fertilization, which are likely to influence the many marine species that spawn gametes externally. Here, we explore the effects of OA on the signalling mechanisms that enable sperm to track egg-derived chemicals (sperm chemotaxis). We focus on the mussel Mytilus galloprovincialis, where sperm chemotaxis enables eggs to bias fertilization in favour of genetically compatible males. Using an experimental design based on the North Carolina II factorial breeding design, we test whether the experimental manipulation of seawater pH (comparing ambient conditions to predicted end-of-century scenarios) alters patterns of differential sperm chemotaxis. While we find no evidence that male–female gametic compatibility is impacted by OA, we do find that individual males exhibit consistent variation in how their sperm perform in lowered pH levels. This finding of individual variability in the capacity of ejaculates to respond to chemoattractants under acidified conditions suggests that climate change will exert considerable pressure on male genotypes that can withstand an increasingly hostile fertilization environment.  相似文献   

5.
Evidence for sperm-borne proteolytic enzymes exposed during the acrosome reaction in sea urchin sperm has been accumulating. To investigate the possible role(s) such enzymes have in fertilization, we studied the effects of several protease inhibitors on sperm-related events. Soybean trypsin inhibitor, Nα-p-tosyl-l-lysine, chloromethyl ketone, phenylmethylsulfonyl fluoride, and chymostatin neither reduced the number of acrosome reactions nor interfered with gamete binding. p-Nitrophenyl-p′-guanidinobenzoate caused sperm to fuse into irregular clumps, rendering them unable to fertilize eggs. However, l-1-tosylamide-2-phenylethyl chloromethyl ketone (TPCK), an inhibitor of chymotrypsin, prevented the acrosome reaction in Strongylocentrotus purpuratus, S. droebachiensis, and Lytechinus pictus. The effects of TPCK on sperm in subsequent steps of fertilization were also investigated. First, gamete binding assays were performed on fixed eggs. This precluded any effects TPCK might have had on egg-derived secretions (e.g., proteases). Binding of prereacted sperm occurred with both fixed and living eggs. However, fertilization of living eggs in the presence of TPCK was greatly reduced, even though sperm had been prereacted with egg jelly. Vitelline coats were then removed from eggs by trypsin treatment. Eggs in TPCK fertilized and developed normally after the above treatment. These observations are consistent with the hypothesis of a sperm protease participating in the acrosome reaction and the penetration of the egg vitelline coat in the sea urchin.  相似文献   

6.
In sedentary externally fertilizing species, direct interactions between mating partners are limited and prefertilization communication between sexes occurs largely at the gamete level. Certain combinations of eggs and sperm often have higher fertilization success than others, which may be contingent on egg‐derived chemical factors that preferentially attract sperm from compatible males. Here, we examine the mechanisms underlying such effects in the marine mussel Mytilus galloprovincialis, where differential sperm attraction has recently been shown to be associated with variation in offspring viability. Specifically, we focus on the sperm surface glycans, an individually unique layer of carbohydrates that moderate self‐recognition and other cellular‐level interactions. In many species egg‐derived factors trigger remarkable changes in the sperm's glycan layer, physiology, and swimming behavior, and thus potentially moderate mate choice at the gamete level. Here, we show that sperm glycan modifications and the strength of acrosome reaction are both dependent on specific male–female interactions (male–female combination). We also find associations between female‐induced sperm glycan changes and the Ca2+ influx into sperm–‐a key regulator of fertilization processes from sperm capacitation to gamete fusion. Together, our results suggest that female‐induced remote regulation of sperm physiology may constitute a novel mechanism of gamete‐level mate choice.  相似文献   

7.
Although theory and widespread evidence show that the evolution of egg size is driven primarily by offspring and maternal fitness demands, an additional explanation invokes sperm limitation as a selective force that could also influence egg size optima. Levitan proposed that constraints from gamete encounter in external fertilization environments could select for enlargement of ova to increase the physical size of the fertilization target. We test this theory using in vitro fertilization experiments in an externally fertilizing fish. Sockeye salmon (Onchorhyncus nerka) females show considerable between-individual variation in ovum size, and we explored the consequences of this natural variation for the fertilization success of individual eggs under conditions of sperm limitation. By engineering consistent conditions where in vitro fertilization rate was always intermediate, we were able to compare the sizes of fertilized and unfertilized eggs across 20 fertilization replicates. After controlling for any changes in volume through incubation, results showed that successfully fertilized eggs were significantly larger than the eggs that failed to achieve fertilization. Under conditions without sperm limitation, fertility was unaffected by egg size. Our findings therefore support Levitan''s theory, demonstrating empirically that some element of egg size variation could be selected by fertilization demands under sperm limitation. However, further research on sperm limitation in natural spawnings is required to assess the selective importance of these results.  相似文献   

8.
Few data are available on the effectiveness of reproductive isolating mechanisms in externally fertilizing taxa. I investigated patterns of conspecific and heterospecific fertilization among three coexisting sea urchin species, Strongylocentrotus droebachiensis, S.franciscanus, and S. purpuratus. In the laboratory, both among and within species, eggs from individual females whose eggs are more easily fertilized by conspecific sperm are also most susceptible to heterospecific fertilization. At one extreme, S. droebachiensis requires an order of magnitude fewer conspecific sperm to fertilize eggs than do the other two species and shows very little distinction between conspecific and heterospecific sperm in no choice experiments. Strongylocentrotus franciscanus has an intermediate susceptibility to fertilization by heterospecific sperm. At the other extreme, S. purpuratus rarely cross-fertilizes. Field observations indicate that S. droebachiensis is often surrounded by heterospecific sea urchins. Genetic analysis of larvae produced during heterospecific spawning events indicate that hybrids are generally produced if male conspecifics are more than 1 m from a spawning female S. droebachiensis. Laboratory cultures indicate that these hybrids suffer high mortality relative to conspecific larvae. Comparisons of reproductive success of S. droebachiensis during single-species and multispecies spawning events indicate that the benefits of producing easily fertilized eggs under conditions of sperm limitation may outweigh the costs of losing some offspring to hybrid fertilization. Patterns of variability in heterospecific fertilization are considered in light of three hypotheses: phylogenetic relatedness, reinforcement selection, and sexual selection.  相似文献   

9.
Divergent sexual selection within allopatric populations may result in divergent sexual phenotypes, which can act as reproductive barriers between populations upon secondary contact. This hypothesis has been most tested on traits involved in precopulatory sexual selection, with less work focusing on traits that act after copulation and before fertilization (i.e., postcopulatory prezygotic traits), particularly in internally fertilizing vertebrates. However, postcopulatory sexual selection within species can also drive trait divergence, resulting in reduced performance of heterospecific sperm within the female reproductive tract. Such incompatibilities, arising as a by‐product of divergent postcopulatory sexual selection in allopatry, can represent reproductive barriers, analogous to species‐assortative mating preferences. Here, we tested for postcopulatory prezygotic reproductive barriers between three pairs of taxa with diverged sperm phenotypes and moderate‐to‐high opportunity for postcopulatory sexual selection (barn swallows Hirundo rustica versus sand martins Riparia riparia, two subspecies of bluethroats, Luscinia svecica svecica versus L. s. namnetum, and great tits Parus major versus blue tits Cyanistes caeruleus). We tested sperm swimming performance in fluid from the outer reproductive tract of females, because the greatest reduction in sperm number in birds occurs as sperm swim across the vagina. Contrary to our expectations, sperm swam equally well in fluid from conspecific and heterospecific females, suggesting that postcopulatory prezygotic barriers do not act between these taxon pairs, at this stage between copulation and fertilization. We therefore suggest that divergence in sperm phenotypes in allopatry is insufficient to cause widespread postcopulatory prezygotic barriers in the form of impaired sperm swimming performance in passerine birds.  相似文献   

10.
The capacity for parents to influence offspring phenotypes via nongenetic inheritance is currently a major area of focus in evolutionary biology. Intriguing recent evidence suggests that sexual interactions among males and females, both before and during mating, are important mediators of such effects. Sexual interactions typically extend beyond gamete release, involving both sperm and eggs, and their associated fluids. However, the potential for gamete-level interactions to induce nongenetic parental effects remains under-investigated. Here, we test for such effects using an emerging model system for studying gamete interactions, the external fertilizer Mytilus galloprovincialis. We employed a split-ejaculate design to test whether exposing sperm to egg-derived chemicals (ECs) from a female would affect fertilization rate and offspring viability when those sperm were used to fertilize a different female''s eggs. We found separate, significant effects of ECs from non-fertilizing females on both fertilization rate and offspring viability. The offspring viability effect indicates that EC-driven interactions can have nongenetic implications for offspring fitness independent of the genotypes inherited by those offspring. These findings provide a rare test of indirect parental effects driven exclusively by gamete-level interactions, and to our knowledge the first evidence that such effects occur via the gametic fluids of females.  相似文献   

11.
Sperm cells exhibit extraordinary phenotypic variation, both among taxa and within individual species, yet our understanding of the adaptive value of sperm trait variation across multiple contexts is incomplete. For species without the opportunity to choose mating partners, such as sessile broadcast spawning invertebrates, fertilization depends on gamete interactions, which in turn can be strongly influenced by local environmental conditions that alter the concentration of sperm and eggs. However, the way in which such environmental factors impact phenotypic selection on functional gamete traits remains unclear in most systems. Here, we analyze patterns of linear and nonlinear multivariate selection under experimentally altered local sperm densities (densities within the capture zone of eggs) on a range of functionally important sperm traits in the broadcast spawning marine mussel, Mytilus galloprovincialis. Specifically, we assay components of sperm motility and morphology across two fertilization environments that simulate either sperm limitation (when there are too few sperm to fertilize all available eggs), or sperm saturation (when there are many more sperm than required for fertilization, and the risk of polyspermy and embryonic failure is heightened). Our findings reveal that the strength, form, and targets of selection on sperm depend on the prevailing fertilization environment. In particular, our analyses revealed multiple significant axes of nonlinear selection on sperm motility traits under sperm limitation, but only significant negative directional selection on flagellum length under sperm saturation. These findings highlight the importance of local sperm densities in driving the adaptation of sperm phenotypes, particularly those related to sperm motility, in broadcast spawning invertebrates.  相似文献   

12.
Fertilization is one of the least understood fundamental biological processes. How sperm search for and find an egg remains enigmatic. Sperm attraction to egg-derived chemical cues may be significant evolutionarily for maintaining species barriers and important ecologically for increasing gamete encounters. New tools are needed, however, to resolve the functional consequences of these dissolved signal molecules. Freshly spawned eggs from red abalone (Haliotis rufescens) naturally release l-tryptophan, which stimulates chemotactic responses by conspecific sperm. Here, microspheres were manufactured to the approximate size and the same shape as female gametes and formulated to emit controlled doses of chemoattractant, imitating natural l-tryptophan release rates. When experimentally tested for effectiveness, male gametes did not distinguish between chemically impregnated mimics and live eggs, demonstrating that l-tryptophan alone is both necessary and sufficient to promote chemotaxis, and confirming the identity of a native sperm attractant. The techniques that we describe can be used to create synthetic eggs for most animal and plant species, including humans. Egg mimics increase the capacity for experimental manipulation and enable realistic studies of sperm behavior even in the absence of female gametes.  相似文献   

13.
Gamete interactions may strongly influence speciation and hybridization in sympatric broadcast-spawning marine invertebrates. We examined the role of gamete compatibility in species integrity using cross-fertilization studies between sympatric Asterias sea stars from a secondary contact zone in the northwest Atlantic. In crosses between single males and single females, gametes of both species were compatible and produced viable, fertile hybrid offspring, but with considerable variation in the receptivity of eggs to heterospecific sperm. Differential compatibility of heterospecific gametes was detected in sperm competition studies in which we used a nuclear DNA marker to assign paternity to larval offspring. Several families showed conspecific sperm precedence in A. forbesi eggs, and one family showed competitive superiority of A. forbesi sperm fertilizing A. rubens eggs. Gametic interactions are an important component of prezygotic reproductive isolation in sympatric Asterias. The interaction between gametes of these closely related sea stars is consistent with the function of gamete recognition systems that are known to mediate fertilization success and speciation in other marine invertebrates.  相似文献   

14.
We investigated the evolutionary relationship between spawning behaviour and sperm motility traits among Tanganyikan mouth‐brooding cichlid species that have developed diverse mating behaviours and male sexual traits. Mouth‐brooding behaviour is common among these fish, but different species demonstrate a range of spawning behaviours, bower construction, male sexual traits and timing of gamete release. We observed spawning behaviours and compared sperm motility traits of 28 Tanganyikan mouth‐brooding cichlids to elucidate the evolutionary correlations between these traits. Sperm longevity was considerably longer in bower‐building species that construct crater‐shaped spawning sites compared with species that do not build bowers. Male bower builders released sperm in the pit of the bower prior to spawning, and the time from ejaculation to fertilization was longer. Conversely, most mouth‐brooding cichlids deposited semen directly into the female buccal cavity, and spawned eggs were immediately picked up to be placed inside the cavity; thus, the time from ejaculation to fertilization was short. These observations suggest that increased sperm longevity is favoured in bower builders. Comparative phylogenetic analyses suggested that bower‐building behaviour and greater time from ejaculation to fertilization are associated with the extension of sperm longevity, whereas sperm competition rank does not play a major role. In addition, bower‐building behaviour preceded the emergence of increased sperm longevity. These results indicate that the extension of sperm longevity as a result of the emergence of bower builders may have acted as an evolutionary attractor for sperm longevity.  相似文献   

15.
Ocean acidification (OA) poses a major threat to marine organisms, particularly during reproduction when externally shed gametes are vulnerable to changes in seawater pH. Accordingly, several studies on OA have focused on how changes in seawater pH influence sperm behavior and/or rates of in vitro fertilization. By contrast, few studies have examined how pH influences prefertilization gamete interactions, which are crucial during natural spawning events in most externally fertilizing taxa. One mechanism of gamete interaction that forms an important component of fertilization in most taxa is communication between sperm and egg‐derived chemicals. These chemical signals, along with the physiological responses in sperm they elicit, are likely to be highly sensitive to changes in seawater chemistry. In this study, we experimentally tested this possibility using the blue mussel, Mytilus galloprovincialis, a species in which females have been shown to use egg‐derived chemicals to promote the success of sperm from genetically compatible males. We conducted trials in which sperm were allowed to swim in gradients of egg‐derived chemicals under different seawater CO2 (and therefore pH) treatments. We found that sperm had elevated fertilization rates after swimming in the presence of egg‐derived chemicals in low pH (pH 7.6) compared with ambient (pH 8.0) seawater. This observed effect could have important implications for the reproductive fitness of external fertilizers, where gamete compatibility plays a critical role in modulating reproduction in many species. For example, elevated sperm fertilization rates might disrupt the eggs' capacity to avoid fertilizations by genetically incompatible sperm. Our findings highlight the need to understand how OA affects the multiple stages of sperm‐egg interactions and to develop approaches that disentangle the implications of OA for female, male, and population fitness.  相似文献   

16.
Conspecific sperm precedence occurs when females are exposed to sperm from males of multiple species, but preferentially use sperm of a conspecific. Conspecific sperm precedence and its mechanisms have been documented widely in terrestrial species, in which complex female behaviors or reproductive tract morphologies can allow many opportunities for female choice and sperm competition, however, the opportunity for conspecific sperm precedence in free spawning marine invertebrates has been largely ignored. Two sea urchin species, Echinometra oblonga and E. sp. C, have high levels of interspecific fertilization in no-choice lab crosses, but no natural hybrids have been found. We performed competitive fertilization assays to test for conspecific sperm precedence and found that eggs of both species showed a marked preference for conspecific sperm when fertilized with heterospecific sperm mixtures. Strong rejection of heterospecific sperm would not have been predicted from no-choice assays and helps explain the lack of natural hybrids. We also found significant variation in hybridization success among crosses. Conspecific sperm precedence in free spawning invertebrates shows that the simple surfaces of eggs and sperm provide ample opportunity for egg choice and sperm competition even in the absence of intricate behavior or complex reproductive morphologies.  相似文献   

17.
In species with limited opportunities for pre‐ejaculatory sexual selection (behavioural components), post‐ejaculatory mechanisms may provide opportunities for mate choice after gametes have been released. Recent evidence from a range of taxa has revealed that cryptic female choice (i.e., female‐mediated differential fertilization bias), through chemical cues released with or from eggs, can differentially regulate the swimming characteristics of sperm from various males and ultimately determine male fertilization success under sperm competition. We assessed the potential role that such female‐modulated chemical cues play in influencing sperm swimming characteristics in beach‐spawning capelin (Mallotus villosus), an externally fertilizing fish that mates as couples (one male and one female) or threesomes (two males and one female) with presumably limited opportunities for pre‐ejaculatory sexual selection. We assayed sperm swimming characteristics under varying doses and donor origins of egg cues and also examined the possibility of assortative mating based on body size. We found mating groups were not associated by size, larger males did not produce better quality ejaculates, and egg cues (regardless of dosage or donor identity) did not influence sperm swimming characteristics. Our findings suggest that intersexual pre‐ejaculatory sexual selection and cryptic female choice mediated by female chemical cues are poorly developed in capelin, possibly due to unique natural selection constraints on reproduction.  相似文献   

18.
Females of many species mate multiple times and store transferred sperm in storage organs. The mechanisms underlying sperm release from the stores at fertilization remain poorly understood, although they are central to an understanding of the female influence on post-copulatory male competition. Using double-mated females of the yellow dung fly, we counted the sperm sticking to the surface of deposited eggs of two successive clutches to obtain insight into the physiological processes associated with fertilization. The number of sperm released to fertilize an egg decreased between the first and second clutches, as well as within clutches from early to late eggs. These results indicate that: (1) sperm are lost from the stores over time independent of egg laying and (2) the number of sperm released depends on the amount of sperm stored. The lower number of sperm on eggs of the second clutches was accompanied by a strong increase of the proportion of sperm adhering to the micropyle region, suggesting that sperm use is more efficient and sperm release better controlled when sperm supply is substantially reduced. Finally, our approach indicates that sperm storage capacity of the female is higher than assumed from counts of spermathecal sperm.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 511–518.  相似文献   

19.
Recent evidence suggests roles for egg derived hydrogen peroxide (H2O2) and ovoperoxidase (secreted by cortical granules) in both fertilization envelope hardening and the block to polyspermy in sea urchins. Strongylocentrotus purpuratus eggs were found to release H2O2 during the cortical reaction at fertilization. Treatment of sperm with equivalent concentrations of H2O2 resulted in a rapid loss of sperm fertilizing ability. Attempts were made to induce polyspermy by utilizing ovoperoxidase inhibitors at concentrations known to inhibit fertilization envelope hardening. Eggs fertilized in phenylhydrazine became polyspermic, while 3-amino-1,2,4-triazole-treated eggs did not. These data suggested that a sperm peroxidase might be involved in preventing polyspermy. This hypothesis was tested by the addition of phenylhydrazine or 3-amino-1,2,4-trizaole to H2O2-treated sperm. Phenylhydrazine acted to protect sperm fertility from H2O2, while 3-amino-1,2,4-triazole increased the adverse effect of H2O2. Simultaneous addition of both inhibitors to sperm incubated in H2O2 gave an intermediate value of sperm fertility. These data indicate that (1) H2O2 generated by sea urchin eggs during the cortical reaction at fertilization is used for two separate processes, fertilization envelope hardening and the prevention of polyspermy; (2) ovoperoxidase is probably not involved in preventing polyspermy; and (3) egg-derived H2O2 reacts directly with sperm enzymes to prevent polyspermy. The phenylhydrazine-sensitive enzyme in the sperm is probably a peroxidase that acts to inactivate sperm, while the 3-amino-1,2,4-triazolesensitive enzyme is probably a catalase which protects sperm from H2O2. This hypothesis is consistent with model experiments on horseradish peroxidase and bovine liver catalase.  相似文献   

20.
Theory predicts that sperm competition will generate sexual conflict that favours increased ovum defences against polyspermy. A recent study on house mice has shown that ovum resistance to fertilization coevolves in response to increased sperm fertilizing capacity. However, the capacity for the female gamete to adjust its fertilizability as a strategic response to sperm competition risk has never, to our knowledge, been studied. We sourced house mice (Mus domesticus) from natural populations that differ in the level of sperm competition and sperm fertilizing capacity, and manipulated the social experience of females during their sexual development to simulate conditions of either a future ‘risk’ or ‘no risk’ of sperm competition. Consistent with coevolutionary predictions, we found lower fertilization rates in ova produced by females from a high sperm competition population compared with ova from a low sperm competition population, indicating that these populations are divergent in the fertilizability of their ova. More importantly, females exposed to a ‘risk’ of sperm competition produced ova that had greater resistance to fertilization than ova produced by females reared in an environment with ‘no risk’. Consequently, we show that variation in sperm competition risk during development generates phenotypic plasticity in ova fertilizability, which allows females to prepare for prevailing conditions during their reproductive life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号