首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Logging, pervasive across the lowland tropics, affects millions of hectares of forest, yet its influence on nutrient cycling remains poorly understood. One hypothesis is that logging influences phosphorus (P) cycling, because this scarce nutrient is removed in extracted timber and eroded soil, leading to shifts in ecosystem functioning and community composition. However, testing this is challenging because P varies within landscapes as a function of geology, topography and climate. Superimposed upon these trends are compositional changes in logged forests, with species with more acquisitive traits, characterized by higher foliar P concentrations, more dominant. It is difficult to resolve these patterns using traditional field approaches alone. Here, we use airborne light detection and ranging‐guided hyperspectral imagery to map foliar nutrient (i.e. P, nitrogen [N]) concentrations, calibrated using field measured traits, over 400 km2 of northeastern Borneo, including a landscape‐level disturbance gradient spanning old‐growth to repeatedly logged forests. The maps reveal that canopy foliar P and N concentrations decrease with elevation. These relationships were not identified using traditional field measurements of leaf and soil nutrients. After controlling for topography, canopy foliar nutrient concentrations were lower in logged forest than in old‐growth areas, reflecting decreased nutrient availability. However, foliar nutrient concentrations and specific leaf area were greatest in relatively short patches in logged areas, reflecting a shift in composition to pioneer species with acquisitive traits. N:P ratio increased in logged forest, suggesting reduced soil P availability through disturbance. Through the first landscape scale assessment of how functional leaf traits change in response to logging, we find that differences from old‐growth forest become more pronounced as logged forests increase in stature over time, suggesting exacerbated phosphorus limitation as forests recover.  相似文献   

2.
Leaf structure and physiology are thought to be closely linked to leaf longevity and leaf habit. Here we compare the seasonal variation in leaf hydraulic conductance (kleaf) and water potential of two evergreen tree species with contrasting leaf life spans, and two species with similar leaf longevity but contrasting leaf habit, one being deciduous and the other evergreen. One of the evergreen species, Simarouba glauca, produced relatively short-lived leaves that maintained high hydraulic conductance year round by periodic flushing. The other evergreen species, Quercus oleoides, produced longer-lived leaves with lower kleaf and as a result minimum leaf water potential was much lower than in S. glauca (–2.8 MPa vs –1.6 MPa). Associated with exposure to lower water potentials, Q. oleoides leaves were harder, had a higher modulus of elasticity, and were less vulnerable to cavitation than S. glauca leaves. Both species operate at water potentials capable of inducing 20 (S. glauca) to 50% (Q. oleoides) loss of kleaf during the dry season although no evidence of cumulative losses in kleaf were observed in either species suggesting regular repair of embolisms. Leaf longevity in the deciduous species Rhedera trinervis is similar to that of S. glauca, although maximum kleaf was lower. Furthermore, a decline in leaf water potential at the onset of the dry season led to cumulative losses in kleaf in R. trinervis that culminated in leaf shedding.  相似文献   

3.
4.
Gerhard Zotz  Klaus Winter 《Planta》1993,191(3):409-412
Diel (24 h) courses of net CO2 exchange of leaves were determined in eight species of tropical rainforest plants on Barro Colorado Island, Panama, during 1990 and 1991. The species included three canopy trees, one liana, two epiphytes and one hemiepiphyte. One of the species studied was growing in a rain-forest gap. Daily carbon gain varied considerably across species, leaf age, and season. The analysis of data for all plants from 64 complete day/night cycles revealed a linear relationship between the diurnal carbon gain and the maximum rate of net CO2 uptake, Amax. Nocturnal net carbon loss was about 10% of diurnal carbon gain and was positively related to Amax. We conclude that short-term measurements of light-saturated photosynthesis, performed at periodic intervals throughout the season, allow the annual leaf carbon balance in these rain-forest plants to be predicted.  相似文献   

5.
6.
Wu  Ting  Qu  Chao  Li  Yiyong  Li  Xu  Zhou  Guoyi  Liu  Shizhong  Chu  Guowei  Meng  Ze  Lie  Zhiyang  Liu  Juxiu 《Plant Ecology》2019,220(7-8):663-674
Plant Ecology - Global warming affects plant growth and leaf nutrient concentrations in temperate forests. However, the effects of warming on plants in tropical forests are poorly understood. We...  相似文献   

7.
The effect of leaf aging on photosynthetic capacities was examined for upper canopy leaves of five tropical tree species in a seasonally dry forest in Panama. These species varied in mean leaf longevity between 174 and 315 d, and in maximum leaf life span between 304 and 679 d. The light-saturated CO2 exchange rates of leaves produced during the primary annual leaf flush measured at 7-8 mo of age were 33-65% of the rates measured at 1-2 mo of age for species with leaf life span of < 1 yr. The negative regression slopes of photosynthetic capacity against leaf age were steeper for species with shorter maximum leaf longevity. In all species, regression slopes were less steep than the slopes predicted by assuming a linear decline toward the maximum leaf age (20-80% of the predicted decline rate). Maximum oxygen evolution rates and leaf nitrogen content declined faster with age for species with shorter leaf life spans. Statistical significance of regression slopes of oxygen evolution rates against leaf age was strongest on a leaf mass basis (r = 0.49-0.87), followed by leaf nitrogen basis (r = 0.48-0.77), and weakest on a leaf area basis (r = 0.35-0.70).  相似文献   

8.
Traditional gas exchange measurements are cumbersome, which makes it difficult to capture variation in biochemical parameters, namely the maximum rate of carboxylation measured at a reference temperature (Vcmax25) and the maximum electron transport at a reference temperature (Jmax25), in response to growth temperature over time from days to weeks. Hyperspectral reflectance provides reliable measures of Vcmax25 and Jmax25; however, the capability of this method to capture biochemical acclimations of the two parameters to high growth temperature over time has not been demonstrated. In this study, Vcmax25 and Jmax25 were measured over multiple growth stages during two growing seasons for field-grown soybeans using both gas exchange techniques and leaf spectral reflectance under ambient and four elevated canopy temperature treatments (ambient+1.5, +3, +4.5, and +6°C). Spectral vegetation indices and machine learning methods were used to build predictive models for Vcmax25 and Jmax25, based on the leaf reflectance. Results showed that these models yielded an R2 of 0.57–0.65 and 0.48–0.58 for Vcmax25 and Jmax25, respectively. Hyperspectral reflectance captured biochemical acclimation of leaf photosynthesis to high temperature in the field, improving spatial and temporal resolution in the ability to assess the impact of future warming on crop productivity.  相似文献   

9.
Foggo  Andrew  Ozanne  Claire M.P.  Speight  Martin R.  Hambler  Clive 《Plant Ecology》2001,153(1-2):347-359
The term edge effect can be used to encompass a wide range of both biotic and abiotic trends associated with boundaries between adjacent habitat types, whether these be natural or anthropogenic. Edge effects have been shown to represent significant forces affecting both faunal and floral assemblages in fragmented ecosystems. Specific studies of faunal assemblages associated with habitat edges have revealed trends at all levels of biological organisation from individuals to communities.Studies of edge effects on invertebrates in tropical forests have been relatively scarce. In this paper we review the nature and organisation of edge effects, focusing upon the processes which may lead to detrimental consequences for both forest canopy invertebrates and the forests themselves. We present as a case study data illustrating the very large amount of variance (over 50%) in community structure that is predicted simply by abiotic (microclimatic) variables in both a tropical and a temperate forest edge. We summarise major features of edge effects amongst forest invertebrates, stress the inter-relatedness of edge and canopy biology, and present an agenda for study of the canopy as an edge.  相似文献   

10.
This paper deals with changes in leaf photosynthetic capacity with depth in a rose (Rosa hybrida cv. Sonia) plant canopy. Measurements of leaf net CO2 assimilation (Al) and total nitrogen content (Nl) were performed in autumn under greenhouse conditions on mature leaves located at different layers within the plant canopy, including the flower stems and the main shoots. These leaves were subjected (i) to contrasting levels of CO2 partial pressure (pa) at saturating photosynthetic photon flux density (I about 1000 μ mol m ? 2 s ? 1) and (ii) to saturating CO2 partial pressure (pa about 100 Pa) and varying I, while conditions of temperature were those prevailing in the greenhouse (20–38 °C). A biochemical model of leaf photosynthesis relating Al to intercellular CO2 partial pressure (pi) was parameterized for each layer of leaves, supplying corresponding values of the photosynthetic Rubisco capacity (Vlm) and the maximum rate of electron transport (Jm). The results indicated that rose leaves growing at the top of the canopy had higher values of Jm and Vlm, which resulted from a higher allocation of nitrogen to the uppermost leaves. Mean values of total leaf nitrogen, Nl, decreased about 35% from the uppermost leaves of flower stem to leaves growing at the bottom of the plant. The derived values of non‐photosynthetic nitrogen, Nb, varied from 76 mmolN m ? 2leaf (layer 1) to 60 mmolN m ? 2leaf (layer 4), representing a large fraction of Nl (50 and 60% in layer 1 and 4, respectively). Comparison of leaf photosynthetic nitrogen (Np = NlNb) and I profiles supports the hypothesis that rose leaves acclimate to the time‐integrated absorbed I. The relationships between I and Np, obtained during autumn, spring and summer, indicate that rose leaves seem also to acclimate their photosynthetic capacity seasonally, by allocating more photosynthetic nitrogen to leaves in autumn and spring than in summer.  相似文献   

11.
Changes in the efficiency of light interception and in the costs for light harvesting along the light gradients from the top of the plant canopy to the bottom are the major means by which efficient light harvesting is achieved in ecosystems. In the current review analysis, leaf, shoot and canopy level determinants of plant light harvesting, the light-driven plasticity in key traits altering light harvesting, and variations among different plant functional types and between species of different shade tolerance are analyzed. In addition, plant age- and size-dependent alterations in light harvesting efficiency are also examined. At the leaf level, the variations in light harvesting are driven by alterations in leaf chlorophyll content modifies the fraction of incident light harvested by given leaf area, and in leaf dry mass per unit area (M A) that determines the amount of leaf area formed with certain fraction of plant biomass in the leaves. In needle-leaved species with complex foliage cross-section, the degree of foliage surface exposure also depends on the leaf total-to-projected surface area ratio. At the shoot scale, foliage inclination angle distribution and foliage spatial aggregation are the major determinants of light harvesting, while at the canopy scale, branching frequency, foliage distribution and biomass allocation to leaves (F L) modify light harvesting significantly. F L decreases with increasing plant size from herbs to shrubs to trees due to progressively larger support costs in plant functional types with greater stature. Among trees, F L and stand leaf area index scale positively with foliage longevity. Plant traits altering light harvesting have a large potential to adjust to light availability. Chlorophyll per mass increases, while M A, foliage inclination from the horizontal and degree of spatial aggregation decrease with decreasing light availability. In addition, branching frequency decreases and canopies become flatter in lower light. All these plastic modifications greatly enhance light harvesting in low light. Species with greater shade tolerance typically form a more extensive canopy by having lower M A in deciduous species and enhanced leaf longevity in evergreens. In addition, young plants of shade tolerators commonly have less strongly aggregated foliage and flatter canopies, while in adult plants partly exposed to high light, higher shade tolerance of foliage allows the shade tolerators to maintain more leaf layers, resulting in extended crowns. Within a given plant functional type, increases in plant age and size result in increases in M A, reductions in F L and increases in foliage aggregation, thereby reducing plant leaf area index and the efficiency of light harvesting. Such dynamic modifications in plant light harvesting play a key role in stand development and productivity. Overall, the current review analysis demonstrates that a suite of chemical and architectural traits at various scales and their plasticity drive plant light harvesting efficiency. Enhanced light harvesting can be achieved by various combinations of traits, and these suites of traits vary during plant ontogeny.  相似文献   

12.
林窗作为森林群落中一种重要的干扰方式, 对林下物种构成有着重要的影响。开展林窗空间格局及其特征指数与林下植物多样性关系研究对于探讨林窗对林下生物多样性的影响有重要意义, 有助于进一步了解群落动态, 在物种多样性保护方面也具有指导作用。本研究在西双版纳热带雨林地区随机选取3块大小为1 ha的热带雨林为研究样地, 采用轻小型六旋翼无人机搭载Sony ILCE-A7r可见光传感器, 分别获取各个样地的高清数字影像, 结合数字表面高程模型以及各个样地的地形数据用以确定各样区的林窗分布格局, 并进一步提取出各林窗的景观格局指数。结合地面样方基础调查数据, 对各样地各林窗下植物多样性情况进行统计, 旨在分析热带雨林林窗空间分布格局以及林窗下植物多样性对各林窗空间格局特征的响应情况。研究表明, 西双版纳州热带雨林林窗呈大而分散的空间分布, 林窗空间格局特征指数如林窗形状复杂性指数、林窗面积都与林下植物多样性呈显著正相关关系。在面积小的林窗下, 较之林窗形状复杂性因子, 林窗面积大小对林下植物多样性影响更显著; 在面积达到一定程度后, 相对于面积因子, 林窗形状复杂性指数对林下植物多样性影响更显著, 各样地林窗皆趋于向各自所处样地顶极群落发展。  相似文献   

13.
1. Availabilities of light and soil nitrogen for understory plants vary by extent of canopy gap formation through typhoon disturbance. We predicted that variation in resource availability and herbivore abundance in canopy gaps would affect herbivory through variation in leaf traits among plant species. We studied six understory species that expand their leaves before or after canopy closure in deciduous forests. We measured the availabilities of light, soil nitrogen, soil water content, and herbivore abundance in 20 canopy gaps (28.3–607.6 m2) formed by a typhoon and in four undisturbed stands. We also measured leaf traits and herbivory on understory plants. 2. The availabilities of light and soil nitrogen increased with increasing gap size. However, soil water content did not. The abundance of herbivorous insects (such as Lepidoptera and Orthoptera) increased with increasing gap size. 3. Concentrations of condensed tannins, total phenolics, and nitrogen in leaves and the leaf mass per area increased in late leaf expansion species with increasing gap size, whereas none of the leaf traits varied by gap size in early leaf expansion species. 4. Herbivory increased on early leaf expansion species with increasing gap size, but decreased on late leaf expansion species. In these late leaf expansion species, total phenolics and C : N ratio had negative relationships with herbivory. 5. These results suggested that after typhoon disturbance, increased herbivory on early leaf expansion species can be explained by increased herbivore abundance, whereas decreased herbivory on late leaf expansion species can be explained by variation in leaf traits.  相似文献   

14.
Comparative ecophysiology of leaf and canopy photosynthesis   总被引:22,自引:7,他引:15  
Leaves and herbaceous leaf canopies photosynthesize efficiently although the distribution of light, the ultimate resource of photosynthesis, is very biased in these systems. As has been suggested in theoretical studies, if a photosynthetic system is organized such that every photosynthetic apparatus photosynthesizes in concert, the system as a whole has the sharpest light response curve and is most adaptive. This condition can be approached by (i) homogenization of the light environment and (ii) acclimation of the photosynthetic properties of leaves or chloroplasts to their local light environments. This review examines these two factors in the herbaceous leaf canopy and in the leaf. Changes in the inclination of leaves in the canopy and differentiation of mesophyll into palisade and spongy tissue contribute to the moderation of the light gradient. Leaf and chloroplast movements in the upper parts of these systems under high irradiances also moderate light gradients. Moreover, acclimation of leaves and chloroplasts to the local light environment is substantial. These factors increase the efficiency of photosynthesis considerably. However, the systems appear to be less efficient than the theoretical optimum. When the systems are optically dense, the light gradients may be too great for leaves or chloroplasts to acclimate. The loss of photosynthetic production attributed to the imperfect adjustment of photosynthetic apparatus to the local light environment is most apparent when the photosynthesis of the system is in the transition between the light-limited and light-saturated phases. Although acclimation of the photosynthetic apparatus and moderation of light gradients are imperfect, these markedly raise the efficiency of photosynthesis. Thus more mechanistic studies on these adaptive attributes are needed. The causes and consequences of imperfect adjustment should also be investigated.  相似文献   

15.
Climate warming is expected to increase respiration rates of tropical forest trees and lianas, which may negatively affect the carbon balance of tropical forests. Thermal acclimation could mitigate the expected respiration increase, but the thermal acclimation potential of tropical forests remains largely unknown. In a tropical forest in Panama, we experimentally increased nighttime temperatures of upper canopy leaves of three tree and two liana species by on average 3  ° C for 1 week, and quantified temperature responses of leaf dark respiration. Respiration at 25  ° C (R25) decreased with increasing leaf temperature, but acclimation did not result in perfect homeostasis of respiration across temperatures. In contrast, Q10 of treatment and control leaves exhibited similarly high values (range 2.5–3.0) without evidence of acclimation. The decrease in R25 was not caused by respiratory substrate depletion, as warming did not reduce leaf carbohydrate concentration. To evaluate the wider implications of our experimental results, we simulated the carbon cycle of tropical latitudes (24 ° S–24 ° N) from 2000 to 2100 using a dynamic global vegetation model (LM3VN) modified to account for acclimation. Acclimation reduced the degree to which respiration increases with climate warming in the model relative to a no‐acclimation scenario, leading to 21% greater increase in net primary productivity and 18% greater increase in biomass carbon storage over the 21st century. We conclude that leaf respiration of tropical forest plants can acclimate to nighttime warming, thereby reducing the magnitude of the positive feedback between climate change and the carbon cycle.  相似文献   

16.
Few data are available describing the photosynthetic parameters of the leaves of tropical montane cloud forests (TMCF). Here, we present a study of photosynthetic leaf traits (V cmax and J max), foliar dark respiration (R d), foliar nitrogen (N) and phosphorus (P), and leaf mass per area (LMA) throughout the canopy for five different TMCF species at 3025 m a.s.l. in Andean Peru. All leaf traits showed a significant relationship with canopy height when expressed on an area basis, and V cmax-area and J max-area almost halved when descending through the TMCF canopy. When corrected to a common temperature, average V cmax and J max on a leaf area basis were similar to lowland tropical values, but lower when expressed on a mass basis, because of the higher TMCF LMA values. By contrast, R d on an area basis was higher than found in tropical lowland forests at a common temperature, and similar to lowland forests on a mass basis. The TMCF J maxV cmax relationship was steeper than in other tropical biomes, and we propose that this can be explained by either the light conditions or the relatively low VPD in the studied TMCF. Furthermore, V cmax had a significant—though relatively weak and shallow—relationship with N on an area basis, but not with P, which is consistent with the general hypothesis that TMCFs are N rather than P limited. Finally, the observed V cmax–N relationship (i.e., maximum photosynthetic nitrogen use efficiency) was distinctly different from those in tropical and temperate regions, probably because the TMCF leaves compensate for reduced Rubisco activity in cool environments.  相似文献   

17.
Abstract Leaf area index (L) is a critical variable in monitoring and modelling forest condition and growth and is therefore important for foresters and environmental scientists to measure routinely and accurately. We compared three different methods for estimating L: a plant canopy analyser (PCA), a point‐quadrat camera method and digital hemispherical photography at a native eucalypt forest canopy at Tumbarumba in southern New South Wales, Australia. All of these methods produced indirect estimates of L based on the close coupling between radiation penetration and canopy structure. The individual L estimates were compared, and the potential advantages and disadvantages of each method were discussed in relation to use in forest inventory and in field data collection programmes for remote sensing calibration and verification. The comparison indicated that all three methods, PCA, digital hemispherical photography and the modified point‐quadrat camera method, produced similar estimates with a standard error between techniques of less than 0.2 L units. All methods, however, provided biased estimates of L and calibration is required to derive true stand L. A key benefit, however, of all of these estimation methods is that observations can be collected in a short period of time (1–2 h of field‐work per plot).  相似文献   

18.
Movement of water from soil to atmosphere by plant transpiration can feed precipitation, but is limited by the hydraulic capacities of plants, which have not been uniform through time. The flowering plants that dominate modern vegetation possess transpiration capacities that are dramatically higher than any other plants, living or extinct. Transpiration operates at the level of the leaf, however, and how the impact of this physiological revolution scales up to the landscape and larger environment remains unclear. Here, climate modelling demonstrates that angiosperms help ensure aseasonally high levels of precipitation in the modern tropics. Most strikingly, replacement of angiosperm with non-angiosperm vegetation would result in a hotter, drier and more seasonal Amazon basin, decreasing the overall area of ever-wet rainforest by 80 per cent. Thus, flowering plant ecological dominance has strongly altered climate and the global hydrological cycle. Because tropical biodiversity is closely tied to precipitation and rainforest area, angiosperm climate modification may have promoted diversification of the angiosperms themselves, as well as radiations of diverse vertebrate and invertebrate animal lineages and of epiphytic plants. Their exceptional potential for environmental modification may have contributed to divergent responses to similar climates and global perturbations, like mass extinctions, before and after angiosperm evolution.  相似文献   

19.
Branch architecture, leaf photosynthetic traits, and leaf demography were investigated in saplings of two woody species, Homolanthus caloneurus and Macaranga rostulata, co-occurring in the understory of a tropical mountain forest. M. rostulata saplings have cylindrical crowns, whereas H. caloneurus saplings have flat crowns. Saplings of the two species were found not to differ in area-based photosynthetic traits and in average light conditions in the understory of the studied site, but they do differ in internode length, leaf emergence rate, leaf lifespan, and total leaf area. Displayed leaf area of H. caloneurus saplings, which have the more rapid leaf emergence, was smaller than that of M. rostulata saplings, which have a longer leaf lifespan and larger total leaf area, although M. rostulata saplings showed a higher degree of leaf overlap. Short leaf lifespan and consequent small total leaf area would be linked to leaf overlap avoidance in the densely packed flat H. caloneurus crown. In contrast, M. rostulata saplings maintained a large total leaf area by producing leaves with a long leaf lifespan. In these understory saplings with a different crown architecture, we observed two contrasting adaptation strategies to shade which are achieved by adjusting a suite of morphological and leaf demographic characters. Each understory species has a suite of morphological traits and leaf demography specific to its architecture, thus attaining leaf overlap avoidance or large total leaf area.  相似文献   

20.
Scaling CO2-photosynthesis relationships from the leaf to the canopy   总被引:11,自引:0,他引:11  
Responses of individual leaves to short-term changes in CO2 partial pressure have been relatively well studied. Whole-plant and plant community responses to elevated CO2 are less well understood and scaling up from leaves to canopies will be complicated if feedbacks at the small scale differ from feedbacks at the large scale. Mathematical models of leaf, canopy, and ecosystem processes are important tools in the study of effects on plants and ecosystems of global environmental change, and in particular increasing atmospheric CO2, and might be used to scale from leaves to canopies. Models are also important in assessing effects of the biosphere on the atmosphere. Presently, multilayer and big leaf models of canopy photosynthesis and energy exchange exist. Big leaf models — which are advocated here as being applicable to the evaluation of impacts of global change on the biosphere — simplify much of the underlying leaf-level physics, physiology, and biochemistry, yet can retain the important features of plant-environment interactions with respect to leaf CO2 exchange processes and are able to make useful, quantitative predictions of canopy and community responses to environmental change. The basis of some big leaf models of photosynthesis, including a new model described herein, is that photosynthetic capacity and activity are scaled vertically within a canopy (by plants themselves) to match approximately the vertical profile of PPFD. The new big leaf model combines physically based models of leaf and canopy level transport processes with a biochemically based model of CO2 assimilation. Predictions made by the model are consistent with canopy CO2 exchange measurements, although a need exists for further testing of this and other canopy physiology models with independent measurements of canopy mass and energy exchange at the time scale of 1 h or less.Abbreviations LAI leaf area index - NIR near infrared (700–3000 nm) radiation - PAR photosynthetically active (400–700 nm) radiation - PI photosynthetic irradiance (400–700 nm) - PPFD photosynthetic photon flux area density (400–700 nm) - PS I Photosystem I - PS II Photosystem II - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuP2 ribulose-1,5-bisphosphate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号