首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The aim of this study was to evaluate the effect of different periods of ovary preservation at 25–30 °C for 5, 6, 7, 9, 12 and 24 h on recovery rate and oocyte categories of dromedary camel oocytes. Camel ovaries were collected from El-Bassatein slaughterhouse, Cairo. The collected ovaries were placed immediately after slaughtering into thermos in saline solution (0.9% NaCl) supplemented with antibiotics (100 IU penicillin and 100 μg streptomycin/ml) at 25–30 °C and transported to the laboratory within 4–5 h. Ovaries were washed three times with warmed (30 °C) phosphate buffer solution (PBS) and one time with ethanol (70%). All visible follicles on the ovarian surface (2–8 mm in diameter) were counted. Oocytes were aspirated using a 20-gauge hypodermic needle. Oocyte yield was recorded and the number of oocytes/ovary was calculated. Oocytes were classified into five categories (compact, partial denuded, denuded, shrunken and cleaved oocytes). Results show that average number of follicles on each ovary was not significantly affected by preservation period, although tended to reduce only after 5 h of ovary preservation. However, this number was insignificantly reduced by increasing period of ovary preservation more than 5 up to 24 h. Average number of oocytes on each ovary was significantly (P < 0.05) reduced only between 5 and 6 h of ovary preservation. Average number of oocytes showed higher reduction rate between 5 and 6 h from 12.4 to 9.3/ovary as well as between 9 and 12 h. Oocyte recovery rate showed insignificant decrease from 88.1% at 5 h to 78.6% at 9 h of preservation. However, it showed significant (P < 0.05) reduction to 62.0% between 9 and 12 h, then insignificantly decreased to 58.6 at 24 h of preservation of the ovaries. Frequency distribution and recovery rate of each category was the highest for compact oocytes and the lowest for cleaved oocytes at all periods of preservation. Increasing preservation period significantly (P < 0.05) decreased frequency distribution of compact and cleaved oocytes, while increased frequency distribution of partial denuded, denude and shrunken oocytes.It might be concluded from the present results that the preservation of dromedary camel ovaries at 25–30 °C for 5–6 h was effective for maintaining the oocytes quality and recovery rate compared with the other preservation periods.  相似文献   

2.
Synchronization of oocyte maturation in vitro has been shown to produce higher in vitro fertilization (IVF) rates than those observed in oocytes matured in vitro without synchronization. However, the increased IVF rates never exceeded those observed in oocytes matured in vivo without synchronization. This study was therefore designed to define the effect of in vivo synchronization of oocyte maturation on IVF rates. Mice were superovulated and orally treated with 7.5 mg cilostazol (CLZ), a phosphodiesterase 3A (PDE3A) inhibitor, to induce ovulation of immature oocytes at different stages depending on frequency and time of administration of CLZ. Mice treated with CLZ ovulated germinal vesicle (GV) or metaphase I (MI) oocytes that underwent maturation in vitro or in vivo (i.e. in the oviduct) followed by IVF. Superovulated control mice ovulated mature oocytes that underwent IVF directly upon collection. Ovulated MI oocytes matured in vitro or in vivo had similar maturation rates but significantly higher IVF rates, 2–4 cell embryos, than those observed in control oocytes. Ovulated GV oocytes matured in vitro showed similar maturation rates but significantly higher IVF rates than those observed in control oocytes. However, ovulated GV oocytes matured in vivo had significantly lower IVF rates than those noted in control oocytes. It is concluded that CLZ is able to synchronize oocyte maturation and improve IVF rates in superovulated mice. CLZ may be capable of showing similar effects in humans, especially since temporal arrest of human oocyte maturation with other PDE3A inhibitors in vitro was found to improve oocyte competence level. The capability of a clinically approved PDE3A inhibitor to improve oocyte fertilization rates in mice at doses extrapolated from human therapeutic doses suggests the potential scenario of the inclusion of CLZ in superovulation programs. This may improve IVF outcomes in infertile patients.  相似文献   

3.
Yang CR  Miao DQ  Zhang QH  Guo L  Tong JS  Wei Y  Huang X  Hou Y  Schatten H  Liu Z  Sun QY 《PloS one》2010,5(12):e14242
The objective of this study was to evaluate the feasibility of preserving porcine oocytes without freezing. To optimize preservation conditions, porcine cumulus-oocyte complexes (COCs) were preserved in TCM-199, porcine follicular fluid (pFF) and FCS at different temperatures (4°C, 20°C, 25°C, 27.5°C, 30°C and 38.5°C) for 1 day, 2 days or 3 days. After preservation, oocyte morphology, germinal vesicle (GV) rate, actin cytoskeleton organization, cortical granule distribution, mitochondrial translocation and intracellular glutathione level were evaluated. Oocyte maturation was indicated by first polar body emission and spindle morphology after in vitro culture. Strikingly, when COCs were stored at 27.5°C for 3 days in pFF or FCS, more than 60% oocytes were still arrested at the GV stage and more than 50% oocytes matured into MII stages after culture. Almost 80% oocytes showed normal actin organization and cortical granule relocation to the cortex, and approximately 50% oocytes showed diffused mitochondria distribution patterns and normal spindle configurations. While stored in TCM-199, all these criteria decreased significantly. Glutathione (GSH) level in the pFF or FCS group was higher than in the TCM-199 group, but lower than in the non-preserved control group. The preserved oocytes could be fertilized and developed to blastocysts (about 10%) with normal cell number, which is clear evidence for their retaining the developmental potentiality after 3d preservation. Thus, we have developed a simple method for preserving immature pig oocytes at an ambient temperature for several days without evident damage of cytoplasm and keeping oocyte developmental competence.  相似文献   

4.
5.
Sperm nuclear decondensing activity in mammalian oocytes is dependent upon the maturational state of the oocyte. It is maximal in mature, metaphase II oocytes and minimal or absent in immature germinal vesicle (GV) and fertilized pronuclear oocytes. Previous studies suggested that this difference may be due to the relative ability of an oocyte to reduce the protamine disulfide bonds in the sperm nucleus. The results of this study show that mature hamster oocytes contain significantly more glutathione (GSH), about 8 mM, and hence more disulfide reducing power, as compared with GV (4 mM) or pronuclear (6 mM) oocytes. Furthermore, the acquisition of sperm nuclear decondensing activity by maturing oocytes can be prevented or delayed by blocking GSH synthesis with L-buthionine-S,R-sulfoximine during the early stages of oocyte maturation. This is the first evidence that modulation of GSH levels during oocyte maturation and fertilization may be a mechanism by which sperm nuclear decondensing activity is regulated.  相似文献   

6.
In this study, the effects of ovary transport and storage temperature on in vitro maturation of bitch oocytes were investigated. Ovaries were collected from 23 mature bitches and one randomly selected ovary of each pair (n=23 pairs) was transported in physiologic saline at 4 degrees C, while the other one at 35-38 degrees C for 2-4h. A total of 316 cumulus oocyte complexes (COCs) were obtained from the 4 degrees C group and 301 COCs from the 35-38 degrees C group. All COCs were matured in modified synthetic oviduct fluid (mSOF) supplemented with follicle stimulating hormone (FSH), essential and non-essential amino acids at 38 degrees C in a humidified 5% CO2, 5% O2, and 90% N2 atmosphere for 72 h. At the end of the in vitro maturation period, nuclear maturation of oocytes was classified as germinal vesicle (GV), germinal vesicle breakdown (GVBD), metaphase I (MI), metaphase II (MII), undetermined nuclear maturation (UDNM), and MI+MII. The nuclear maturation rates to MI, MII, and MI+MII stages were 60.44%, 10.75%, and 71.20% in the 4 degrees C group and 37.20%, 7.64%, and 45.85% in the 35-38 degrees C group, respectively. The data demonstrated that oocytes obtained from ovaries transported at 4 degrees C had higher maturation rates than from the ones transported at 35-38 degrees C (p<0.001).  相似文献   

7.
8.
As a tumor suppressor homologue during mitosis, Chk2 is involved in replication checkpoints, DNA repair, and cell cycle arrest, although its functions during mouse oocyte meiosis and early embryo development remain uncertain. We investigated the functions of Chk2 during mouse oocyte maturation and early embryo development. Chk2 exhibited a dynamic localization pattern; Chk2 expression was restricted to germinal vesicles at the germinal vesicle (GV) stage, was associated with centromeres at pro-metaphase I (Pro-MI), and localized to spindle poles at metaphase I (MI). Disrupting Chk2 activity resulted in cell cycle progression defects. First, inhibitor-treated oocytes were arrested at the GV stage and failed to undergo germinal vesicle breakdown (GVBD); this could be rescued after Chk2 inhibition release. Second, Chk2 inhibition after oocyte GVBD caused MI arrest. Third, the first cleavage of early embryo development was disrupted by Chk2 inhibition. Additionally, in inhibitor-treated oocytes, checkpoint protein Bub3 expression was consistently localized at centromeres at the MI stage, which indicated that the spindle assembly checkpoint (SAC) was activated. Moreover, disrupting Chk2 activity in oocytes caused severe chromosome misalignments and spindle disruption. In inhibitor-treated oocytes, centrosome protein γ-tubulin and Polo-like kinase 1 (Plk1) were dissociated from spindle poles. These results indicated that Chk2 regulated cell cycle progression and spindle assembly during mouse oocyte maturation and early embryo development.  相似文献   

9.
The role of RhoA in the germinal vesicle breakdown of mouse oocytes   总被引:1,自引:0,他引:1  
We have investigated a new role of RhoA in the germinal vesicle breakdown (GVBD) of mouse oocytes. First, RhoA was identified by immunostaining and ADP-ribosylation in germinal vesicle (GV) stage-oocytes. RhoA was mainly localized in the ooplasmic area, but rarely detected in germinal vesicle. Incubation of oocyte extract with C3 transferase induced a strong ADP-ribosylation at about 25 kDa. Incubation of GV-stage oocytes in culture medium induced the spontaneous maturation to GVBD by about 78 and 87% of total oocytes at 1 and 3 h, respectively. However, microinjection of C3 transferase into GV-stage oocytes significantly inhibited GVBD at 1 (GVBD = 29%) and 3 h (GVBD = 49%). To study the role of reactive oxygen species (ROS) in the oocyte maturation, the level of intra-oocyte ROS was measured using a ROS-specific fluorescent dye H(2)DCFDA during the oocyte maturation. Spontaneous maturation of GV-stage oocytes induced a significant increase of ROS at 3 h by about twofold over the control level and then the increased level was maintained until 6 h. However, microinjection of C3 transferase inhibited the production of intra-oocyte ROS. Incubation with ROS scavengers, N-acetyl-l-cysteine and catalase, blocked the ROS increase. The ROS scavengers also significantly inhibited GVBD, as did C3 transferase. Thus, it was proposed that RhoA was involved in the GVBD, possibly by the production of ROS in mouse oocytes.  相似文献   

10.
The ultrastructure of oocyte and sperm nuclei was studied in mouse ovarian oocytes inseminated in vitro and cultured for 1 1/2 and 3 h in a medium containing dbcAMP or lacking the maturation inhibitor. In oocytes blocked at the germinal vesicle (GV) stage, certain maturation-linked changes were noted. Sperm apposition and sperm-oocyte fusion were similar to that during fertilization of ovulated oocytes. The sperm nucleus and its nuclear envelope remained intact after penetrating into the ovarian oocyte. One and a half h after removal of the drug (time 0 of maturation) the germinal vesicle (GV) and sperm nucleus remained intact. In oocytes maturing for 3 h, the nuclear envelopes of the GV and sperm nucleus had fragmented. The NE of the oocyte formed quadruple membranes while the NE of the sperm remained as flat vesicles. Oocyte chromatin condensed to form chromosomes, whereas at the same time the sperm chromatin was in the process of decondensation and was surrounded by fragments of the sperm NE. The sperm chromatin, composed of DNA complexed with protamines, consisted of thin fibrils; the individual fibrils measured 3.8 nm in diameter. Near the penetrated spermatozoa only occasional Mts were detected which were not related to the proximal centriole which was recognizable in the neck-piece of the flagellum. Thus in mouse oocytes the introduced sperm centriole is not capable of behaving as a centrosome and organizing microtubules in the form of an aster.  相似文献   

11.
目的:探讨小鼠GV期卵母细胞线粒体中ATP8(ATP合酶亚基8)基因的表达情况。方法:应用挤压法从卵巢中分离获得生发泡期(germinal vesicle,GV)卵母细胞;用RT-PCR检测GV期单个卵母细胞中ATP8基因的表达:其中cDNA的合成分两种方法进行:一是将GV期单个卵母细胞直接进行RT合成cDNA,二是先用DNA酶加EcoRⅠ酶祛除mtDNA和核DNA后再进行RT;回收产物构建克隆质粒并测序。结果:1.5%琼脂糖电泳显示、测序结果均表明ATP8基因在GV期卵母细胞中有表达。结论:小鼠GV期卵母细胞特异表达的ATP8基因可能与卵母细胞的正常发育成熟相关。  相似文献   

12.

Background

Oocytes are the female gametes which establish the program of life after fertilization. Interactions between oocyte and the surrounding cumulus cells at germinal vesicle (GV) stage are considered essential for proper maturation or ‘programming’ of oocytes, which is crucial for normal fertilization and embryonic development. However, despite its importance, little is known about the molecular events and pathways involved in this bidirectional communication.

Methodology/Principal Findings

We used differential detergent fractionation multidimensional protein identification technology (DDF-Mud PIT) on bovine GV oocyte and cumulus cells and identified 811 and 1247 proteins in GV oocyte and cumulus cells, respectively; 371 proteins were significantly differentially expressed between each cell type. Systems biology modeling, which included Gene Ontology (GO) and canonical genetic pathway analysis, showed that cumulus cells have higher expression of proteins involved in cell communication, generation of precursor metabolites and energy, as well as transport than GV oocytes. Our data also suggests a hypothesis that oocytes may depend on the presence of cumulus cells to generate specific cellular signals to coordinate their growth and maturation.

Conclusions/Significance

Systems biology modeling of bovine oocytes and cumulus cells in the context of GO and protein interaction networks identified the signaling pathways associated with the proteins involved in cell-to-cell signaling biological process that may have implications in oocyte competence and maturation. This first comprehensive systems biology modeling of bovine oocytes and cumulus cell proteomes not only provides a foundation for signaling and cell physiology at the GV stage of oocyte development, but are also valuable for comparative studies of other stages of oocyte development at the molecular level.  相似文献   

13.
Oocytes undergo spontaneous germinal vesicle breakdown (GVBD) after being released from the follicular environment; this potentially prevents manipulation of the oocyte at the germinal vesicle (GV) stage. The objectives of this study were to investigate the effects of indirubin, a potent cdc2 kinase inhibitor, on GVBD and microtubular structure of porcine oocytes. Cumulus-oocyte-complexes (COCs) were collected from abattoir-derived ovaries and were randomly allocated to different concentrations of indirubin treatments (0, 10, 25, 50, and 100 microM in Experiment 1 and 0, 50, 75, and 100 microM in Experiment 2) during 44 h of IVM. The influences on the GVBD, microtubules, and maturation rates were evaluated using epifluorescence microscopy. The percentages of oocytes remaining at the GV stage were 0, 16, 26, 69, and 85% for oocytes treated with 0, 10, 25, 50, and 100 microM of indirubin, respectively, which differed among treatment groups (P<0.05). However, there were no significant differences between the oocytes treated with 75 and 100 microM (79 and 81%). The cytoplasmic microtubules were fragmented in oocytes maintained at the GV stage and the chromatin became condensed or aggregated. When COCs were incubated with indirubin (50-75 microM) for 22 h and then transferred to maturation medium for 44 h (Experiments 3-5), the percentages of oocytes reaching the metaphase II stage were generally higher than when the COCs were cultured in the presence of the drug for 44 h (62-65% versus 44-46%). However, the parthenogenetic development of the oocytes in Experiment 6 was reduced significantly in drug-treated oocytes. In summary, treatment with 50-75 microM of indirubin effectively prevented GVBD in porcine oocytes, but the developmental competence of the oocytes was compromised.  相似文献   

14.
We have investigated the effect of co-culture with porcine spermatozoa on in vitro maturation of porcine germinal vesicle (GV) oocytes before fertilization. Most oocytes were arrested at the first prophase of meiosis when oocytes were cultured in TCM 199 alone, but the proportion of oocytes that reached metaphase II was significantly elevated by co-incubation with spermatozoa in vitro. The oocyte maturation effect was observed with intact and parts of spermatozoa (head and tail) collected from adult swine (regardless of source). However, gonocytes from the newborn porcine testis were not able to enhance in vitro maturation of porcine germinal vesicle oocytes. Interestingly, the oocyte maturation effect by spermatozoa was not decreased with heat treatment, but the maturation effect of oocyte treatment disappeared with exposure to detergent in sperm suspension. Porcine spermatozoa were also observed to stimulate meiosis of oocytes, which was maintained at meiotic arrest using dibutyryl cyclic AMP or forskolin. The study suggests that (i) membrane of porcine spermatozoa contains a substance(s) that can enhance in vitro maturation of oocytes prior to fertilization, (ii) the putative meiosis-enhancing substance(s) of spermatozoa from adult testes retains the oocyte maturation effect during transportation of spermatozoa through epididymis, and (iii) the putative meiosis-enhancing substance(s) is able to overcome the inhibitory effect of dibutyryl cyclic AMP or forskolin by inducing germinal vesicle breakdown of porcine cumulus-oocyte complexes maintained in meiotic arrest.  相似文献   

15.
In starfish ovaries follicle cells that envelop each oocyte are thought to mediate the production of a maturation inducing substance (MIS), identified as 1-methyladenine, that induces maturation and spawning of oocytes after exposure to a gonadotropic substance secreted by the radial nerve (RNF). Studies were carried out to assess the possible role of extrafollicular cells within the ovarian wall in mediating this signal transduction process in the ovary of Pisaster ochraceus. Oocyte maturation and spawning occurred following the addition of RNF to intact ovarian tissue in vitro whereas no maturation occurred following the addition of RNF to germinal vesicle (GV) oocytes or GV oocytes surrounded by follicle cells. In contrast, oocyte maturation occurred when small ovarian wall fragments, lacking mature follicles, were incubated with GV oocytes and RNF. Neither actinomycin D nor cycloheximide altered RNF induction of oocyte maturation in the presence of the ovarian wall tissue whereas preheating (boiling water for 5 min) the tissue obliterated its response to RNF. Non-ovarian tissues failed to produce MIS in response to RNF. Results suggest that ovarian components other than the follicle cells that envelop fully grown immature oocyte are responsive to RNF and represent a significant and previously unrecognised intra-ovarian source of MIS.  相似文献   

16.
17.
The potential subcellular consequence of chilling on porcine germinal vesicle (GV) stage oocytes was examined. Prior to in vitro maturation (IVM), Cumulus-oocyte complexes (COCs) freshly collected from antral follicles (3–6 mm in diameter) were evenly divided into four groups and immediately incubated in PVA-TL-HEPES medium at the temperature of 39 °C (control group), 23 °C (room temperature), 15 °C and 10 °C for 10 min, respectively. Following 42 h of IVM at 39 °C, the survival rates were examined. There was no significant difference between the survival rate of 23 °C chilled group and control group (77.92 and 91.89%), but the survival rate of 15 and 10 °C chilled group were significantly decreased (46.34 and 4.81%, P < 0.01). A further experiment on15 °C group showed that most oocytes died from 2 to 4 h of IVM. In order to investigate the effects of chilling on oocytes at the subcellular level, the control and 15 °C chilled group COCs fixed at different time points of the IVM cultures (2, 2.5, 3, 3.5 and 4 h of IVM) were prepared for transmission electron microscope (TEM) observation. As the result, compared with the control group, there were two significant changes in the ultrastructural morphology of 15 °C treatment group: (1) dramatic reduction of heterogeneous lipid, (2) disorganized mitochondria–endoplasmic reticulum–lipid vesicles (M–E–L) combination. These results indicate that 15 °C is a critical chilling temperature for porcine GV stage oocyte and the alteration of cellular chemical composition and the destruction of M–E–L combination maybe responsible for chilling injury of porcine oocyte at this stage.  相似文献   

18.
Mouse and porcine fully grown oocytes at metaphase I(MI) were fused to one or more fully grown oocytes of the same species that contained an intact germinal vesicle (GV). In fused cells containing one GV, premature chromosome condensation (PCC) was observed. In fused cells containing more than one GV, germinal vesicle breakdown (GVBD) and PCC were delayed. Fusion of an MI fully grown oocyte with a growing oocyte resulted in rapid PCC, whereas, fusion of an MI fully grown oocyte with more than one growing oocyte resulted in neither PCC nor GVBD. Moreover, MI chromosomes formed a clump of chromatin. Results of these experiments suggest that the delay in GVBD in fusions of MI oocytes with multiple GV-intact oocytes was due to dilution of maturation promoting factor (MPF) by the cytoplasm of the GV-intact oocytes and that the cytoplasm of growing oocytes can inhibit MPF present in MI oocytes.  相似文献   

19.
The time course of in vitro red deer nuclear oocyte maturation was determined. Ovaries were obtained at slaughter and oocytes were aspirated from follicles greater than 2mm in diameter. Oocytes with compact cumulus cells were matured in 50 microl microdrops (10 per drop) under mineral oil containing TCM 199 supplemented with 0.33 mM pyruvate, 10 microg LH and FSH, 1 microg oestradiol and 10% foetal bovine serum. Oocytes were matured at 39 degrees C and 5% CO(2) in air. At 3h intervals (0-27 h) oocytes were removed from incubation, cumulus expansion scored and removed, and fixed oocytes in ethanol:acetic acid (3:1) for 48 h. Oocytes were stained with lacmoid (1%) and nuclear maturation assessed. Oocytes were arrested in the germinal vesicle (GV) stage at aspiration and up to 6h of incubation. The nuclear membrane began to disperse after 6h and by 10.6+/-0.6h of incubation 75% of the oocytes exhibited germinal vesicle breakdown (GVBD). The mean time for 50% of the oocytes to reach metaphase one (MI) and metaphase two (MII) was 11.7+/-0.4 and 24.8+/-0.9h, respectively. Cumulus oophorus were tightly compacted at aspiration and did not begin expansion until 12h of culture. Full expansion was complete by 18 h of culture. Corona radiata cells did not begin expansion until 15 h and were fully expanded by 24h. Results indicate that in vitro red deer oocyte maturation follows a similar time course of nuclear maturation as reported for bovine and ovine oocytes.  相似文献   

20.
Oocyte maturation is pertinent to the success of in vitro maturation (IVM), which is used to overcome female infertility, and produced over 5000 live births worldwide. However, the quality of human IVM oocytes has not been investigated at single-cell proteome level. Here, we quantified 2094 proteins in human oocytes during in vitro and in vivo maturation (IVO) by single-cell proteomic analysis and identified 176 differential proteins between IVO and germinal vesicle oocytes and 45 between IVM and IVO oocytes including maternal effect proteins, with potential contribution to the clinically observed decreased fertilization, implantation, and birth rates using human IVM oocytes. IVM and IVO oocytes showed separate clusters in principal component analysis, with higher inter-cell variability among IVM oocytes, and have little correlation between mRNA and protein changes during maturation. The patients with the most aberrantly expressed proteins in IVM oocytes had the lowest level of estradiol per mature follicle on trigger day. Our data provide a rich resource to evaluate effect of IVM on oocyte quality and study mechanism of oocyte maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号