首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In mammals, the circadian rhythm central generator consists of interactions among clock genes, including Per1/2/3, Cry1/2, Bmal1, and Clock. Circadian rhythm disruption may lead to increased risk of cancer in humans, and deregulation of clock genes has been implicated in many types of cancers. Among these genes, Per2 is reported to have tumor suppressor properties, but little is known about the correlation between Per2 and HIF, which is the main target of renal cell carcinoma (RCC) therapy. In this study, the rhythmic expression of the Per2 gene was not detectable in renal cancer cell lines, with the exception of Caki-2 cells. In Caki-2 cells, HIF1α increased the amplitude of Per2 oscillation by directly binding to the HIF-binding site located on the Per2 promoter. These results indicate that HIF1α may enhance the amplitude of the Per2 circadian rhythm.  相似文献   

2.
Hypoxia is thought to be critical in regulating physiological processes within the female reproductive system, including ovulation, composition of the fluid in the oviductal/uterine lumens and ovarian follicle development. This study examined the localisation of exogenous (pimonidazole) and endogenous [hypoxia inducible factor 1α and 2α (HIF1α, -2α), glucose transporter type 1 (GLUT1) and carbonic anhydrase 9 (CAIX)] hypoxia-related antigens within the oviduct and uterus of the rat reproductive tract. The extent to which each endogenous antigen co-compartmentalised with pimonidazole was also assessed. Female Wistar Furth rats (n = 10) were injected intraperitoneally with pimonidazole (60 mg/kg) 1 h prior to death. Reproductive tissues were removed immediately following death and fixed in 4% paraformaldehyde before being embedded in paraffin. Serial sections were cut (6–7 μm thick) and antigens of interest identified using standard immunohistochemical procedures. The mucosal epithelia of the ampulla, isthmus and uterus were immunopositive for pimonidazole in most sections. Co-compartmentalisation of pimonidazole with HIF1α was only expressed in the mucosa of the uterus whilst co-compartmentalisation with HIF2α was observed in the mucosa of the ampulla, isthmus and uterus. Both GLUT1 and CAIX were co-compartmentalised with pimonidazole in mucosa of the isthmus and uterus. This study confirms that mucosal regions of the rat oviduct and uterus frequently experience severe hypoxia and there are compartment specific variations in expression of endogenous hypoxia-related antigens, including the HIF isoforms. The latter observation may relate to target gene specificity of HIF isoforms or perhaps HIF2α’s responsiveness to non-hypoxic stimuli such as hypoglycaemia independently of HIF1α.  相似文献   

3.
4.
5.
6.
7.
8.
In COPD, matrix remodeling contributes to airflow limitation. Recent evidence suggests that next to fibroblasts, the process of epithelial-mesenchymal transition can contribute to matrix remodeling. CSE has been shown to induce EMT in lung epithelial cells, but the signaling mechanisms involved are largely unknown and subject of this study. EMT was assessed in A549 and BEAS2B cells stimulated with CSE by qPCR, Western blotting and immunofluorescence for epithelial and mesenchymal markers, as were collagen production, cell adhesion and barrier integrity as functional endpoints. Involvement of TGF-β and HIF1α signaling pathways were investigated. In addition, mouse models were used to examine the effects of CS on hypoxia signaling and of hypoxia per se on mesenchymal expression. CSE induced EMT characteristics in A549 and BEAS2B cells, evidenced by decreased expression of epithelial markers and a concomitant increase in mesenchymal marker expression after CSE exposure. Furthermore cells that underwent EMT showed increased production of collagen, decreased adhesion and disrupted barrier integrity. The induction of EMT was found to be independent of TGF-β signaling. On the contrary, CS was able to induce hypoxic signaling in A549 and BEAS2B cells as well as in mice lung tissue. Importantly, HIF1α knock-down prevented induction of mesenchymal markers, increased collagen production and decreased adhesion after CSE exposure, data that are in line with the observed induction of mesenchymal marker expression by hypoxia in vitro and in vivo. Together these data provide evidence that both bronchial and alveolar epithelial cells undergo a functional phenotypic shift in response to CSE exposure which can contribute to increased collagen deposition in COPD lungs. Moreover, HIF1α signaling appears to play an important role in this process.  相似文献   

9.
10.
Tumor necrosis factor receptor (TNFR)-associated factor 2 (TRAF2) and TRAF5 are adapter proteins involved in TNFα-induced activation of the c-Jun N-terminal kinase and nuclear factor κB (NF-κB) pathways. Currently, TNFα-induced NF-κB activation is believed to be impaired in TRAF2 and TRAF5 double knockout (T2/5 DKO) cells. Here, we report instead that T2/5 DKO cells exhibit high basal IκB kinase (IKK) activity and elevated expression of NF-κB-dependent genes in unstimulated conditions. Although TNFα-induced receptor-interacting protein 1 ubiquitination is indeed impaired in T2/5 DKO cells, TNFα stimulation further increases IKK activity in these cells, resulting in significantly elevated expression of NF-κB target genes to a level higher than that in wild-type cells. Inhibition of NIK in T2/5 DKO cells attenuates basal IKK activity and restores robust TNFα-induced IKK activation to a level comparable with that seen in wild-type cells. This suggests that TNFα can activate IKK in the absence of TRAF2 and TRAF5 expression and receptor-interacting protein 1 ubiquitination. In addition, both the basal and TNFα-induced expression of anti-apoptotic proteins are normal in T2/5 DKO cells, yet these DKO cells remain sensitive to TNFα-induced cell death, due to the impaired recruitment of anti-apoptotic proteins to the TNFR1 complex in the absence of TRAF2. Thus, our data demonstrate that TRAF2 negatively regulates basal IKK activity in resting cells and inhibits TNFα-induced cell death by recruiting anti-apoptotic proteins to the TNFR1 complex rather than by activating the NF-κB pathway.  相似文献   

11.
It is well known that the hypoxia-inducible factor 1 α (HIF1α) is detectable as adaptive metabolic response to hypoxia. However, HIF1/HIF1α is detectable even under normoxic conditions, if the metabolism is altered, e.g., high proliferation index. Importantly, both hypoxic metabolism and the Warburg effect have in common a decrease of the intracellular pH value.

In our interpretation, HIF1α is not directly accumulated by hypoxia, but by a process which occurs always under hypoxic conditions, a decrease of the intracellular pH value because of metabolic imbalances. We assume that HIF1α is a sensitive controller of the intracellular pH value independently of the oxygen concentration. Moreover, HIF1α has its major role in activating genes to eliminate toxic metabolic waste products (e.g., NH3/NH4+) generated by the tumor-specific metabolism called glutaminolysis, which occur during hypoxia, or the Warburg effect. For that reason, HIF1α appears as a potential target for tumor therapy to disturb the pH balance and to inhibit the elimination of toxic metabolic waste products in the tumor cells.  相似文献   

12.
Wang Y  Liu Y  Malek SN  Zheng P  Liu Y 《Cell Stem Cell》2011,8(4):399-411
Molecular targeting of cancer stem cells (CSCs) has therapeutic potential for efficient treatment of cancer, although relatively few specific targets have been identified so far. Hypoxia-inducible factor (HIF) was recently shown to regulate the tumorigenic capacity of glioma stem cells under hypoxic conditions. Surprisingly, we found that, under normoxia, HIF1α signaling was selectively activated in the stem cells of mouse lymphoma and human acute myeloid leukemia (AML). HIF1a shRNA and HIF inhibitors abrogated the colony-forming unit (cfu) activity of mouse lymphoma and human AML CSCs. Importantly, the HIF-inhibitor echinomycin efficiently eradicated mouse lymphoma and serially transplantable human AML in xenogeneic models by preferential elimination of CSCs. Hif1α maintains mouse lymphoma CSCs by repressing a negative feedback loop in the Notch pathway. Taken together, our results demonstrate an essential function of Hif1α-Notch interaction in maintaining CSCs and provide an effective approach to target CSCs for therapy of hematological malignancies.  相似文献   

13.
Suzuki N  Shichiri M  Tateno T  Sato K  Hirata Y 《Peptides》2011,32(4):805-810
Salusin-α and salusin-β are multifunctional bioactive peptides that were initially predicted using in silico analyses. These peptides should be concomitantly biosynthesized from prosalusin in humans. However, little information is available yet on the biosynthesis and mode of presence of salusin-α and salusin-β in non-human species. In the present study, we examined whether salusin-α and salusin-β are conserved in the rat and whether salusin-α and salusin-β show distinct systemic distributions. Immunohistochemical analysis of rat tissues using a specific anti-rat salusin-α antibody detected immunoreactivity extensively in neuronal cells and fibers, and abundantly in the epithelial tissues throughout the organs. This distribution contrasts sharply with that of salusin-β, which is mainly localized to the neuroendocrine and hematopoietic systems. Western blot analysis of rat spleen extracts showed the presence of cleaved fragments corresponding to putative rat salusin-α. Reverse-phase and gel filtration high performance liquid chromatography analyses coupled with radioimmunoassay detection of rat urine extracts revealed a major immunoreactive component that co-eluted with synthetic putative rat salusin-β. These data support the processing of rat prosalusin into salusin-α and salusin-β despite absent dibasic amino acids between the two.  相似文献   

14.
15.
16.
The stress-activated protein kinase Gcn2 regulates protein synthesis by phosphorylation of translation initiation factor eIF2α, from yeast to mammals. The Gcn2 kinase domain (KD) is inherently inactive and requires allosteric stimulation by adjoining regulatory domains. Gcn2 contains a pseudokinase domain (YKD) required for high-level eIF2α phosphorylation in amino acid starved yeast cells; however, the role of the YKD in KD activation was unknown. We isolated substitutions of evolutionarily conserved YKD amino acids that impair Gcn2 activation without reducing binding of the activating ligand, uncharged tRNA, to the histidyl-tRNA synthetase-related domain of Gcn2. Several such Gcn substitutions cluster in predicted helices E and I (αE and αI) of the YKD. We also identified Gcd substitutions, evoking constitutive activation of Gcn2, mapping in αI of the YKD. Interestingly, αI Gcd substitutions enhance YKD-KD interactions in vitro, whereas Gcn substitutions in αE and αI suppress both this effect and the constitutive activation of Gcn2 conferred by YKD Gcd substitutions. These findings indicate that the YKD interacts directly with the KD for activation of kinase function and identify likely sites of direct YKD-KD contact. We propose that tRNA binding to the HisRS domain evokes a conformational change that increases access of the YKD to sites of allosteric activation in the adjoining KD.  相似文献   

17.
We showed previously that active PKC-α maintains F0F1-ATPase activity, whereas inactive PKC-α mutant (dnPKC-α) blocks recovery of F0F1-ATPase activity after injury in renal proximal tubules (RPTC). This study tested whether mitochondrial PKC-α interacts with and phosphorylates F0F1-ATPase. Wild-type PKC-α (wtPKC-α) and dnPKC-α were overexpressed in RPTC to increase their mitochondrial levels, and RPTC were exposed to oxidant or hypoxia. Mitochondrial levels of the γ-subunit, but not the α- and β-subunits, were decreased by injury, an event associated with 54% inhibition of F0F1-ATPase activity. Overexpressing wtPKC-α blocked decreases in γ-subunit levels, maintained F0F1-ATPase activity, and improved ATP levels after injury. Deletion of PKC-α decreased levels of α-, β-, and γ-subunits, decreased F0F1-ATPase activity, and hindered the recovery of ATP content after RPTC injury. Mitochondrial PKC-α co-immunoprecipitated with α-, β-, and γ-subunits of F0F1-ATPase. The association of PKC-α with these subunits decreased in injured RPTC overexpressing dnPKC-α. Immunocapture of F0F1-ATPase and immunoblotting with phospho(Ser) PKC substrate antibody identified phosphorylation of serine in the PKC consensus site on the α- or β- and γ-subunits. Overexpressing wtPKC-α increased phosphorylation and protein levels, whereas deletion of PKC-α decreased protein levels of α-, β-, and γ-subunits of F0F1-ATPase in RPTC. Phosphoproteomics revealed phosphorylation of Ser146 on the γ subunit in response to wtPKC-α overexpression. We concluded that active PKC-α 1) prevents injury-induced decreases in levels of γ subunit of F0F1-ATPase, 2) interacts with α-, β-, and γ-subunits leading to increases in their phosphorylation, and 3) promotes the recovery of F0F1-ATPase activity and ATP content after injury in RPTC.  相似文献   

18.
Distinguishing renal oncocytoma (RO) from the eosinophilic variant of chromophobe renal cell carcinoma (ChRCC) under the light microscope is a common diagnostic problem. Our recent research has shown significant difference between the presence of tumor fibrous capsule in ChRCCs and ROs. Transforming growth factor beta 1 (TGF-β1) is a potent cytokine involved in regulating a number of cellular processes. Two main purposes of this research were to investigate whether the TGF-β1 staining could be related to the presence of tumor fibrous capsule and if it could be used in the differential diagnosis between ChRCC and RO. We investigated 34 cases: 16 ChRCCs (8 eosinophilic and 8 classic) and 18 ROs. All available slides of each tumor, routinely stained with hematoxylin and eosin (H&E) were first analyzed to note the presence of tumor fibrous capsule. One paraffin embedded tissue block matching the representative H&E slide was selected for the immunohistochemical analysis. TGF-β1 expression was analyzed semiquantitatively in the tumor tissue, the tumor fibrous capsule, if present and the peritumoral renal parenchyma. Intensity of TGF-β1 expression was weaker in ChRCCs than the one observed in ROs (P<0.05). The type of reaction in ChRCCs was predominantly membranous unlike in ROs, which exhibited a predominantly cytoplasmic reaction (P<0.05). Moreover, none of the ROs showed membranous type of reaction for TGF-β1. In the group of ChRCCs, tumors with capsule had statistically significant higher quantity of TGF-β1 expression in tumor tissue and in peritumoral renal parenchyma compared to the tumors without capsule (P<0.05). Our results showed different types of TGF-β1 expression in ChRCCs and ROs: ChRCCs had predominantly membranous type of reaction, and ROs predominantly cytoplasmic. Furthermore, ChRCCs with capsule had statistically significant higher quantity of TGF-β1 expression in tumor tissue and in peritumoral renal parenchyma compared to the tumors without capsule. Based on these findings we can speculate that it could be possible that TGF-β1 plays a role in the formation of fibrous capsule in ChRCCs.Key words: capsule, chromophobe renal cell carcinoma, renal oncocytoma, TGF-β1  相似文献   

19.

Background

The endothelin B receptor (ETBR) promotes tumorigenesis and melanoma progression through activation by endothelin (ET)-1, thus representing a promising therapeutic target. The stability of hypoxia-inducible factor (HIF)-1α is essential for melanomagenesis and progression, and is controlled by site-specific hydroxylation carried out by HIF-prolyl hydroxylase domain (PHD) and subsequent proteosomal degradation.

Principal Findings

Here we found that in melanoma cells ET-1, ET-2, and ET-3 through ETBR, enhance the expression and activity of HIF-1α and HIF-2α that in turn regulate the expression of vascular endothelial growth factor (VEGF) in response to ETs or hypoxia. Under normoxic conditions, ET-1 controls HIF-α stability by inhibiting its degradation, as determined by impaired degradation of a reporter gene containing the HIF-1α oxygen-dependent degradation domain encompassing the PHD-targeted prolines. In particular, ETs through ETBR markedly decrease PHD2 mRNA and protein levels and promoter activity. In addition, activation of phosphatidylinositol 3-kinase (PI3K)-dependent integrin linked kinase (ILK)-AKT-mammalian target of rapamycin (mTOR) pathway is required for ETBR-mediated PHD2 inhibition, HIF-1α, HIF-2α, and VEGF expression. At functional level, PHD2 knockdown does not further increase ETs-induced in vitro tube formation of endothelial cells and melanoma cell invasiveness, demonstrating that these processes are regulated in a PHD2-dependent manner. In human primary and metastatic melanoma tissues as well as in cell lines, that express high levels of HIF-1α, ETBR expression is associated with low PHD2 levels. In melanoma xenografts, ETBR blockade by ETBR antagonist results in a concomitant reduction of tumor growth, angiogenesis, HIF-1α, and HIF-2α expression, and an increase in PHD2 levels.

Conclusions

In this study we identified the underlying mechanism by which ET-1, through the regulation of PHD2, controls HIF-1α stability and thereby regulates angiogenesis and melanoma cell invasion. These results further indicate that targeting ETBR may represent a potential therapeutic treatment of melanoma by impairing HIF-1α stability.  相似文献   

20.
Inflammation is a highly coordinated host response to infection, injury, or cell stress. In most instances, the inflammatory response is pro-survival and is aimed at restoring physiological tissue homeostasis and eliminating invading pathogens, although exuberant inflammation can lead to tissue damage and death. Intravascular injection of adenovirus (Ad) results in virus accumulation in resident tissue macrophages that trigger activation of CXCL1 and CXCL2 chemokines via the IL-1α-IL-1RI signaling pathway. However, the mechanistic role and functional significance of this pathway in orchestrating cellular inflammatory responses to the virus in vivo remain unclear. Resident metallophilic macrophages expressing macrophage receptor with collagenous structure (MARCO+) in the splenic marginal zone (MZ) play the principal role in trapping Ad from the blood. Here we show that intravascular Ad administration leads to the rapid recruitment of Ly-6G+7/4+ polymorphonuclear leukocytes (PMNs) in the splenic MZ, the anatomical compartment that remains free of PMNs when these cells are purged from the bone marrow via a non-inflammatory stimulus. Furthermore, PMN recruitment in the splenic MZ resulted in elimination of virus-containing cells. IL-1α-IL-1RI signaling is only partially responsible for PMN recruitment in the MZ and requires CXCR2, but not CXCR1 signaling. We further found reduced recruitment of PMNs in the splenic MZ in complement C3-deficient mice, and that pre-treatment of IL-1α-deficient, but not wild-type mice, with complement inhibitor CR2-Crry (inhibits all complement pathways at C3 activation) or CR2-fH (inhibits only the alternative complement activation pathway) prior to Ad infection, abrogates PMN recruitment to the MZ and prevents elimination of MARCO+ macrophages from the spleen. Collectively, our study reveals a non-redundant role of the molecular factors of innate immunity – the chemokine-activating IL-1α-IL-1RI-CXCR2 axis and complement – in orchestrating local inflammation and functional cooperation of PMNs and resident macrophages in the splenic MZ, which collectively contribute to limiting disseminated pathogen spread via elimination of virus-containing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号