首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sulfation patterns along glycosaminoglycan (GAG) chains dictate their functional role. The N-deacetylase N-sulfotransferase family (NDST) catalyzes the initial downstream modification of heparan sulfate and heparin chains by removing acetyl groups from subsets of N-acetylglucosamine units and, subsequently, sulfating the residual free amino groups. These enzymes transfer the sulfuryl group from 3′-phosphoadenosine-5′-phosphosulfate (PAPS), yielding sulfated sugar chains and 3′-phosphoadenosine-5′-phosphate (PAP). For the N-sulfotransferase domain of NDST1, Lys833 has been implicated to play a role in holding the substrate glycan moiety close to the PAPS cofactor. Additionally, Lys833 together with His716 interact with the sulfonate group, stabilizing the transition state. Such a role seems to be shared by Lys614 through donation of a proton to the bridging oxygen of the cofactor, thereby acting as a catalytic acid. However, the relevance of these boundary residues at the hydrophobic cleft is still unclear. Moreover, whether Lys833, His716 and Lys614 play a role in both glycan recognition and glycan sulfation remains elusive. In this study we evaluate the contribution of NDST mutants (Lys833, His716 and Lys614) to dynamical effects during sulfate transfer using comprehensive combined docking and essential dynamics. In addition, the binding location of the glycan moiety, PAPS and PAP within the active site of NDST1 throughout the sulfate transfer were determined by intermediate state analysis. Furthermore, NDST1 mutants unveiled Lys833 as vital for both the glycan binding and subsequent N-sulfotransferase activity of NDST1.  相似文献   

3.
Bisphenol A (BPA) can interact with nuclear receptors and affect the normal function of nuclear receptors in very low doses, which causes BPA to be one of the most controversial endocrine disruptors. However, the detailed molecular mechanism about how BPA interferes the normal function of nuclear receptors is still undiscovered. Herein, molecular dynamics simulations were performed to explore the detailed interaction mechanism between BPA with three typical nuclear receptors, including hERα, hERRγ and hPPARγ. The simulation results and calculated binding free energies indicate that BPA can bind to these three nuclear receptors. The binding affinities of BPA were slightly lower than that of E2 to these three receptors. The simulation results proved that the binding process was mainly driven by direct hydrogen bond and hydrophobic interactions. In addition, structural analysis suggested that BPA could interact with these nuclear receptors by mimicking the action of natural hormone and keeping the nuclear receptors in active conformations. The present work provided the structural evidence to recognize BPA as an endocrine disruptor and would be important guidance for seeking safer substitutions of BPA.  相似文献   

4.
Abstract

In this study, 200 ps molecular dynamics simulations were conducted to investigate the unfolding mechanism of the catalytic domain of glucoamylase from Aspergillus awamori var. X100. The unfolding of this domain was suggested to follow a putative hierarchical manner, in which the heavily O-glycosylated belt region from residues T440 to A471 acted as the initiation site, followed by the a-helix secondary structure destruction, and then the collapse of the catalytic center pocket. The O-glycosylated belt region surrounded the surface of the catalytic domain in its native state at low temperature, whereas it was extended and is more suitable to be classified as part of the subsequent linker domain at high temperatures due to its high flexibility. The inner set helices of the (α/α)6-barrel seemed to exhibit higher helical content than the outer set ones at all temperatures examined. The distances between the Cα of the three Cys residue pairs fluctuated rapidly at higher temperatures, indicating that these disulfide bonds have little effect on the structural stabilization. The melting temperature, at which the residual total helicity of the catalytic domain is 50%, is much lower than the critical temperature, at which the catalytic center pocket has lost its structural integrity.  相似文献   

5.
Abstract

The central domain of smooth muscle caldesmon contains a highly charged region consisting of ten 13-residue repeats. Experimental evidence obtained from the intact protein and fragments thereof suggests that this entire region forms a single stretch of stable α-helix. We have carried out molecular dynamics simulations on peptides consisting of one, two and three repeats to examine the mechanism of α-helical stability of the central domain at the atomic level. All three peptides show high helical stability on the timescale of the MD simulations. Deviations from α-helical structure in all the simulations arise mainly from the formation of long stretches of π-helix. Interconversion between α-helical and π-helical conformations occurs through insertion of water molecules into α-helical hydrogen bonds and subsequent formation of reverse turns. The α-helical structure is stabilized by electrostatic interactions (salt bridges) between oppositely charged sidechains with i,i+4 spacings, while the π-helix is stabilized by i,i+5 salt bridge interactions. Possible i,i+3 salt bridges are of minor importance. There is a strong preference for salt bridges with a Glu residue N-terminal to a basic sidechain as compared to the opposite orientation. In the double and triple repeat peptides, strong i,i+4 salt bridges exist between the last Glu residue of one repeat and the first Lys residue of the next. This demonstrates a relationship between the repetitive nature of the central domain sequence and its ability to form very long stretches of α-helical structure.  相似文献   

6.
Structural restraints provided by solid-state NMR measurements of the metarhodopsin II intermediate are combined with molecular dynamics simulations to help visualize structural changes in the light activation of rhodopsin. Since the timescale for the formation of the metarhodopsin II intermediate (> 1 ms) is beyond that readily accessible by molecular dynamics, we use NMR distance restraints derived from 13C dipolar recoupling measurements to guide the simulations. The simulations yield a working model for how photoisomerization of the 11-cis retinylidene chromophore bound within the interior of rhodopsin is coupled to transmembrane helix motion and receptor activation. The mechanism of activation that emerges is that multiple switches on the extracellular (or intradiscal) side of rhodopsin trigger structural changes that converge to disrupt the ionic lock between helices H3 and H6 on the intracellular side of the receptor.  相似文献   

7.
Pathological aggregation of amyloid-forming proteins is a hallmark of a number of human diseases, including Alzheimer's, type 2 diabetes, Parkinson's, and more. Despite having very different primary amino acid sequences, these amyloid proteins form similar supramolecular, fibril structures that are highly resilient to physical and chemical denaturation. To better understand the structural stability of disease-related amyloids and to gain a greater understanding of factors that stabilize functional amyloid assemblies, insights into tertiary and quaternary interactions are needed. We performed molecular dynamics simulations on human tau, amyloid-β, and islet amyloid polypeptide fibrils to determine key physicochemical properties that give rise to their unique characteristics and fibril structures. These simulations are the first of their kind in employing a polarizable force field to explore properties of local electric fields on dipole properties and other electrostatic forces that contribute to amyloid stability. Across these different amyloid fibrils, we focused on how the underlying forces stabilize fibrils to elucidate the driving forces behind the protein aggregation. The polarizable model allows for an investigation of how side-chain dipole moments, properties of structured water molecules in the fibril core, and the local environment around salt bridges contribute to the formation of interfaces essential for fibril stability. By systematically studying three amyloidogenic proteins of various fibril sizes for key structural properties and stabilizing forces, we shed light on properties of amyloid structures related to both diseased and functional states at the atomistic level.  相似文献   

8.
Abstract

The 600 ps molecular dynamics simulations to investigate the unfolding of the starch binding domain from Aspergillus niger glucoamylase were conducted in vacuum as well as in an external field with the dielectric constant of 80 with temperature jump technique. Electrostatic interactions play an important role in determining the stability of the β-strands in this domain. The starch binding site 1 is less stable than site 2 since it is more exposed to the surface. The disulfide bond between C509 and C604 is unstable since these two residues are located near the flexible linker domain and in the mobile loop region between β-strands 6 and 7, respectively. The melting temperature, at which the total residual β-strand content is 50% that of the solution structure, is about 544K for the simulations with dielectric constant of 80, leading to the estimated unfolding timescale of 0.48 ms in vitro. In addition, the unfolding of the starch binding domain is proposed to initiate from the interior region by the lost of the integrity of the secondary structure.  相似文献   

9.
HER2 (ErbB2/Neu) is a receptor tyrosine kinase belonging to the epidermal growth factor receptor (EGFR)/ErbB family and is overexpressed in 20-30% of human breast cancers. Although several crystal structures of ErbB kinases have been solved, the precise mechanism of HER2 activation remains unknown, and it has been suggested that HER2 is unique in its requirement for phosphorylation of Y877, a key tyrosine residue located in the activation loop. To elucidate mechanistic details of kinase domain regulation, we performed molecular dynamics simulations of a homology-modeled HER2 kinase structure in active and inactive conformations. Principal component analysis of the atomistic fluctuations reveals a tight coupling between the activation loop and catalytic loop that may contribute to alignment of residues required for catalysis in the active kinase. The free energy perturbation method is also employed to predict a role for phosphorylated Y877 in stabilizing the kinase conformations. Finally, simulation results are presented for a HER2/EGFR heterodimer and reveal that the dimeric interface induces a rearrangement of the αC helix toward the active conformation. Elucidation of the molecular regulatory mechanisms in HER2 will help establish structure-function relationships in the wild-type kinase, as well as predict mutations with a propensity for constitutive activation in HER2-mediated cancers.  相似文献   

10.
Three-dimensional (3D) domain swapping is a mechanism to form protein oligomers. It has been proposed that several factors, including proline residues in the hinge region, may affect the occurrence of 3D domain swapping. Although introducing prolines into the hinge region has been found to promote domain swapping for some proteins, the opposite effect has also been observed in several studies. So far, how proline affects 3D domain swapping remains elusive. In this work, based on a large set of 3D domain-swapped structures, we performed a systematic analysis to explore the correlation between the presence of proline in the hinge region and the occurrence of 3D domain swapping. We further analyzed the conformations of proline and pre-proline residues to investigate the roles of proline in 3D domain swapping. We found that more than 40% of the domain-swapped structures contained proline residues in the hinge region. Unexpectedly, conformational transitions of proline residues were rarely observed upon domain swapping. Our analyses showed that hinge regions containing proline residues preferred more extended conformations, which may be beneficial for the occurrence of domain swapping by facilitating opening of the exchanged segments.  相似文献   

11.
12.
The ATP-gated P2X4 receptor is a cation channel, which is important in various pathophysiological events. The architecture of the P2X4 receptor in the activated state and how to change its structure in response to ATP binding are not fully understood. Here, we analyze the architecture and ATP-induced structural changes in P2X4 receptors using fast-scanning atomic force microscopy (AFM). AFM images of the membrane-dissociated and membrane-inserted forms of P2X4 receptors and a functional analysis revealed that P2X4 receptors have an upward orientation on mica but lean to one side. Time-lapse imaging of the ATP-induced structural changes in P2X4 receptors revealed two different forms of activated structures under 0 Ca2+ conditions, namely a trimer structure and a pore dilation-like tripartite structure. A dye uptake measurement demonstrated that ATP-activated P2X4 receptors display pore dilation in the absence of Ca2+. With Ca2+, the P2X4 receptors exhibited only a disengaged trimer and no dye uptake was observed. Thus our data provide a new insight into ATP-induced structural changes in P2X4 receptors that correlate with pore dynamics.  相似文献   

13.
We describe molecular dynamics simulations resulting in the folding the Fip35 Hpin1 WW domain. The simulations were run on a distributed set of graphics processors, which are capable of providing up to two orders of magnitude faster computation than conventional processors. Using the Folding@home distributed computing system, we generated thousands of independent trajectories in an implicit solvent model, totaling over 2.73 ms of simulations. A small number of these trajectories folded; the folding proceeded along several distinct routes and the system folded into two distinct three-stranded β-sheet conformations, showing that the folding mechanism of this system is distinctly heterogeneous.  相似文献   

14.
The root causes of the outcomes of the single-site mutation in enzymes remain by and large not well understood. This is the case of the F429H mutant of the cytochrome P450 (CYP) 2B4 enzyme where the substitution, on the proximal surface of the active site, of a conserved phenylalanine 429 residue with histidine seems to hamper the formation of the active species, Compound I (porphyrin cation radical-Fe(IV) = O, Cpd I) from the ferric hydroperoxo (Fe(III)OOH-, Cpd 0) precursor. Here we report a study based on extensive molecular dynamic (MD) simulations of 4 CYP-2B4 point mutations compared to the WT enzyme, having the goal of better clarifying the importance of the proximal Phe429 residue on CYP 2B4 catalytic properties. To consolidate the huge amount of data coming from five simulations and extract the most distinct structural features of the five species studied we made an extensive use of cluster analysis. The results show that all studied single polymorphisms of F429, with different side chain properties: i) drastically alter the reservoir of conformations accessible by the protein, perturbing global dynamics ii) expose the thiolate group of residue Cys436 to the solvent, altering the electronic properties of Cpd0 and iii) affect the various ingress and egress channels connecting the distal sites with the bulk environment, altering the reversibility of these channels. In particular, it was observed that the wild type enzyme exhibits unique structural features as compared to all mutant species in terms of weak interactions (hydrogen bonds) that generate a completely different dynamical behavior of the complete system. Albeit not conclusive, the current computational investigation sheds some light on the subtle and critical effects that proximal single-site mutations can exert on the functional mechanisms of human microsomal CYPs which should go rather far beyond local structure characterization.  相似文献   

15.
16.
17.
HAMP domain is a ubiquitous module of bacterial and archaeal two-component signaling systems. Considerable progress has been made recently in studies of its structure and conformational changes. However, the mechanism of signal transduction through the HAMP domain is not clear. It remains a question whether all the HAMPs have the same mechanism of action and what are the differences between the domains from different protein families. Here, we present the results of unbiased molecular dynamics simulations of the HAMP domain from the archaeal phototaxis signal transducer NpHtrII. Two distinct conformational states of the HAMP domain are observed, that differ in relative position of the helices AS1 and AS2. The longitudinal shift is roughly equal to a half of an α-helix turn, although sometimes it reaches one full turn. The states are closely related to the position of bulky hydrophobic aminoacids at the HAMP domain core. The observed features are in good agreement with recent experimental results and allow us to propose that the states detected in the simulations are the resting state and the signaling state of the NpHtrII HAMP domain. To the best of our knowledge, this is the first observation of the same HAMP domain in different conformations. The simulations also underline the difference between AMBER ff99-SB-ILDN and CHARMM22-CMAP forcefields, as the former favors the resting state and the latter favors the signaling state.  相似文献   

18.
P2X4受体是P2X受体家族的成员。目前,已从人、大鼠、小鼠、鸡胚和非洲爪蟾的组织中获得了全长cDNA。P2X4受体分布广泛,在被ATP及其同系物激活后,引起细胞内钙离子浓度显升高,将信号传递给下游的信号分子。  相似文献   

19.
20.
The distribution of disordered proteins (FG-nups) that line the transport channel of the nuclear pore complex (NPC) is investigated by means of coarse-grained molecular dynamics simulations. A one-bead-per-amino-acid model is presented that accounts for the hydrophobic/hydrophilic and electrostatic interactions between different amino acids, polarity of the solvent, and screening of free ions. The results indicate that the interaction of the FG-nups forms a high-density, doughnut-like distribution inside the NPC, which is rich in FG-repeats. We show that the obtained distribution is encoded in the amino-acid sequence of the FG-nups and is driven by both electrostatic and hydrophobic interactions. To explore the relation between structure and function, we have systematically removed different combinations of FG-nups from the pore to simulate inviable and viable NPCs that were previously studied experimentally. The obtained density distributions show that the maximum density of the FG-nups inside the pore does not exceed 185 mg/mL in the inviable NPCs, whereas for the wild-type and viable NPCs, this value increases to 300 mg/mL. Interestingly, this maximum density is not correlated to the total mass of the FG-nups, but depends sensitively on the specific combination of essential Nups located in the central plane of the NPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号