首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Phasic bursting in the hypoglossal nerve can be uncoupled from phrenic bursting by application of positive end-expired pressure (PEEP). We wished to determine whether similar uncoupling can also be induced in other respiratory-modulated upper airway (UAW) motor outputs. Discharge of the facial, hypoglossal, superior laryngeal, recurrent laryngeal, and phrenic nerves was recorded in anesthetized, ventilated rats during stepwise changes in PEEP with a normocapnic, hyperoxic background. Application of 3- to 6-cmH(2)O PEEP caused the onset inspiratory (I) UAW nerve bursting to precede the phrenic burst but did not uncouple bursting. In contrast, application of 9- to 12-cmH(2)O PEEP uncoupled UAW neurograms such that rhythmic bursting occurred during periods of phrenic quiescence. Single-fiber recording experiments were conducted to determine whether a specific population of UAW motoneurons is recruited during uncoupled bursting. The data indicate that expiratory-inspiratory (EI) motoneurons remained active, while I motoneurons did not fire during uncoupled UAW bursting. Finally, we examined the relationship between motoneuron discharge rate and PEEP during coupled UAW and phrenic bursting. EI discharge rate was linearly related to PEEP during preinspiration, but showed no relationship to PEEP during inspiration. Our results demonstrate that multiple UAW motor outputs can be uncoupled from phrenic bursting, and this response is associated with bursting of EI nerve fibers. The relationship between PEEP and EI motoneuron discharge rate differs during preinspiratory and I periods; this may indicate that bursting during these phases of the respiratory cycle is controlled by distinct neuronal outputs.  相似文献   

2.
Single-fiber phrenic nerve action potentials were recorded together with activity of contralateral whole phrenic nerve rootlets during eupnea and gasping in decerebrate, cerebellectomized, vagotomized, paralyzed, and ventilated cats. Gasping was reversibly produced by cooling a fork thermode positioned through the pontomedullary junction. In eupnea, phrenic motoneurons were distributed into "early" and "late" populations relative to their onset of activity during inspiration. During gasping, however, both fiber types typically commenced activity at the beginning of the phrenic nerve burst. Moreover, late fibers, but not early units, exhibited an augmentation of discharge frequency with the onset of gasping. The concentration of activity of all phrenic motoneurons at the beginning of inspiration and the increase in late-unit discharge frequency account for the faster rise of the gasp as compared with the eupneic breath. It is concluded that the pattern of phrenic nerve activation during gasping differs fundamentally from that during eupnea. These results support the concept that mechanisms underlying the neurogenesis of gasping and eupnea may not be identical.  相似文献   

3.
In this study we analyzed the breath-by-breath activity of single motor units in the diaphragm slip of allobarbital-anesthetized cats during quiet breathing and during continuous positive- and negative-pressure breathing. Our objective was to determine whether single motor units, on the basis of their activities, can be separated into discrete subpopulations or whether they fall on a continuum analogous to that of motor units of hindlimb muscles. The firing profiles of each unit were characterized for each pressure level by the onset and peak firing frequencies, onset latency, duration of firing, number of impulses per breath, and minimal frequency, when appropriate. Units with shorter onset latencies had higher peak frequencies, longer firing durations, and increased firing frequencies than did units with longer onset latencies. These comparative relationships persisted even though the activity of every motor unit was altered during pressure breathing. During positive-pressure breathing onset latencies were lengthened, and durations of firing were shortened with little change in onset or peak frequencies. Late units might be silenced. During negative-pressure breathing onset latencies were shortened, and durations of firing were lengthened, sufficiently in some cases to fill the expiratory pause. In addition, previously inactive units were recruited late in inspiration for short, relatively high frequency bursts during inspiration. The results support the concept that the phrenic motoneuron pool is comprised of three discrete subpopulations.  相似文献   

4.
A progressive and sustained increase in inspiratory-related motor output ("long-term facilitation") and an augmented ventilatory response to hypoxia occur following acute intermittent hypoxia (AIH). To date, acute plasticity in respiratory motor outputs active in the postinspiratory and expiratory phases has not been studied. The recurrent laryngeal nerve (RLN) innervates laryngeal abductor muscles that widen the glottic aperture during inspiration. Other efferent fibers in the RLN innervate adductor muscles that partially narrow the glottic aperture during postinspiration. The aim of this study was to investigate whether or not AIH elicits a serotonin-mediated long-term facilitation of laryngeal abductor muscles, and if recruitment of adductor muscle activity occurs following AIH. Urethane anesthetized, paralyzed, unilaterally vagotomized, and artificially ventilated adult male Sprague-Dawley rats were subjected to 10 exposures of hypoxia (10% O(2) in N(2), 45 s, separated by 5 min, n = 7). At 60 min post-AIH, phrenic nerve activity and inspiratory RLN activity were elevated (39 ± 11 and 23 ± 6% above baseline, respectively). These responses were abolished by pretreatment with the serotonin-receptor antagonist, methysergide (n = 4). No increase occurred in time control animals (n = 7). Animals that did not exhibit postinspiratory RLN activity at baseline did not show recruitment of this activity post-AIH (n = 6). A repeat hypoxia 60 min after AIH produced a significantly greater peak response in both phrenic and RLN activity, accompanied by a prolonged recovery time that was also prevented by pretreatment with methysergide. We conclude that AIH induces neural plasticity in laryngeal motoneurons, via serotonin-mediated mechanisms similar to that observed in phrenic motoneurons: the so-called "Q-pathway". We also provide evidence that the augmented responsiveness to repeat hypoxia following AIH also involves a serotonergic mechanism.  相似文献   

5.
In the adult rat, there is a general correspondence between the sizes of motoneurons, motor units, and muscle fibers that has particular functional importance in motor control. During early postnatal development, after the establishment of singular innervation, there is rapid growth of diaphragm muscle (Dia(m)) fibers. In the present study, the association between Dia(m) fiber growth and changes in phrenic motoneuron size (both somal and dendritic) was evaluated from postnatal day 21 (D21) to adulthood. Phrenic motoneurons were retrogradely labeled with fluorescent tetramethylrhodamine dextran (3,000 MW), and motoneuron somal volumes and surface areas were measured using three-dimensional confocal microscopy. In separate animals, phrenic motoneurons retrogradely labeled with choleratoxin B-fragment were visualized using immunocytochemistry, and dendritic arborization was analyzed by camera lucida. Between D21 and adulthood, Dia(m) fiber cross-sectional area increased by approximately 164% overall, with the growth of type II fibers being disproportionate to that of type I fibers. There was also substantial growth of phrenic motoneurons ( approximately 360% increase in total surface area), during this same period, that was primarily attributable to an expansion of dendritic surface area. Comparison of the distribution of phrenic motoneuron surface areas between D21 and adults suggests the establishment of a bimodal distribution that may have functional significance for motor unit recruitment in the adult rat.  相似文献   

6.
We tested two hypotheses: 1) that the spontaneous enhancement of phrenic motor output below a C2 spinal hemisection (C2HS) is associated with plasticity in ventrolateral spinal inputs to phrenic motoneurons; and 2) that phrenic motor recovery in anesthetized rats after C2HS correlates with increased capacity to generate inspiratory volume during hypercapnia in unanesthetized rats. At 2 and 4 wk post-C2HS, ipsilateral phrenic nerve activity was recorded in anesthetized, paralyzed, vagotomized, and ventilated rats. Electrical stimulation of the ventrolateral funiculus contralateral to C2HS was used to activate crossed spinal synaptic pathway phrenic motoneurons. Inspiratory phrenic burst amplitudes ipsilateral to C2HS were larger in the 4- vs. 2-wk groups (P<0.05); however, no differences in spinally evoked compound phrenic action potentials could be detected. In unanesthetized rats, inspiratory volume and frequency were quantified using barometric plethysmography at inspired CO2 fractions between 0.0 and 0.07 (inspired O2 fraction 0.21, balance N2) before and 2, 3, and 5 wk post-C2HS. Inspiratory volume was diminished, and frequency enhanced, at 0.0 inspired CO2 fraction (P<0.05) 2-wk post-C2HS; further changes were not observed in the 3- and 5-wk groups. Inspiratory frequency during hypercapnia was unaffected by C2HS. Hypercapnic inspiratory volumes were similarly attenuated at all time points post-C2HS (P<0.05), thereby decreasing hypercapnic minute ventilation (P<0.05). Thus increases in ipsilateral phrenic activity during 4 wk post-C2HS have little impact on the capacity to generate inspiratory volume in unanesthetized rats. Enhanced crossed phrenic activity post-C2HS may reflect plasticity associated with spinal axons not activated by our ventrolateral spinal stimulation.  相似文献   

7.
The purpose of this study was to assess the influence of pulmonary inflations on activities of single phrenic motoneurons. Studies were performed in decerebrate and paralyzed cats; activities of phrenic nerve and single phrenic motoneurons were recorded. Animals were ventilated with a servo-respirator which produced alterations in tracheal pressure in parallel with changes in integrated activity of the phrenic nerve. At end-tidal fractional concentrations of CO2 of 0.05, phrenic motoneurons were distributed into "early" and "late" populations, depending on time of onset of activity. During the late stages of neural inspiration, differences in levels of integrated activity of the phrenic nerve became evident between cycles with and without lung inflations. At a time approximating 90% of the inspiratory duration during inflations, integrated phrenic activity was higher for cycles with inflation. Concomitantly, with lung inflations, the discharge frequencies of early phrenic motoneurons were lower, and late motoneurons began to discharge sooner than when inflations were withheld. Similar results were obtained in hypercapnia. We conclude that reflexes activated by pulmonary inflations may produce augmentation, as well as inhibition of phrenic motoneuronal activities. Factors responsible for eliciting these reflex augmentations and inhibitions are discussed.  相似文献   

8.
In decerebrate, vagotomized, paralyzed, and ventilated cats, activities of the phrenic nerve and single hypoglossal nerve fibers were monitored. The great majority of hypoglossal neuronal activities were inspiratory (I), discharging during a period approximating that of phrenic. Many were not active at normocapnia but were recruited in hypercapnia or hypoxia. Once recruited, discharge frequencies, which rose quickly to near maximal levels in early to midinspiration, significantly increased with further augmentations of drive. Also, the onset of activities became progressively earlier, compared with phrenic discharge, in hypercapnia or hypoxia. Smaller numbers of hypoglossal fiber activities, having inspiratory-expiratory (I-E), expiratory (E), expiratory-inspiratory (E-I), or tonic discharge patterns, were also recorded. Activities of E, I-E, and those I fibers that became I-E in high drive may underlie the early burst of expiratory activity of the hypoglossal nerve. It is concluded that the firing and recruitment patterns of hypoglossal neurons differ from those of phrenic motoneurons. However, responses to chemoreceptor stimuli are similar among the two neuronal groups.  相似文献   

9.
Hypoglossal (XII) nerve recordings indicate that pulmonary C-fiber (PCF) receptor activation reduces inspiratory bursting and triggers tonic discharge. We tested three hypotheses related to this observation: 1) PCF receptor activation inhibits inspiratory activity in XII branches innervating both tongue protrudor muscles (medial branch; XIImed) and retractor muscles (lateral branch; XIIlat); 2) reduced XII neurogram amplitude reflects decreased XII motoneuron discharge rate; and 3) tonic XII activity reflects recruitment of previously silent motoneurons. Phrenic, XIImed, and XIIlat neurograms were recorded in anesthetized, paralyzed, and ventilated rats. Capsaicin delivered to the jugular vein reduced phrenic bursting at doses of 0.625 and 1.25 mug/kg but augmented bursting at 5 mug/kg. All doses reduced inspiratory amplitude in XIImed and XIIlat (P < 0.05), and these effects were eliminated following bilateral vagotomy. Single-fiber recordings indicated that capsaicin causes individual XII motoneurons to either decrease discharge rate (n = 101/153) or become silent (n = 39/153). Capsaicin also altered temporal characteristics such that both XIImed and XIIlat inspiratory burst onset occurred after the phrenic burst (P < 0.05). Increases in tonic discharge after capsaicin were greater in XIImed vs. XIIlat (P < 0.05); single-fiber recordings indicated that tonic discharge reflected recruitment of previously silent motoneurons. We conclude that PCF receptor activation reduces inspiratory XII motoneuron discharge and transiently attenuates neural drive to both tongue protrudor and retractor muscles. However, tonic discharge appears to be selectively enhanced in tongue protrudor muscles. Accordingly, reductions in upper airway stiffness associated with reduced XII burst amplitude may be offset by enhanced tonic activity in tongue protrudor muscles.  相似文献   

10.
Hypoxic episodes can evoke a prolonged augmentation of inspiratory motor output called long-term facilitation (LTF). Hypoglossal (XII) LTF has been assumed to represent increased tongue protrudor muscle activation and pharyngeal airway dilation. However, recent studies indicate that tongue protrudor and retractor muscles are coactivated during inspiration, a behavior that promotes upper airway patency by reducing airway compliance. These experiments tested the hypothesis that XII LTF is manifest as increased inspiratory drive to both tongue protrudor and retractor muscles. Neurograms were recorded in the medial XII nerve branch (XIIMED; contains tongue protrudor motor axons), the lateral XII nerve branch (XIILAT; contains tongue retractor motor axons), and the phrenic nerve in anesthetized, vagotomized, paralyzed, ventilated male rats. Strict isocapnia was maintained for 60 min after five 3-min hypoxic episodes (arterial Po(2) = 35 +/- 2 Torr) or sham treatment. Peak inspiratory burst amplitude showed a persistent increase in XIIMED, XIILAT, and phrenic nerves during the hour after episodic hypoxia (P < 0.05 vs. sham). This effect was present regardless of the quantification method (e.g., % baseline vs. percent maximum); however, comparisons of the relative magnitude of LTF between neurograms (e.g., XIIMED vs. XIILAT) varied with the normalization procedure. There was no persistent effect of episodic hypoxia on inspiratory burst frequency (P > 0.05 vs. sham). These data demonstrate that episodic hypoxia induces LTF of inspiratory drive to both tongue protrudor and retractor muscles and underscore the potential contribution of tongue muscle coactivation to regulation of upper airway patency.  相似文献   

11.
Bhatt DH  McLean DL  Hale ME  Fetcho JR 《Neuron》2007,53(1):91-102
Animals can produce movements of widely varying speed and strength by changing the recruitment of motoneurons according to the well-known size principle. Much less is known about patterns of recruitment in the spinal interneurons that control motoneurons because of the difficulties of monitoring activity simultaneously in multiple interneurons of an identified class. Here we use electrophysiology in combination with in vivo calcium imaging of groups of identified excitatory spinal interneurons in larval zebrafish to explore how they are recruited during different forms of the escape response that fish use to avoid predators. Our evidence indicates that escape movements are graded largely by differences in the level of activity within an active pool of interneurons rather than by the recruitment of an inactive subset.  相似文献   

12.
Zebrafish primary motor axons extend along stereotyped pathways innervating distinct regions of the developing myotome. During development, these axons make stereotyped projections to ventral and dorsal myotome regions. Caudal primary motoneurons, CaPs, pioneer axon outgrowth along ventral myotomes; whereas, middle primary motoneurons, MiPs, extend axons along dorsal myotomes. Although the development and axon outgrowth of these motoneurons has been characterized, cues that determine whether axons will grow dorsally or ventrally have not been identified. The topped mutant was previously isolated in a genetic screen designed to uncover mutations that disrupt primary motor axon guidance. CaP axons in topped mutants fail to enter the ventral myotome at the proper time, stalling at the nascent horizontal myoseptum, which demarcates dorsal from ventral axial muscle. Later developing secondary motor nerves are also delayed in entering the ventral myotome whereas all other axons examined, including dorsally projecting MiP motor axons, are unaffected in topped mutants. Genetic mosaic analysis indicates that Topped function is non-cell autonomous for motoneurons, and when wild-type cells are transplanted into topped mutant embryos, ventromedial fast muscle are the only cell type able to rescue the CaP axon defect. These data suggest that Topped functions in the ventromedial fast muscle and is essential for motor axon outgrowth into the ventral myotome.  相似文献   

13.
Needle electrodes were used to record action potentials of motor units of the rectus femoris muscle during isometric contraction (up to 50% of maximal). Up to 10 motor units working simultaneously could be identified. Under strictly stable conditions of muscular contraction the recruitment order of the motoneurons was constant. The firing rate was inversely proportional as a rule to this recruitment order. As a rule the changes in frequency connected with voluntary contraction of measured strength were in the same direction for different motoneurons. Statistical analysis of the frequency fluctuations observed during contraction of constant strength revealed direct correlation between them. The behavior of the motoneurons as described above is regarded as the result of the diffuse, indeterminate distribution of the synaptic input in the group of motoneurons innervating the muscle studied. It was also shown that even under stable conditions individual motoneurons or groups of them sometimes fired independently. During the performance of different types of movements, the firing rates of the recruited motoneurons varied in different directions and some motoneurons were replaced by others. This shows that when motoneurons function under natural conditions they use not only a common (indeterminate) but also a determinate input.Institute of Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 5, No. 1, pp. 77–87, January–February, 1973.  相似文献   

14.
Phrenic and external intercostal motoneuron activities were compared during progressive asphyxia induced by the interruption of artificial ventilation in the pentobarbital-urethan-anesthetized, gallamine-paralysed rabbit. The relative augmentation of inspiratory activity of the T1-T4 external intercostal nerves was significantly greater than that of the phrenic nerve during asphyxic hyperpnea. This was associated with a greater recruitment of intercostal than of phrenic motoneurons, particularly late in the hyperpneic phase immediately before the period of asphyxic apnea. However, peak and average discharge frequencies developed by intercostal motoneurons (n = 20) were only approximately 60% of those of the phrenic motoneurons (n = 28). Gasping respiration terminated the apneic period and was associated with a further intense recruitment of intercostal though not of phrenic motoneurons, but discharge frequencies developed by the intercostal motoneurons remained approximately 60% of those of the phrenic motoneurons. The instantaneous frequency profiles generated by the motoneurons often exhibited progressive changes during the terminal stages of hyperpnea (reduction in inspiratory duration and duty cycle and increases in inspiratory slope and discharge frequencies) such that much of the character of gasping respiration became evident before the apnea. Such smooth transitional sequences do not obviate the existence of an "independent gasping center" but do require that such a proposed center at least possess the capacity for interaction with those sites responsible for the generation of eupneic and hyperpneic respiration.  相似文献   

15.
Our purpose was to characterize activity of the intercostal nerve branch innervating the triangularis sterni muscle and the motoneuronal activities comprising this nerve discharge. In decerebrate, vagotomized, paralyzed, and ventilated cats, phasic triangularis sterni neural activity was evident in normocapnia. In most cats, activity did not commence until midexpiration. Activity then rose progressively to terminate at end expiration. Peak neural activities increased in parallel with phrenic activity in hypercapnia and fell in hypocapnia. The progressive increase in triangularis sterni neural activity within each respiratory cycle resulted from recruitment of motoneuronal activities throughout expiration. Once recruited, many motoneurons had a decrementing or constant discharge frequency. In hypercapnia, motoneuronal discharge frequencies increased, and additional activities were recruited. The number of active motoneurons and their discharge frequencies fell in hypocapnia. A similar pattern of motoneuronal activities and responses to stimuli was observed in cats with intact vagi. Factors are considered that may underlie the recruitment pattern of triangularis sterni motoneuronal activities and the inhibition of these in early expiration.  相似文献   

16.
Orderly recruitment among motoneurons supplying different muscles.   总被引:1,自引:0,他引:1  
Virtually all movements involve the recruitment of motor units from multiple muscles. Given the functional diversity of motor units (motoneurons and the muscle fibers they supply), the effective production of specific movements undoubtedly depends upon some principle(s) to organize the ensemble of active motor units. The principle acting to organize the recruitment of motor units within muscles is the size principle, whereby the first motor units to be recruited have the smallest values for axonal conduction velocity and contractile force, and are the slowest to contract and fatigue. Here we consider the possibility that the size principle applies in the recruitment of motor units across muscles, i.e., that regardless of their muscles of origin, active motor units are recruited in rank order, for example, from low to high conduction velocity. The benefits of orderly recruitment across muscles could be similar to the acknowledged advantages of orderly recruitment within muscles. One benefit is that the neural process involved in organizing active motor units would be simplified. In a muscle-based scheme, the size principle would organize only those motor units within individual muscles, leaving the nervous system with the additional task of coordinating the relative activities of motor units from different muscles. By contrast, in an ensemble-based scheme, orderly recruitment of all motor units according to the size principle would automatically coordinate motor units both within and across motor nuclei. Another potential benefit is the provision for movements with smooth trajectory, the result of interleaving the divergent torque contributions made by motor units from muscles that differ in their orientations about joints. Otherwise, if order were restricted within muscles, the torque trajectory of a joint would change unevenly as participating muscles begin contracting at different times and grade activity at different rates. These considerations support speculation that motor units recruited from co-contracting muscles are collectively recruited according to the size principle.  相似文献   

17.
Respiratory afferent stimulation can elicit increases in respiratory motor output that outlast the period of stimulation by seconds to minutes [short-term potentiation (STP)]. This study examined the potential contribution of spinal mechanisms to STP in anesthetized, vagotomized, paralyzed rats. After C(1) spinal cord transection, stimulus trains (100 Hz, 5-60 s) of the C(1)-C(2) lateral funiculus elicited STP of phrenic nerve activity that peaked several seconds poststimulation. Intracellular recording revealed that individual phrenic motoneurons exhibited one of three different responses to stimulation: 1) depolarization that peaked several seconds poststimulation, 2) depolarization during stimulation and then exponential repolarization after stimulation, and 3) bistable behavior in which motoneurons depolarized to a new, relatively stable level that was maintained after stimulus termination. During the STP, excitatory postsynaptic potentials elicited by single-stimulus pulses were larger and longer. In conclusion, repetitive activation of the descending inputs to phrenic motoneurons causes a short-lasting depolarization of phrenic motoneurons, and augmentation of excitatory postsynaptic potentials, consistent with a contribution to STP.  相似文献   

18.
In the present study, motoneurons innervating the flexor tibiae muscle of the stick insect (Cuniculina impigra) middle leg were recorded intracellularly while the single leg performed walking-like movements on a treadwheel. Different levels of belt friction (equivalent to a change in load) were used to study the control of activity of flexor motoneurons. During slow leg movements no fast motoneurons were active, but a recruitment of these neurons could be observed during faster leg movements. The firing rate of slow and fast motoneurons increased with incremented belt friction. Also, the force applied to the treadwheel at different frictional levels was adapted closely to the friction of the treadwheel to be overcome. The motoneurons innervating the flexor tibiae were recruited progressively during the stance phase, with the slow motoneurons being active earlier than the fast (half-maximal spike frequency after 10-15% and 50-60% of the stance phase, respectively). The resting membrane potential was more hyperpolarized in fast motoneurons (64.6 +/- 6.5 mV) than in slow motoneurons (-52.9 +/- 5.4 mV). However, the threshold for the initiation of action potentials was not statistically significantly different in both types of flexor motoneurons. Therefore, action potentials were generated in fast motoneurons after a longer period of depolarization and thus later during the stance phase than in slow motoneurons. We show that motoneurons of the flexor tibiae receive substantial common excitatory inputs during the stance phase and that the difference in resting membrane potential between slow and fast motoneurons is likely to play a crucial role in their consecutive recruitment.  相似文献   

19.
在麻醉猫和麻痹的切断迷走神经的清醒猫,观察了膈神经单纤维电活动特征。1.电活动类型:按膈神经单纤维放电与其总干放电的相位关系分为三种类型。(1)完全同步型,即单纤维放电与总干放电同时开始并同时停止,占76.9%。(2)部分同步型占15.4%,其中早期同步,即单纤维放电与总干放电同时开始,但提前终止,占1.9%,中期同步,即单纤维放电较总干放电开始晚,又提前终止,占5.8%,晚期同步,即单纤维放电较总干放电开始晚,但两者同时终止,占7.7%。(8)非同步型,即吸气相和呼气相都有放电,但呼气相时冲动频率较低,占7.7%。前两型为单纯的吸气性放电,共占92.3%。2.单纤维放电平均参数值:麻醉猫每次吸气发放11个冲动,其频率为21次/秒,清醒猫每次吸气发放18个冲动,其频率为34次/秒。结果表明:猫膈神经单纤维放电类型和文献上报导的直接记录膈神经运动神经元放电一致,即以单纯的吸气性放电为最多。  相似文献   

20.
We studied the effects of altered ventilatory drives on the activity of the whole phrenic nerve and single phrenic motoneurons in dogs anesthetized with alpha-chloralose and paralyzed with gallamine triethiodide. Single phrenic motoneurons were classified as either late-onset or early-onset motoneurons (LOM and EOM, respectively), depending on the time of onset of their activity during inspiration. Increase in ventilatory drive was induced by altering chemical drive with changes in arterial blood gases and also by altering the vagal afferent contribution to ventilatory drive. The latter was accomplished by inducing pulmonary gas embolism (PGE) during hyperoxia. Whole phrenic nerve activity was increased by both types of increase in ventilatory drive. In both cases, changes in the firing pattern of LOMs and EOMs were responsible for the increased phrenic output. The changes in post-PGE firing pattern of the LOMs generally consisted of a shift in the time of onset to an earlier point in inspiration and an increase in the number of spikes per inspiratory cycle. Vagotomy abolished the difference between the contributions of LOMs and EOMs to the phrenic response to PGE. Data from dogs studied while they were breathing spontaneously were qualitatively the same as those from the paralyzed animals, indicating no major role for phasic volume feedback in these responses. Our data regarding altered chemical drive are similar to those reported earlier in other species, whereas those regarding PGE demonstrate that vagally mediated increases in ventilatory drive affect both LOMs and EOMs, although LOMs are affected to a greater degree.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号