首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Efficient xylose utilisation by microorganisms is of importance to the lignocellulose fermentation industry. The aim of this work was to develop constitutive catabolite repression mutants in a xylose-utilising recombinantSaccharomyces cerevisiae strain and evaluate the differences in xylose consumption under fermentation conditions.S. cerevisiae YUSM was constitutively catabolite repressed through specific disruptions within theMIG1 gene. The strains were grown aerobically in synthetic complete medium with xylose as the sole carbon source. Constitutive catabolite repressed strain YCR17 grew four-fold better on xylose in aerobic conditions than the control strain YUSM. Anaerobic batch fermentation in minimal medium with glucose-xylose mixtures and N-limited chemostats with varying sugar concentrations were performed. Sugar utilisation and metabolite production during fermentation were monitored. YCR17 exhibited a faster xylose consumption rate than YUSM under high glucose conditions in nitrogen-limited chemostat cultivations. This study shows that a constitutive catabolite repressed mutant could be used to enhance the xylose consumption rate even in the presence of high glucose in the fermentation medium. This could help in reducing fermentation time and cost in mixed sugar fermentation.  相似文献   

3.
Microbial preference for glucose implies incomplete and/or slow utilization of lignocellulose hydrolysates, which is caused by the regulatory mechanism named carbon catabolite repression (CCR). In this study, a 2,3-butanediol (2,3-BD) producing Klebsiella oxytoca strain was engineered to eliminate glucose repression of xylose utilization. The crp(in) gene, encoding the mutant cyclic adenosine monophosphate (cAMP) receptor protein CRP(in), which does not require cAMP for functioning, was characterized and overexpressed in K. oxytoca. The engineered recombinant could utilize a mixture of glucose and xylose simultaneously, without CCR. The profiles of sugar consumption and 2,3-BD production by the engineered recombinant, in glucose and xylose mixtures, were examined and showed that glucose and xylose could be consumed simultaneously to produce 2,3-BD. This study offers a metabolic engineering strategy to achieve highly efficient utilization of sugar mixtures derived from the lignocellulosic biomass for the production of bio-based chemicals using enteric bacteria.  相似文献   

4.

Background  

Xylose is a second most abundant sugar component of lignocellulose besides glucose. Efficient fermentation of xylose is important for the economics of biomass-based biorefineries. However, sugar mixtures are sequentially consumed in xylose co-fermentation with glucose due to carbon catabolite repression (CCR) in microorganisms. As xylose transmembrance transport is one of the steps repressed by CCR, it is therefore of interest to develop a transporter that is less sensitive to the glucose inhibition or CCR.  相似文献   

5.
Mig1和Snf1是酿酒酵母葡萄糖阻遏效应的两个关键调控因子。为了提高酿酒酵母工程菌同时利用葡萄糖和木糖的能力,分别对MIG1和SNF1基因进行了单敲除和双敲除,并通过摇瓶发酵实验和RNA-Seq转录组分析,初步揭示了Mig1和Snf1可能影响葡萄糖和木糖共利用表达差异基因的层级调控机制。研究结果表明,MIG1单敲除对混合糖的共利用影响不大;SNF1单敲除会加快混合糖中木糖的利用而且葡萄糖和木糖可以被同时利用,这可能归因于SNF1单敲除会解除对一些氮分解代谢阻遏基因表达的抑制,从而促进了细胞对氮源营养的利用;进一步敲除MIG1,会解除更多氮分解代谢阻遏基因表达的抑制,以及一些碳中心代谢途径基因表达上调。虽然MIG1和SNF1双敲除菌株利用葡萄糖加快而利用木糖变慢,但是葡萄糖和木糖可以被同时利用,进而加快乙醇的积累。综上所述,MIG1和SNF1的敲除导致氮分解阻遏基因表达上调,有助于促进葡萄糖和木糖的共利用;解析Mig1和Snf1对氮分解阻遏基因的层级调控作用,为进一步提高葡萄糖和木糖的共利用提供新的靶点。  相似文献   

6.
7.
Lignocellulosic biomass is an attractive carbon source for bio-based fuel and chemical production; however, its compositional heterogeneity hinders its commercial use. Since most microbes possess carbon catabolite repression (CCR), mixed sugars derived from the lignocellulose are consumed sequentially, reducing the efficacy of the overall process. To overcome this barrier, microbes that exhibit the simultaneous consumption of mixed sugars have been isolated and/or developed and evaluated for the lignocellulosic biomass utilization. Specific strains of Escherichia coli, Saccharomyces cerevisiae, and Zymomonas mobilis have been engineered for simultaneous glucose and xylose utilization via mutagenesis or introduction of a xylose metabolic pathway. Other microbes, such as Lactobacillus brevis, Lactobacillus buchneri, and Candida shehatae possess a relaxed CCR mechanism, showing simultaneous consumption of glucose and xylose. By exploiting CCR-negative phenotypes, various integrated processes have been developed that incorporate both enzyme hydrolysis of lignocellulosic material and mixed sugar fermentation, thereby enabling greater productivity and fermentation efficacy.  相似文献   

8.
9.
Use of agricultural biomass, other than corn-starch, to produce fuel ethanol requires a microorganism that can ferment the mixture of sugars derived from hemicellulose. Escherichia coli metabolizes a wide range of substrates and has been engineered to produce ethanol in high yield from sugar mixtures. E. coli metabolizes glucose in preference to other sugars and, as a result, utilization of the pentoses in hemicellulose-derived sugar mixtures is delayed and may be incomplete. Residual sugar lowers the ethanol yield and is problematic for downstream processing of fermentation products. Therefore, a catabolite repression mutant that simultaneously utilizes glucose and pentoses would be useful for fermentation of complex substrate mixtures. We constructed ethanologenic E. coli strains with a glucose phosphotransferase (ptsG) mutation and used the mutants to ferment glucose, arabinose, and xylose, singly and in mixtures, to ethanol. Yields were 87-94% of theoretical for both the wild type and mutants, but the mutants had an altered pattern of mixed sugar utilization. Phosphotransferase mutants metabolized the pentoses simultaneously with glucose, rather than sequentially. Based upon fermentations of sugar mixtures, a catabolite-repression mutant of ethanologenic E. coli is expected to provide more efficient fermentation of hemicellulose hydrolysates by allowing direct utilization of pentoses.  相似文献   

10.
Use of lignocellulosic biomass as a second generation feedstock in the biofuels industry is a pressing challenge. Among other difficulties in using lignocellulosic biomass, one major challenge is the optimal utilization of both 6-carbon (glucose) and 5-carbon (xylose) sugars by industrial microorganisms. Most industrial microorganisms preferentially utilize glucose over xylose owing to the regulatory phenomenon of carbon catabolite repression (CCR). Microorganisms that can co-utilize glucose and xylose are of considerable interest to the biofuels industry due to their ability to simplify the fermentation processes. However, elimination of CCR in microorganisms is challenging due to the multiple coordinating mechanisms involved. We report a novel algorithm, SIMUP, which finds metabolic engineering strategies to force co-utilization of two sugars, without targeting the regulatory pathways of CCR. Mutants of Escherichia coli based on SIMUP algorithm showed predicted growth phenotypes and co-utilized glucose and xylose; however, consumed the sugars slower than the wild-type. Some solutions identified by the algorithm were based on stoichiometric imbalance and were not obvious from the metabolic network topology. Furthermore, sequencing studies on the genes involved in CCR showed that the mechanism for co-utilization of the sugars could be different from previously known mechanisms.  相似文献   

11.
The kinetics in fed-batch cultures of acetone butanol fermentation by Clostridium acetobutylicum is compared on glucose, xylose, and mixtures of both sugars. The final conversion yield of sugars into solvents always increases with the sugar feeding rate. At low feeding rates, the sugar concentration in the medium becomes limiting, which results in a slower cellular growth, a slower metabolic transition from an acid to a solvent fermentation and, thus, a higher accumulation of acids. It is only at sufficiently high feeding rates that fed-batch fermentations yield kinetic results comparable to those of batch fermentations. With mixtures of glucose and xylose, because of a maintained low glucose level, both sugars are taken up at the same rate during a first fermentation period. An earlier accumulation of xylose when the fermentation becomes inhibited suggest that xylose utilization is inhibited when the catabolic flux of glucose alone can satisfy the metabolic activity of the cell. Kinetic results with batch and fed-batch fermentations indicate several important features of the regulation of C. acetobutylicum metabolism: an early inhibition by the produced acids; an initiation of solvent formation between 4 and 6 g/L acetic and butyric acid depending on the metabolic activity of the cell; a metabolic transition from acids to solvents production at a rate closely related to the rate of sugar uptake; during solvent production, a reassimilation of acids above a minimal rate of sugar consumption of 0.2 h(-1); a final inhibition of the fermentation at a total butanol and acids concentration of ca. 20 g/L.  相似文献   

12.
Escherichia coli W3110 was previously engineered to produce xylitol from a mixture of glucose plus xylose by expressing xylose reductase (CbXR) and deleting xylulokinase (DeltaxylB), combined with either plasmid-based expression of a xylose transporter (XylE or XylFGH) (Khankal et al., J Biotechnol, 2008) or replacing the native crp gene with a mutant (crp*) that alleviates glucose repression of xylose transport (Cirino et al., Biotechnol Bioeng 95:1167-1176, 2006). In this study, E. coli K-12 strains W3110 and MG1655 and wild-type E. coli B were compared as platforms for xylitol production from glucose-xylose mixtures using these same strategies. The engineered strains were compared in fed-batch fermentations and as non-growing resting cells. Expression of CRP* in the E. coli B strains tested was unable to enhance xylose uptake in the presence of glucose. Xylitol production was similar for the (crp*, DeltaxylB)-derivatives of W3110 and MG1655 expressing CbXR (average specific productivities of 0.43 g xylitol g cdw(-1 )h(-1) in fed-batch fermentation). In contrast, results varied substantially between different DeltaxylB-derivative strains co-expressing either XylE or XylFGH. The differences in genetic background between these host strains can therefore profoundly influence metabolic engineering strategies.  相似文献   

13.
Escherichia coli can uptake and utilize many common natural sugars to form biomass or valuable target bio-products. Carbon catabolite repression (CCR) will occur and hamper the efficient production of bio-products if E. coli strains are cultivated in a mixture of sugars containing some preferred sugar, such as glucose. Understanding the transport and metabolism mechanisms of the common and inexpensive sugars in E. coli is important for further improving the efficiency of sugar bioconversion and for reducing industrial fermentation costs using the methods of metabolic engineering, synthetic biology and systems biology. In this review, the transport and mediation mechanisms of glucose, fructose, sucrose, xylose and arabinose are discussed and summarized, and the hierarchical utilization principles of these sugars are elucidated.  相似文献   

14.
15.
Hydrolyzates from lignocellulosic biomass contain a mixture of simple sugars; the predominant ones being glucose, cellobiose and xylose. The fermentation of such mixtures to ethanol or other chemicals requires an understanding of how each of these substrates is utilized.Candida lusitaniae can efficiently produce ethanol from both glucose and cellobiose and is an attractive organism for ethanol production. Experiments were performed to obtain kinetic data for ethanol production from glucose, cellobiose and xylose. Various combinations were tested in order to determine kinetic behavior with multiple carbon sources. Glucose was shown to repress the utilization of cellobiose and xylose. However, cellobiose and xylose were simultaneously utilized after glucose depletion. Maximum volumetric ethanol production rates were 0.56, 0.33, and 0.003 g/L-h from glucose, cellobiose and xylose, respectively. A kinetic model based on cAMP mediated catabolite repression was developed. This model adequately described the growth and ethanol production from a mixture of sugars in a batch culture.  相似文献   

16.
Cellobiose is a major intermediate from cellulase hydrolysis of pretreated plant biomass. Engineering biocatalysts for direct use of cellobiose could eliminate the need for exogenous β-glucosidase. Additionally, rapid removal of cellobiose in a simultaneous saccharification and fermentation facilitates enzymatic hydrolysis as cellobiose is a potent inhibitor for cellulases. We report here improved cellobiose utilization by engineering Escherichia coli to assimilate the disaccharide both hydrolytically and phosphorolytically (shorter fermentation time). Additionally, we demonstrate that engineering intracellular cellobiose utilization circumvents catabolite repression allowing simultaneous fermentation of xylose and cellobiose. Using meso-2,3-butanediol as model product, we further demonstrate that the accelerated carbon metabolism led to improved product formation (higher titers and shorter fermentation times), illustrating the utility of the engineered biocatalysts in biorefinery applications.  相似文献   

17.
Valorization of all major lignocellulose components, including lignin, cellulose, and hemicellulose is critical for an economically viable bioeconomy. In most biochemical conversion approaches, the standard process separately upgrades sugar hydrolysates and lignin. Here, we present a new process concept based on an engineered microbe that could enable simultaneous upgrading of all lignocellulose streams, which has the ultimate potential to reduce capital cost and enable new metabolic engineering strategies. Pseudomonas putida is a robust microorganism capable of natively catabolizing aromatics, organic acids, and D-glucose. We engineered this strain to utilize D-xylose by tuning expression of a heterologous D-xylose transporter, catabolic genes xylAB, and pentose phosphate pathway (PPP) genes tal-tkt. We further engineered L-arabinose utilization via the PPP or an oxidative pathway. This resulted in a growth rate on xylose and arabinose of 0.32 h−1 and 0.38 h−1, respectively. Using the oxidative L-arabinose pathway with the PPP xylose pathway enabled D-glucose, D-xylose, and L-arabinose co-utilization in minimal medium using model compounds as well as real corn stover hydrolysate, with a maximum hydrolysate sugar consumption rate of 3.3 g/L/h. After modifying catabolite repression, our engineered P. putida simultaneously co-utilized five representative compounds from cellulose (D-glucose), hemicellulose (D-xylose, L-arabinose, and acetic acid), and lignin-related compounds (p-coumarate), demonstrating the feasibility of simultaneously upgrading total lignocellulosic biomass to value-added chemicals.  相似文献   

18.
Bacteria such as Escherichia coli will often consume one sugar at a time when fed multiple sugars, in a process known as carbon catabolite repression. The classic example involves glucose and lactose, where E. coli will first consume glucose, and only when it has consumed all of the glucose will it begin to consume lactose. In addition to that of lactose, glucose also represses the consumption of many other sugars, including arabinose and xylose. In this work, we characterized a second hierarchy in E. coli, that between arabinose and xylose. We show that, when grown in a mixture of the two pentoses, E. coli will consume arabinose before it consumes xylose. Consistent with a mechanism involving catabolite repression, the expression of the xylose metabolic genes is repressed in the presence of arabinose. We found that this repression is AraC dependent and involves a mechanism where arabinose-bound AraC binds to the xylose promoters and represses gene expression. Collectively, these results demonstrate that sugar utilization in E. coli involves multiple layers of regulation, where cells will consume first glucose, then arabinose, and finally xylose. These results may be pertinent in the metabolic engineering of E. coli strains capable of producing chemical and biofuels from mixtures of hexose and pentose sugars derived from plant biomass.The transporters and enzymes in many sugar metabolic pathways are conditionally expressed in response to their cognate sugar or a downstream pathway intermediate. While the induction of these pathways in response to a single sugar has been studied extensively (28), far less is known about how these pathways are induced in response to multiple sugars. One notable exception is the phenomenon observed when bacteria are grown in the presence of glucose and another sugar (10, 15). In such mixtures, the bacteria will often consume glucose first before consuming the other sugar, a process known as carbon catabolite repression (27). The classic example of carbon catabolite repression is the diauxic shift seen in the growth of Escherichia coli on mixtures of glucose and lactose, where the cells first consume glucose before consuming lactose. When the cells are consuming glucose, the genes in the lactose metabolic pathway are not induced, thus preventing the sugar from being consumed. A number of molecules participate in this regulation, including the cyclic AMP receptor protein (CRP), adenylate cyclase, cyclic AMP (cAMP), and EIIA from the phosphoenolpyruvate:glucose phosphotransferase system (PTS) (33). In addition to lactose, the metabolic genes for many other sugars are subject to catabolite repression by glucose in E. coli (27). While the preferential utilization of glucose is well known, it is an open question whether additional hierarchies exist among other sugars.Recently, substantial effort has been directed toward developing microorganisms capable of producing chemicals and biofuels from plant biomass (1, 34, 42). After glucose, l-arabinose and d-xylose are the next most abundant sugars found in plant biomass. Therefore, a key step in producing various chemicals and fuels from plant biomass will be the engineering of strains capable of efficiently fermenting these three sugars. However, one challenge concerns catabolite repression, which prevents microorganisms from fermenting these three sugars simultaneously and, as a consequence, may decrease the efficiency of the fermentation process. E. coli cells will first consume glucose before consuming either arabinose or xylose. As in the case of lactose, the genes in the arabinose and xylose metabolic pathways are not expressed when glucose is being consumed. In addition to glucose catabolite repression, a second hierarchy, between arabinose and xylose, appears to exist. Kang and coworkers have observed that the genes in the xylose metabolic pathway were repressed when cells were grown in a mixture of arabinose and xylose (21). Hernandez-Montalvo and coworkers also observed that E. coli utilizes arabinose before xylose (19). While a number of strategies exist for breaking the glucose-mediated repression of arabinose and xylose metabolism (8, 16, 19, 31), none exist for breaking the arabinose-mediated repression of xylose metabolism. Moreover, little is known about this repression beyond the observations made by these researchers.In this work, we investigate how the arabinose and xylose metabolic pathways are jointly regulated. We demonstrate that E. coli will consume arabinose before consuming xylose when it is grown in a mixture of the two sugars. Consistent with a mechanism involving catabolite repression, the genes in the xylose metabolic pathway are repressed in the presence of arabinose. We found that this repression is AraC dependent and is most likely due to binding by arabinose-bound AraC to the xylose promoters, with consequent inhibition of gene expression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号