首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardiopulmonary bypass and pulmonary vein ligation were used to isolate left hearts of anesthetized open-chest dogs. After external gas exchange, blood was returned at constant flow (approximately 120 ml.min-1.kg-1) directly to the aorta or indirectly through the left heart ("left heart loading"). Loading caused breathing frequency (f) to increase approximately 5 breaths/min (approximately 20%), whereas systemic arterial pressure (Psa) fell approximately 15%. Because Psa was pulsatile during loading, we demonstrated separately the effect of pulsatile pressure and found it to lower mean Psa without changing f. Cooling cervical vagi to 7 degrees C eliminated the f response to loading and slightly decreased the Psa response. Loading was compared with graded distension of the fibrillating ventricle and beating atrium, which also increased f. As measured by an abdominal pneumograph, depth of breathing decreased significantly (approximately 4%) during left heart loading but did not change significantly on distension of the fibrillating heart. I conclude that left heart loading may induce tachypnea and a slightly reduced tidal volume by a vagal reflex most likely originating from the left heart.  相似文献   

2.
The ultrasonic method was used in acute experiments on cats with open chest under artificial lung ventilation to obtain blood flow in low-lobar pulmonary artery and vein, the blood pressure in pulmonary artery, as well as the left atrial pressure in fat (olive oil) and mechanical (Lycopodium spores) pulmonary embolism. It is shown that pulmonary embolism produces the decrease in the blood flow in pulmonary artery and vein, the increase of the pressure in pulmonary artery and left atria, the increase of lung vessels resistance. The decrease is observed of systemic arterial pressure, bradycardia, and extrasystole. After 5-10 min the restoration of arterial pressure and heart rhythm occur and partial restoration of blood flow in pulmonary artery and vein. In many experiments the blood flow in vein outdoes that in the artery--it allows to suppose the increase of the blood flow in bronchial artery. After 60-90 min there occur sudden decrease of systemic arterial pressure, the decrease of the blood flow in pulmonary artery and vein. The pressure in pulmonary artery and resistance of pulmonary vessels remain high. Pulmonary edema developed in all animals. The death occurs in 60-100 min after the beginning of embolism.  相似文献   

3.
In 12 chloralose anaesthetized dogs plasma concentration of immunoreactive atrial natriuretic peptide (IR-ANP) was measured using a radioimmunoassay. Plasma IR-ANP was 74 +/- 4.8 pg/mL (mean +/- SE) and increased by 39 +/- 4.1 pg/mL when left atrial pressure was increased by 10 cm H2O during partial mitral obstruction. Observation of the time course of the changes in IR-ANP during atrial distension showed that IR-ANP was increased within 2 min of atrial distension and declined after atrial distension, with a half-time of 4.5 min. The time course of the changes in IR-ANP was unaffected by vagotomy or administration of atenolol. Maximum electrical stimulation of the right ansa subclavia failed to produce any change in IR-ANP. IR-ANP was higher in coronary sinus plasma than in femoral arterial plasma confirming that the heart was the source of the IR-ANP. The results support the hypothesis that IR-ANP is released from the heart by a direct effect of stretch of the atrial wall rather than by a neural or humoral mechanism involving a reflex from atrial receptors.  相似文献   

4.
Nonocclusive main pulmonary arterial distension produces peripheral pulmonary hypertension. The mechanism of this response is unknown. The effects of total spinal anesthesia on the response were studied in halothane-anesthetized dogs. Before total spinal anesthesia, main pulmonary arterial balloon inflation increased pulmonary arterial pressure and resistance without affecting systemic hemodynamic variables. Both right and left pulmonary arterial pressures were monitored to exclude unilateral obstruction with main pulmonary arterial balloon inflation. Total spinal anesthesia decreased cardiac output and systemic arterial pressures. After total spinal anesthesia, main pulmonary arterial distension still increased pulmonary arterial pressure and resistance. Right atrial pacing, discontinuation of halothane anesthesia, and norepinephrine infusion during total spinal anesthesia partially reversed the hemodynamic changes caused by total spinal anesthesia. The percent increase in pulmonary vascular resistance due to main pulmonary arterial distension was similar before total spinal anesthesia and during all experimental conditions during total spinal anesthesia. The pulmonary hypertensive response is therefore not dependent on central synaptic connections.  相似文献   

5.
Release of atrial natriuretic peptide by atrial distension   总被引:9,自引:0,他引:9  
A heterologous radioimmunoassay was used to measure the concentration of immunoreactive atrial natriuretic peptide (iANP) in plasma from the femoral artery of eight chloralose anaesthetized dogs. Mitral obstruction which increased left atrial pressure by 11 cmH2O increased plasma iANP from 97 +/- 10.3 (mean +/- SE) to 135 +/- 14.3 pg/mL. Pulmonary vein distension increased heart rate but did not increase plasma iANP. Bilateral cervical vagotomy and administration of atenolol (2 mg/kg) did not prevent the increase in iANP with mitral obstruction. Samples of blood from the coronary sinus had plasma iANP significantly higher than simultaneous samples from the femoral artery confirming the cardiac origin of the iANP. Release of iANP depends on direct stretch of the atrium rather than on a reflex involving left atrial receptors.  相似文献   

6.
The influence of moderate cold exposure on the hormonal responses of atrial natriuretic factor (ANF), arginine vasopressin (AVP), catecholamines, and plasma renin activity (PRA) after exhaustive exercise was studied in 9 young and 10 middle-aged subjects. Exercise tests were randomly performed in temperate (30 degrees C) and cold (10 degrees C) environments. Heart rate, oxygen consumption, and peripheral arterial blood pressure were measured at regular intervals. Blood samples were collected before and immediately after exercise at 30 or 10 degrees C. Plasma sodium and potassium concentrations as well as hemoglobin and hematocrit were measured, and the change in plasma volume was calculated. At rest and during exercise, oxygen consumption was similar during exposure to both temperate and cold temperatures. During submaximal exercise intensities, the rise in heart rate was blunted while the increase in systolic blood pressure was significantly greater at 10 than at 30 degrees C. The increases in plasma sodium and potassium concentrations after exhaustion were similar between environments, as was the decrease in plasma volume. In both groups, all plasma hormones were significantly elevated postexercise, with the AVP response similar at 10 and 30 degrees C. However, the norepinephrine and ANF responses were significantly greater while the PRA response was significantly reduced at 10 degrees C. In the middle-aged subjects the epinephrine response to exercise was higher at 10 than at 30 degrees C. The greater ANF and reduced PRA responses to exercise in the cold may have resulted from central hemodynamic changes caused by cold-induced cutaneous vasoconstriction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
AIM: To study adrenomedullin (AM) plasma levels in patients with severe lung disease and to analyze the relationship between AM and heart changes, hemodynamics and blood gases. METHODS: Case control study of 56 patients (36 men, 20 women) with severe lung disease and 9 control subjects (7 men, 2 women). Patients with end-stage pulmonary disease, including chronic obstructive pulmonary disease (COPD, n=11), cystic fibrosis (CF, 26), idiopatic pulmonary fibrosis (ILD, n=9), and idiopatic pulmonary arterial hypertension (PAH, n=10), who were evaluated for lung trasplantation between January 1997 and September 2000, and nine patients who underwent lung surgery for a solitary benign nodule. AM plasma levels in pulmonary artery (mixed venous blood, vein) and aorta or femoral artery (arterial, art), art and vein blood gases, pulmonary hemodynamics, systemic hemodynamics, two-dimensional transthoracic echocardiography and echo-Doppler study. RESULTS: Plasma AM (art and ven) levels were higher among patients' group compared to the controls (AMart p<0.02 and AMven p<0.04) for CF, ILD, PAH (AMart, pg ml(-1) Controls 13.7+/-3.6, COPD 22.8+/-6.2, CF 28.1+/-11.4, ILD 34.1+/-14.3, PAH 35.1+/-18.9; AMven, pg ml(-1) Controls 14.2+/-4.8, COPD 28.1+/-12.6, CF 31.7+/-14.1, ILD 38.7+/-16.5, PAH 40.1+/-4.4). We found with a trend towards higher concentration in ILD and PAH patients compared to COPD and CF but no statistical significant differences. Mixed-venous AM was higher than arterial AM in all groups resulting in AM uptake (AMPulmUp pg min(-1) Controls 4.8+/-22.6, COPD 21.1+/-44.9, CF 20.6+/-45.1, ILD 23.7+/-38.5, PAH 29.9+/-49.7). The univariate analysis showed a weak but significant correlation between AMart and mean systemic arterial pressure, heart rate, mean pulmonary arterial pressure and systemic vascular resistance. In the multivariate analysis, four variables emerged as independent factors of AMart including mean pulmonary arterial pressure, heart rate, mean systemic arterial pressure and left ventricular diastolic diameter (F=8.6, p<0.00001, r=0.60, r2=0.32). A similar weak correlation was apparent between AMven, systemic vascular resistance, and mean pulmonary arterial pressure. The results of multivariate analysis identify right atrial enlargement, mean right atrial pressure, heart rate and left ventricular dimensions as the only independent variables related to AMven (F=4.3, p<0.0004 r=0.56, r2=0.26). AM pulmonary uptake was significantly correlated with AMven (r=0.65), but not with hemodynamic, blood gas and echocardiographic variables. CONCLUSIONS: AM plasma levels are elevated in patients with severe lung disease in face of a preserved pulmonary uptake. These results suggest that the high AM plasma levels in patients with severe lung disease are not caused by a reduced pulmonary clearance, instead suggesting a systemic production.  相似文献   

8.
To study the effects of furosemide on the neonatal pulmonary circulation in the presence of lung injury, we measured pulmonary arterial and left atrial pressures, cardiac output, lung lymph flow, and concentrations of protein in lymph and plasma of nine lambs that received furosemide, 2 mg/kg iv, during a continuous 8-h intravenous infusion of air. Air embolism increased pulmonary vascular resistance by 71% and nearly tripled steady-state lung lymph flow, with no change in lymph-to-plasma protein ratio. These findings reflect an increase in lung vascular protein permeability. During sustained lung endothelial injury, diuresis from furosemide led to a rapid reduction in cardiac output (average 29%) and a 2-Torr decrease in left atrial pressure. Diuresis also led to hemoconcentration, with a 15% increase in both plasma and lymph protein concentrations. These changes were associated with a 27% reduction in lung lymph flow. In a second set of studies, we prevented the reduction in left atrial pressure after furosemide by inflating a balloon catheter in the left atrium. Nevertheless, lymph flow decreased by 25%, commensurate with the reduction in cardiac output that occurred after furosemide. In a third series of experiments, we minimized the furosemide-related decrease in cardiac output by opening an external fistula between the carotid artery and jugular vein immediately after injection of furosemide. In these studies, the reduction in lung lymph flow (average 17%) paralleled the smaller (17%) decrease in cardiac output. These results suggest that changes in lung vascular filtration pressure probably do not account for the reduction in lung lymph flow after furosemide in the presence of lung vascular injury.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
In chloralose-anaesthetized dogs, plasma vasopressin concentration was measured by radioimmunoassay during step changes in blood volume of 4 mL/kg over a range of blood volume from +20 to -12 mL/kg. Blood volume was both increased and decreased over this range. There was a logarithmic relationship between blood volume and plasma vasopressin concentration over the range of blood volume examined. There was also a logarithmic relationship between blood volume and mean left atrial pressure. Linear regression between the natural logarithm of plasma vasopressin concentration and mean arterial pressure, heart rate, and mean left atrial pressure gave the highest correlation coefficient (r = 0.94) between vasopressin and mean arterial pressure. The results support the hypothesis that there are sensitive mechanisms controlling the release of vasopressin in response to changes in blood volume. Observations were also made of changes in atrial pressure and activity of left atrial receptors during changes in blood volume over the same range. The results suggest that changes in atrial receptor activity are unlikely to be the major cause of the large increases in plasma vasopressin concentration associated with hypovolemia.  相似文献   

10.
This study compared the effect of lung congestion with and without left heart (LH) distension on breathing frequency (fr) and discriminated among responses mediated by myelinated and nonmyelinated vagal afferents. Cardiopulmonary bypass perfusion of anesthetized dogs was used to isolate reflexes. The following three groups were prepared: 1) lung vessels pressurized by pumping into the main pulmonary artery (MPA); 2) lungs and fibrillating LH pressurized by pumping into MPA while draining from LH; 3) lungs congested by occluding several pulmonary veins while holding cardiac output constant. Congestion of lungs alone in groups 1 and 3 depressed fr. Congestion of lungs and distension of LH (group 2) caused transient depression of fr but a steady-state excitation. Cooling cervical vagi to 8 degrees C prevented depression of fr by congestion in all groups. In groups 1 and 2, in which MPA pressure was higher than in group 3, congestion during vagal cooling stimulated breathing. I conclude that lung congestion may stimulate fr via C-fiber afferents, but this may be overcome by a depressor effect via myelinated afferents. Simultaneous LH distension may reflexly stimulate breathing and overcome the lung depressor reflex.  相似文献   

11.
Increases in central venous pressure and arterial pressure have been reported to have variable effects on normal arginine vasopressin (AVP) levels in healthy humans. To test the hypothesis that baroreceptor suppression of AVP secretion might be more likely if AVP were subjected to a prior osmotic stimulus, we investigated the response of plasma AVP to increased central venous pressure and mean arterial pressure after hypertonic saline in six normal volunteers. Plasma AVP, serum osmolality, heart rate, central venous pressure, mean arterial pressure, and pulse pressure were assessed before and after a 0.06 ml.kg-1.min-1-infusion of 5% saline give over 90 min and then after 10 min of 30 degrees head-down tilt and 10 min of head-down tilt plus lower-body positive pressure. Hypertonic saline increased plasma AVP. After head-down tilt, which did not change heart rate, pulse pressure, or mean arterial pressure but did increase central venous pressure, plasma AVP fell. Heart rate, pulse pressure, and central venous pressure were unchanged from head-down tilt values during lower-body positive pressure, whereas mean arterial pressure increased. Plasma AVP during lower-body positive pressure was not different from that during tilt. Osmolality increased during the saline infusion but was stable throughout the remainder of the study. These data therefore suggest that an osmotically stimulated plasma AVP level can be suppressed by baroreflex activation. Either the low-pressure cardiopulmonary receptors (subjected to a rise in central venous pressure during head-down tilt) or the sinoaortic baroreceptors (subjected to hydrostatic effects during head-down tilt) could have been responsible for the suppression of AVP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The influence of aortic baroreceptors and vagal afferent nerves on the release of immunoreactive vasopressin (iVP) and immunoreactive atrial natriuretic factor (iANF) was examined in anaesthetized rabbits. Changes in plasma concentrations of iVP and iANF, heart rate, mean arterial pressure, and right atrial pressure were measured in response to blood volume changes (+20, +10, -10, -20%). Carotid sinus pressure was maintained at 100 mmHg (1 mmHg = 133.3 Pa), and blood volume changes were performed before and after bilateral vagotomy (VNX) in all experiments. Two experimental groups were studied: rabbits with aortic depressor nerves intact (ADNI) and those with aortic depressor nerves sectioned (ADNX). Mean arterial and right atrial pressures decreased during haemorrhage and increased in response to volume expansion. Plasma iVP concentrations increased with haemorrhage and decreased with volume expansion in the ADNI group. Plasma iANF, however, decreased with haemorrhage and increased during volume expansion in both ADNI and ADNX groups. Vagotomy caused an increase in baseline plasma iANF in the ADNX group. The responses of iANF to blood volume changes were augmented after VNX and ADNX. The results show that neither the aortic baroreceptor nor the vagal afferent input are needed for the iANF response to changes in blood volume, over the range of +/- 20%. In contrast, intact aortic baroreceptors are essential for changes in circulating iVP in this preparation.  相似文献   

13.
Pressure-flow relationships in the ventilated lung have not been previously determined in undelivered fetal sheep. Therefore we studied 11 late-gestation chronically prepared fetal sheep during positive-pressure ventilation with different gas mixtures to determine the roles of mechanical distension and blood gas tensions on pressure-flow relationships in the lung. Ventilation with 3% O2-7% CO2 produced a substantial fall in pulmonary vascular resistance even though arterial blood gases were not changed. Increases in pulmonary arterial PO2 during ventilation were associated with falls in pulmonary vascular resistance beyond that measured during mechanical distension. Decreases in pulmonary arterial PCO2 and associated increases in pH were also associated with falls in pulmonary vascular resistance. Pulmonary blood flow ceased at a pulmonary arterial pressure that exceeded left atrial pressure, indicating that left atrial pressure does not represent the true downstream component of driving pressure through the pulmonary vascular bed. The slope of the driving pressure-flow relationship in the normal mature fetal lamb was therefore different from the ratio of pulmonary arterial pressure to pulmonary arterial flow. We conclude that mechanical ventilation, increased PO2 and decreased PCO2, and/or increased pH has an important influence on the fall in pulmonary vascular resistance elicited by positive pressure in utero ventilation of the fetal lamb and that the downstream driving pressure for pulmonary blood flow exceeds left atrial pressure.  相似文献   

14.
Seven normal subjects underwent sequential 20-min infusion of arginine vasopressin (AVP) at 0.5 and 2 ng/(kg.min) and a complete right-side heart hemodynamic evaluation during the study to analyze the effect of this hormone on atrial natriuretic factor (ANF) secretion in humans and to elucidate whether this effect was primary or secondary to the hemodynamic or hormonal changes induced by AVP. Plasma ANF levels increased at the end of the first (P less than 0.05) and second (P less than 0.01) infusion periods. No significant changes in mean arterial, pulmonary artery, right and left atrial pressures were recorded during the study. Cardiac output (P less than 0.05) and heart rate (P less than 0.05) decreased, while total vascular resistances (P less than 0.05) increased with respect to basal values in both infusion periods. Plasma renin activity decreased (P less than 0.01) at the end of the infusion, while plasma aldosterone, epinephrine and norepinephrine showed no significant changes. We conclude that arginine vasopressin increases plasma ANF levels in humans and that this effect cannot be ascribed to hemodynamic or hormonal changes induced by this hormone, suggesting a direct effect of vasopressin on the atrial myocyte.  相似文献   

15.
Atrial natriuretic peptide and vasopressin in human plasma   总被引:1,自引:0,他引:1  
M Sakamoto  I Tanaka  Y Oki  Y Ikeda  M Nanno  T Yoshimi 《Peptides》1988,9(1):187-191
Using a specific radioimmunoassay for atrial natriuretic peptide (ANP), plasma immunoreactive ANP was measured in 17 normal subjects and 83 patients with various diseases. Plasma ANP concentration in normal subjects was 14.1 +/- 1.7 pg/ml (mean +/- S.E.). Relatively high plasma ANP concentrations were detected in patients with diabetes mellitus, hyperthyroidism, atrial fibrillation and liver cirrhosis. Plasma ANP concentrations in the patients correlated positively with mean arterial blood pressure and plasma AVP concentrations. Plasma ANP concentrations in the patients also had positive correlations with left atrial dimension and left ventricular diastolic dimension determined by echocardiography. Another positive correlation was observed in the patients between plasma AVP concentrations and mean arterial blood pressure. These results suggest that ANP is a volume regulatory hormone but also that ANP may be involved in the blood pressure regulating system.  相似文献   

16.
Atrial receptors, vasopressin and blood volume in the dog   总被引:1,自引:0,他引:1  
J R Ledsome 《Life sciences》1985,36(14):1315-1330
Recent work has clarified the relationship between stimulation of left atrial receptors and plasma vasopressin concentration (pAVP) and has allowed a rational explanation of a number of previously anomalous findings. There is now good evidence that mitral obstruction causes a decrease in pAVP and that the decreases in pAVP can occur within a normal range of pAVP in anaesthetized and unanaesthetized animals. A stimulus which is localised to the left atrial receptors also causes a decrease in pAVP and it is likely that this is due to stimulation of the complex unencapsulated endings in the atrium, with myelinated afferent fibres. Evidence is lacking that changes in the stimulus to ventricular receptors or to cardio-pulmonary receptors with C-fibre afferents influences pAVP. The diuretic response to left atrial distension is two-fold, an increase in free water clearance and a natriuresis. The increase in free water clearance is due to the decrease in pAVP; the cause of the natriuresis is unknown. The changes in pAVP occur rapidly in response to atrial distension (within 5 min). The stimulus provided to atrial receptors by atrial distension and the decrease in pAVP is maintained for at least 90 min. pAVP is also modulated in response to small changes in blood volume (+/- 10%). The changes in pAVP that occur over this range of blood volume are likely to be in the range of 1-10 pg/ml and to have their effects on renal water excretion rather than on vascular resistance. The much larger changes in pAVP which occur with greater degrees of blood loss, and which can affect vascular resistance are likely to be produced by changes in the stimulus to other receptors, but a low input from atrial receptors may be permissive for these stimuli to be effective. More work is needed to clarify the relationship between inputs from different receptor types.  相似文献   

17.
Pulmonary vascular responsiveness in cold-exposed calves   总被引:1,自引:0,他引:1  
The pulmonary vascular responses to acute hypoxia and to infusions of histamine and 5-hydroxytryptamine (5-HT) were recorded in unanesthetized standing bull calves under neutral (16-18 degrees C) and cold (3-5 degrees C) temperature conditions. Cold exposure alone resulted in a significant increase in pulmonary arterial wedge pressure from 10.2 +/- 3.5 to 15.9 +/- 4.9 Torr (1 Torr = 133.322 Pa). Resistance to blood flow between the pulmonary wedge and the left atrium significantly increased from 0.50 +/- 0.51 to 1.21 +/- 0.78 mmHg . L-1 . min-1 (1 mmHg = 133.322 Pa) with cold exposure. This apparent pulmonary venoconstrictor response to cold exposure was further evaluated to determine if hypoxia, histamine, or 5-HT responsiveness was altered by cold exposure. Twelve minutes of hypoxia increased pulmonary arterial and systemic arterial pressures, heart rate, and respiratory rate similarly in cold and neutral temperatures. Cold exposure did not alter the dose-related reductions of systemic arterial and pulmonary arterial pressures in response to histamine. Similarly, the decreases in systemic arterial pressure and heart rate and increases in pulmonary arterial and left atrial pressures in response to 5-HT were not significantly different in cold and neutral conditions. It was concluded that acute, mild cold exposure results in an increase in resistance to blood flow in the pulmonary venous circulation without a general increase in pulmonary vascular reactivity, as measured by responses to hypoxia, histamine, and 5-HT.  相似文献   

18.
Infarction of the lung is uncommon even when both the pulmonary and the bronchial blood supplies are interrupted. We studied the possibility that a tidal reverse pulmonary venous flow is driven by the alternating distension and compression of alveolar and extra-alveolar vessels with the lung volume changes of breathing and also that a pulsatile reverse flow is caused by left atrial pressure transients. We infused SF6, a relatively insoluble inert gas, into the left atrium of anesthetized goats in which we had interrupted the left pulmonary artery and the bronchial circulation. SF6 was measured in the left lung exhalate as a reflection of the reverse pulmonary venous flow. No SF6 was exhaled when the pulmonary veins were occluded. SF6 was exhaled in increasing amounts as left atrial pressure, tidal volume, and ventilatory rates rose during mechanical ventilation. SF6 was not excreted when we increased left atrial pressure transients by causing mitral insufficiency in the absence of lung volume changes (continuous flow ventilation). Markers injected into the left atrial blood reached the alveolar capillaries. We conclude that reverse pulmonary venous flow is driven by tidal ventilation but not by left atrial pressure transients. It reaches the alveoli and could nourish the alveolar tissues when there is no inflow of arterial blood.  相似文献   

19.
Distension or loading of the isolated canine left heart caused reflex tachypnea in prior studies. The object of the present effort was to explore the possibility that this depended primarily on atrial distension. Cardiopulmonary bypass perfusion and ligation of pulmonary veins were used to isolate the left-heart chambers of anesthetized dogs. Simultaneous distension of the beating left atrium and fibrillating ventricle stimulated breathing frequency (f), whereas isolated ventricular distension did not. At other times, intervals of atrial fibrillation were imposed under two different conditions: 1) while the right heart and lungs were bypassed and systemic perfusion was provided by the left ventricle using blood returned to the left atrium by pump and 2) while the ventricles fibrillated and systemic perfusion was supplied directly by the pump. Atrial fibrillation increased left atrial pressure and stimulated f in condition 1. In condition 2, f increased only if fibrillation was associated with a rise in left atrial pressure. Vagal cooling blocked the effect of fibrillation. I conclude that left atrial distension may initiate reflex tachypnea.  相似文献   

20.
An increase in atrial pressure has been shown to cause an increase in the concentration of atrial peptides (atriopeptin) in plasma. We therefore hypothesized that a reduction in atrial pressure would decrease the concentration of atriopeptin in plasma. In formulating this hypothesis we assumed that changes in the concentration of other circulating hormones or changes in cardiac nerve activity during hemorrhage would not affect the secretion of atriopeptin. To test the hypothesis, we bled sham-operated conscious dogs at a rate of 0.8 ml.kg-1.min-1 to decrease right and left atrial pressures. Hemorrhage was continued until a total of 30 ml of blood per kilogram body weight had been removed. Identical experiments were performed on conscious cardiac-denervated dogs. The concentration of plasma atriopeptin was decreased in each group of dogs after 10 ml of blood per kilogram of body weight had been removed, but the decrease achieved statistical significance only in the cardiac-denervated dogs. Further hemorrhage, however, produced no further decreases in circulating atriopeptin in either group even though atrial pressures continued to decline as more blood was removed. A comparison of the atriopeptin response to hemorrhage revealed no significant difference between the sham-operated and cardiac-denervated dogs, thus providing no evidence for a specific effect of cardiac nerves on atriopeptin secretion during hemorrhage. Our results demonstrate that the relationship between atrial pressure and plasma atriopeptin that has been observed repeatedly during atrial stretch is not evident during relatively slow, prolonged hemorrhage. There is, however, a small decline in circulating atriopeptin during the initial stage of hemorrhage that could be of biological significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号