首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunoglobulin A (IgA) nephropathy shows great variability regarding the histological features of the lesions of human renal glomeruli. In the present study, the quick-freezing and deep-etching (QF-DE) method was used to analyze the glomerular ultrastructure of biopsied kidney tissues from children with IgA nephropathy. Biopsied renal tissues were routinely prepared for light microscopy, immunofluorescence microscopy, conventional electron microscopy, and replica electron microscopy. The three-dimensional ultrastructure of glomeruli of the kidney was clearly observed by using the QF-DE method. Three layers of glomerular basement membranes, i.e., middle, inner and outer layers, were clearly detected in the replica electron micrographs. The middle layer was 343.0+/-24.2 nm (n=20) in width and formed polygonal meshwork structures. We also observed slit diaphragms, electron-dense mesangial deposits, and increased amounts of mesangial matrix and foot process effacement. Many delicate filaments were found to be distributed from the apical to the bottom portions between neighboring foot processes. The ultrastructural difference between the replica electron micrographs and conventional electron micrographs was found to be especially marked in the appearance of foot processes and connecting filaments between the neighboring foot processes. The examination of extracellular matrix changes, as revealed at high resolution by the QF-DE method, gave us some morphofunctional information relevant to the mechanism of proteinuria with IgA nephropathy.  相似文献   

2.
The three-dimensional ultrastructure of epithelioid cells was studied by the quick-freezing and deepetching (QF-DE), as well as the freeze-substitution (QF-FS) methods. The granulomas were induced in rats by injecting muramyl dipeptide (MDP) into the hind footpads. At 3 weeks after the injection, the footpads were perfused with a fixative, excised, and quickly frozen to prepare the replica membranes. Some unfixed footpads were also quickly frozen and freeze-substituted. Dense networks of intermediate filaments, connected with the nuclei, mitochondria and other vesicular cell organelles, were observed throughout the cytoplasm of epithelioid cells by the QF-DE method. A few actin filaments were located in filopodia and just beneath the cell membranes. Interdigitation of the cell membranes between adjacent cells was clearly demonstrated by the QF-FS method and clathrin-coated pits were identified at the base of interdigitating filopodia. In addition, the exact moment of fusion between endosomes and lysosomes was ascertained by the same method. These results suggest that the cytoskeletal organization of epithelioid cells resembles that of epithelial cells rather than actively motile macrophages.  相似文献   

3.
The three-dimensional ultrastructure of epithelioid cells was studied by the quick-freezing and deep-etching (QF-DE), as well as the freeze-substitution (QF-FS) methods. The granulomas were induced in rats by injecting muramyl dipeptide (MDP) into the hind footpads. At 3 weeks after the injection, the footpads were perfused with a fixative, excised, and quickly frozen to prepare the replica membranes. Some unfixed footpads were also quickly frozen and freeze-substituted. Dense networks of intermediate filaments, connected with the nuclei, mitochondria and other vesicular cell organelles, were observed throughout the cytoplasm of epithelioid cells by the QF-DE method. A few actin filaments were located in filopodia and just beneath the cell membranes. Interdigitation of the cell membranes between adjacent cells was clearly demonstrated by the QF-FS method and clathrin-coated pits were identified at the base of interdigitating filopodia. In addition, the exact moment of fusion between endosomes and lysosomes was ascertained by the same method. These results suggest that the cytoskeletal organization of epithelioid cells resembles that of epithelial cells rather than actively motile macrophages.  相似文献   

4.
P Sobhon 《Acta anatomica》1979,105(4):494-504
Embedding kidney in polymerized glutaraldehyde-urea favors the retention of glycoprotein matrix of the cell coat and the basement membrane of the glomeruli. The basement membrane appears as a single layer with uniform amorphous matrix. Thick glycoprotein coat covers the whole surface of prodocytes and their foot processes. In areas other than the slits and the portion of the foot processes which touch on the basement membrane, the coat is a continuous layer with an average thickness of 490 A. In the slits between the foot processes of podocytes there is an actual fusion of glycoprotein coats; the average width of the slit is 415 A. The glycoprotein 'plugs' in the slit may be a significant portion of the glomerular filtration barrier against macromolecules, together with the basement membrane and the slit diaphragms.  相似文献   

5.
A single i.v. injection of a mAb 5-1-6 to rats was found to cause massive though transient proteinuria. This mAb 5-1-6, IgG1 was produced by immunization of BALB/c mice with collagenase-treated Wistar rat glomeruli and was highly organ and species specific. Immunoelectron microscopy using immunoperoxidase with the avidin-biotin complex and immunogold staining indicated mAb 5-1-6 to bind in vitro to the surface of glomerular epithelial foot processes, mainly to slit diaphragms. The recognized antigenic molecule was not susceptible to neuraminidase treatment and its Mr was about 51 kDa by immunoprecipitation. A one-shot i.v. injection of this mAb induced proteinuria in rats starting immediately, reaching the peak on day 8 (mean value of 150 mg/24 h), then gradually decreasing to normal level on day 18. The in vivo localization of administrated mAb 5-1-6 changed with time. Linear binding along glomerular capillary walls was observed 2 h after injection. However, 3 days later, it partially shifted to a fine granular pattern. The linear pattern disappeared and the size as well as intensity of the fluorescent granules decreased on day 12 to trace positive on day 18. Immunoelectron microscopy revealed the binding pattern of in vivo injected mAb 5-1-6 after 2 h to be similar to that in vitro. Three days later, injected mAb was observed within multivesicular bodies in glomerular epithelial cells as well as along the surface of foot processes and around slit diaphragms. Twelve days after injection, mAb along the surface of the foot processes and around slit diaphragms decreased but those in multivesicular bodies were observed more frequently. Rat IgG and C3 could not be detected throughout the period of observation. No histologic abnormalities were noted except for partial retraction of epithelial foot processes at the peak of proteinuria on day 8. This mAb thus provides a valuable means for examining the mechanism of proteinuria.  相似文献   

6.
《The Journal of cell biology》1990,111(3):1255-1263
The foot processes of glomerular epithelial cells of the mammalian kidney are firmly attached to one another by shallow intercellular junctions or slit diaphragms of unknown composition. We have investigated the molecular nature of these junctions using an antibody that recognizes ZO-1, a protein that is specific for the tight junction or zonula occludens. By immunoblotting the affinity purified anti-ZO-1 IgG recognizes a single 225-kD band in kidney cortex and in slit diaphragm-enriched fractions as in other tissues. When ZO-1 was localized by immunofluorescence in kidney tissue of adult rats, the protein was detected in epithelia of all segments of the nephron, but the glomerular epithelium was much more intensely stained than any other epithelium. Among tubule epithelia the signal for ZO-1 correlated with the known fibril content and physiologic tightness of the junctions, i.e., it was highest in distal and collecting tubules and lowest in the proximal tubule. By immunoelectron microscopy ZO-1 was found to be concentrated on the cytoplasmic surface of the tight junctional membrane. Within the glomerulus ZO-1 was localized predominantly in the epithelial foot processes where it was concentrated precisely at the points of insertion of the slit diaphragms into the lateral cell membrane. Its distribution appeared to be continuous along the continuous slit membrane junction. When ZO-1 was localized in differentiating glomeruli in the newborn rat kidney, it was present early in development when the apical junctional complexes between presumptive podocytes are composed of typical tight and adhering junctions. It remained associated with these junctions during the time they migrate down the lateral cell surface, disappear and are replaced by slit diaphragms. The distribution of ZO-1 and the close developmental relationship between the two junctions suggest that the slit diaphragm is a variant of the tight junction that shares with it at least one structural protein and the functional property of defining distinctive plasmalemmal domains. The glomerular epithelium is unique among renal epithelia in that ZO-1 is present, but the intercellular spaces are wide open and no fibrils are seen by freeze fracture. The presence of ZO-1 along slit membranes indicates that expression of ZO-1 alone does not lead to tight junction assembly.  相似文献   

7.
We investigated the actin filament organization and immunolocalization of actin-binding proteins (α-actinin and cortactin) in the podocyte foot processes of eight vertebrate species (lamprey, carp, newt, frog, gecko, turtle, quail, and rat). Three types of actin cytoskeleton were found in these foot processes. (1) A cortical actin network with cortactin filling the space between the plasma membrane and the other actin cytoskeletons described below was found in all of the species examined here. The data indicated that the cortical actin network was the minimal essential actin cytoskeleton for the formation and maintenance of the foot processes in vertebrate podocytes. (2) An actin bundle with α-actinin existing along the longitudinal axis of foot process above the level of slit diaphragms was only observed in quail and rat. (3) An actin fascicle consisting of much fewer numbers of actin filaments than that of the actin bundle was observed in the species other than quail and rat, but at various frequencies. These findings suggest that the actin bundle is an additional actin cytoskeleton reflecting a functional state peculiar to quail and rat glomeruli. Considering the higher intraglomerular pressure and the extremely thin filtration barrier in birds and mammals, the foot processes probably mainly protect the thinner filtration barrier from the higher internal pressure occurring in quail and rat glomeruli. Therefore, we consider that the actin bundle plays a crucial role in the mechanical protection of the filtration barrier. Moreover, the actin fascicle may be a potential precursor of the actin bundle.  相似文献   

8.
The highly ordered, isoporous substructure of the glomerular slit diaphragm was revealed in rat and mouse kidneys fixed by perfusion with tannic acid and glutaraldehyde. The slit diaphragm was similar in both animal species and appeared as a continuous junctional band, 300–450 Å wide, consistently present within all slits formed by the epithelial foot processes. The diaphragm exhibited a zipper-like substructure with alternating, periodic cross bridges extending from the podocyte plasma membranes to a central filament which ran parallel to and equidistant from the cell membranes. The dimensions and spacing of the cross bridges defined a uniform population of rectangular pores approximately 40 by 140 Å in cross section and 70 Å in length. The total area of the pores was calculated to be about 2–3% of the total surface area of the glomerular capillaries. Physiological data indicate that the glomerular filter functions as if it were an isoporous membrane which excludes proteins larger than serum albumin. The similarity between the dimensions of the pores in the slit diaphragm and estimates for the size and shape of serum albumin supports the conclusion from tracer experiments that the slit diaphragm may serve as the principal filtration barrier to plasma proteins in the kidney.  相似文献   

9.
Glomerular visceral epithelial cells (podocytes) contain interdigitated processes that form specialized intercellular junctions, termed slit diaphragms, which provide a selective filtration barrier in the renal glomerulus. Analyses of disease-causing mutations in familial nephrotic syndromes and targeted mutagenesis in mice have revealed critical roles of several proteins in the assembly of slit diaphragms. The nephrin–podocin complex is the main constituent of slit diaphragms. However, the molecular mechanisms regulating these proteins to maintain the slit diaphragms are still largely unknown. Here, we demonstrate that the PAR3–atypical protein kinase C (aPKC)–PAR6β cell polarity proteins co-localize to the slit diaphragms with nephrin. Furthermore, selective depletion of aPKCλ in mouse podocytes results in the disassembly of slit diaphragms, a disturbance in apico-basal cell polarity, and focal segmental glomerulosclerosis (FSGS). The aPKC–PAR3 complex associates with the nephrin–podocin complex in podocytes through direct interaction between PAR3 and nephrin, and the kinase activity of aPKC is required for the appropriate distribution of nephrin and podocin in podocytes. These observations not only establish a critical function of the polarity proteins in the maintenance of slit diaphragms, but also imply their potential involvement in renal failure in FSGS.  相似文献   

10.
Actin filament organization of foot processes in rat podocytes.   总被引:14,自引:0,他引:14  
The foot processes of podocytes possess abundant microfilaments and modulate glomerular filtration. We investigated the actin filament organization of foot processes in adult rat podocytes and the formation of the actin cytoskeletal system of immature podocytes during glomerulogenesis. Electron microscopy revealed two populations of actin cytoskeletons in foot processes of adult podocytes. One is the actin bundle running above the level of slit diaphragms and the other is the cortical actin network located beneath the plasmalemma. Immunogold labeling for actin-binding proteins demonstrated that alpha-actinin and synaptopodin were localized in the actin bundle, whereas cortactin was in the cortical actin network. Immunofluorescence labeling for actin-binding proteins in immature podocyte showed that alpha-actinin was localized at the level of the junctional complex, whereas cortactin was distributed beneath the entire plasmalemma. Synaptopodin was first observed along the basal plasmalemma from the advanced S-shaped body to the capillary loop stage. We conclude that foot processes have specialized actin filamentous organization and that its establishment is associated with the expression and redistribution of actin-binding proteins during development.  相似文献   

11.
ELECTRON MICROSCOPE STUDIES ON THE SURFACE COAT OF THE NEPHRON   总被引:16,自引:7,他引:9       下载免费PDF全文
Attempts to make visible the carbohydrate coat at the free cell surface of glomeruli as well as the tubules of rabbit kidney were undertaken. The ruthenium red procedure was performed, according to Luft, at various pH values. Moreover, the colloidal iron and the colloidal thorium methods were used. Neuraminidase digestion was also performed. In the ruthenium red procedure the luminal face of the epithelial cells of the nephron was coated distinctly with reaction product. The results obtained revealed that some of the differences at various levels of the nephron depended on the pH values. In glomeruli and proximal convoluted tubules the optimum pH value was 7.4; in the ascending limb of Henle loops and distal convoluted tubules the optimum pH value was 6.8. The ruthenium red-positive surface coat was either closely connected with, or appeared as a part of, the outer leaflet of the unit membrane. The slit pores of glomeruli were also covered by a coat continuous with the surface coat of the adjacent foot processes. The coat lining the microvilli of proximal convoluted tubules completely filled the intervillous spaces. Also, both the colloidal iron method and the colloidal thorium method evidenced the presence of surface coat. Pre-treatment with neuraminidase abolished the effect of the Hale reaction. These results may indicate that the surface coat of the epithelia of the nephron shows the presence of glycoproteins containing siliac acid residues.  相似文献   

12.
The kidney filtration barrier consists of the capillary endothelium, the glomerular basement membrane and the slit diaphragm localized between foot processes of neighbouring podocytes. We report that collagen XVII, a transmembrane molecule known to be required for epithelial adhesion, is expressed in podocytes of normal human and mouse kidneys and in endothelial cells of the glomerular filtration barrier. Immunoelectron microscopy has revealed that collagen XVII is localized in foot processes of podocytes and in the glomerular basement membrane. Its role in kidney has been analysed in knockout mice, which survive to birth but have high neonatal mortality and skin blistering and structural abnormalities in their glomeruli. Morphometric analysis has shown increases in glomerular volume fraction and surface densities of knockout kidneys, indicating an increased glomerular amount in the cortex. Collagen XVII deficiency causes effacement of podocyte foot processes; however, major slit diaphragm disruptions have not been detected. The glomerular basement membrane is split in areas in which glomerular and endothelial basement membranes meet. Differences in the expression of collagen IV, integrins α3 or β1, laminin α5 and nephrin have not been observed in mutant mice compared with controls. We propose that collagen XVII has a function in the attachment of podocyte foot processes to the glomerular basement membrane. It probably contributes to podocyte maturation and might have a role in glomerular filtration.  相似文献   

13.
The slit diaphragm connecting the adjacent foot processes of glomerular epithelial cells (podocytes) is the final barrier of the glomerular capillary wall and serves to prevent proteinuria. Podocytes are understood to be terminally differentiated cells and share some common features with neurons. Neurexin is a presynaptic adhesion molecule that plays a role in synaptic differentiation. Although neurexin has been understood to be specifically expressed in neuronal tissues, we found that neurexin was expressed in several organs. Several forms of splice variants of neurexin-1α were detected in the cerebrum, but only one form of neurexin-1α was detected in glomeruli. Immunohistochemical study showed that neurexin restrictedly expressed in the podocytes in kidneys. Dual-labeling analyses showed that neurexin was colocalized with CD2AP, an intracellular component of the slit diaphragm. Immunoprecipitation assay using glomerular lysate showed that neurexin interacted with CD2AP and CASK. These observations indicated that neurexin localized at the slit diaphragm area. The staining intensity of neurexin in podocytes was clearly lowered, and their staining pattern shifted to a more discontinuous patchy pattern in the disease models showing severe proteinuria. The expression and localization of neurexin in these models altered more clearly and rapidly than that of other slit diaphragm components. We propose that neurexin is available as an early diagnostic marker to detect podocyte injury. Neurexin coincided with nephrin, a key molecule of the slit diaphragm detected in a presumptive podocyte of the developing glomeruli and in the glomeruli for which the slit diaphragm is repairing injury. These observations suggest that neurexin is involved in the formation of the slit diaphragm and the maintenance of its function.  相似文献   

14.
Kidney from normal male albino rats, of body weight 170-200 g, was fixed by arterial perfusion with buffered tannic acid-glutaraldehyde, and postfixed with osmium tetroxide. Random and isotropic ultrathin sections from 23 different glomeruli from five rats were mounted on slot grids for staining and electron microscopy. Prints of whole glomeruli at a magnification of 3,909 were analyzed by stereological methods. The mean glomerular volume was (8.048 +/- 0.474) X 10(5) mum3 if the glomeruli are treated as spheres. The area of the basement membrane was 0.281 +/- 0.017 mm2 per glomerulus, of which 0.184 +/- 0.011 mm2 represents peripheral basement membrane. The aggregate epithelial slit length per glomerulus was 65.19 +/- 3.84 cm, of which 48.69 +/- 2.87 cm represents epithelial slits abutting on the peripheral basement membrane. Assuming that a slit diaphragm is 390 A wide, and that the pores of the slit diaphragm represent 26% of its area, the mean pore area is 3.96 cm2, of which 2.96 cm2 represents the area of peripheral pores. These findings are discussed in the context of the hydrodynamic theory of glomerular ultrafiltration. We conclude that the porous substructure of the glomerular slit diaphragm is significant in determining the hydraulic conductivity of the glomerulus and hence also solute flux during ultrafiltration.  相似文献   

15.
Under healthy conditions, foot processes of neighbouring podocytes are interdigitating and connected by an electron-dense slit diaphragm. Besides slit diaphragm proteins, typical adherens junction proteins are also found to be expressed at this cell-cell junction. It is therefore considered as a highly specialized type of adherens junction. During podocyte injury, podocyte foot processes lose their characteristic 3D structure and the filtration slits typical meandering structure gets linearized. It is still under debate how this change of structure leads to the phenomenon of proteinuria. Using super-resolution 3D-structured illumination microscopy, we observed a spatially restricted up-regulation of the tight junction protein claudin-5 (CLDN5) in areas where podocyte processes of patients suffering from minimal change disease (MCD), focal and segmental glomerulosclerosis (FSGS) as well as in murine nephrotoxic serum (NTS) nephritis and uninephrectomy DOCA-salt hypertension models, were locally injured. CLDN5/nephrin ratios in human glomerulopathies and NTS-treated mice were significantly higher compared to controls. In patients, the CLDN5/nephrin ratio is significantly correlated with the filtration slit density as a foot process effacement marker, confirming a direct association of local CLDN5 up-regulation in injured foot processes. Moreover, CLDN5 up-regulation was observed in some areas of high filtration slit density, suggesting that CLND5 up-regulation preceded the changes of foot processes. Therefore, CLDN5 could serve as a biomarker predicting early foot process effacement.  相似文献   

16.
A cell type structurally resembling the podocyte of the renal glomerulus is situated in the gill of the crustacean Panulirus argus. These cells adjoin the medial septum of the gill filament and invariably face the efferent haemolymph channel. The basal cell surface is produced into a series of regular ridges, between which are inserted elongated cell processes, together constituting a palisade that includes narrow slits (250 A or more in width) resembling the filtration pores between the foot process of the glomerular epithelium. In each instance, the slit is traversed by a diaphragm which in the crustacean 'podocyte' is ca. 30 A in width and contiguous with the outer leaflet of the unit membrane limiting the cell. Numerous coated vesicles originate from the cell surface beneath the diaphragms. The possible role of these cells in detoxification by withdrawal of materials from the circulation is discussed.  相似文献   

17.
18.
Actin and alpha-actinin immunoreactive sites have been localized at the electron microscope level by the protein A-gold immunocytochemical technique in podocytes of normal and nephrotic rat renal tissues. In normal renal glomeruli, fibrillar networks located in the core of foot processes or bundles of microfilaments interconnecting them were found to be labelled for these two cytoskeletal proteins. On the other hand, in nephrotic renal glomeruli, concomitant with the loss of podocytic foot processes a reorganization of the podocytic cytoskeleton and a concentration of some of its elements into thick uniform bands was observed. Actin and alpha-actinin were revealed in these bands. Control experiments confirmed the specificity of the labelling obtained. Our results suggest that normal podocytes contain an actin-based contractile system that might contribute to the maintenance of the particular cell shape of these cells and that the rearrangement of the podocytic cytoskeleton occurring in the nephrotic syndrome might account for the changes in the foot processes and contribute to the alteration in glomerular function.  相似文献   

19.
R Narbaitz  V K Kapal 《Acta anatomica》1986,125(3):183-190
Chick embryos were staged according to the method of Hamburger and Hamilton [1951] and fixed. Cross sections through the cephalic fourth of the mesonephric ridges were examined by scanning electron microscopy. The steps in glomerular differentiation could be observed with ease. The first foot processes to appear in podocytes arose directly from the basal surface of the cell body. In a second step, lateral branches appeared and gave off secondary or even tertiary branches that interdigitated with those from neighbouring podocytes, following a pattern that was very similar to the one previously described by other authors in metanephric nephrons. Endothelial pores appeared in the glomerular capillaries at very early stages of the glomerular differentiation. The differentiation of the epithelium of proximal tubules was characterized by the growth of apical microvilli and of finger-like evaginations from the lateral membranes. At stages 20 and 21, the most differentiated glomeruli had only basal foot processes; only after stage 25 did the first generation nephrons reach full maturity. Because during this period the mesonephros is known to produce urine, our results indicate that nephrons start to function before they have completed their differentiation.  相似文献   

20.
The appearance and distribution of podocalyxin on the glomerular epithelium (podocytes) during glomerular development was determined in the newborn rat kidney using specific monoclonal and affinity-purified polyclonal antibodies. Kidneys from 2-day-old rats were perfusion-fixed and processed for immunofluorescence or immunoperoxidase localization or immunogold labeling on ultrathin frozen sections. Podocalyxin first appeared on the apical surfaces of the presumptive podocytes of the S-shaped body above the level of the junctional complexes that connect the cells at this stage. The latter consist of a shallow occluding zonule and a deeper adhering zonule. Early in the capillary loop stage, when the urinary spaces open and the junctional complexes migrate from the apex to the base of the cells, labeling for podocalyxin extended along the lateral plasmalemma above the migrating junctions. In the maturing glomerulus when the foot processes form and the occluding and adhering junctions give way to developing slit diaphragms, podocalyxin was found along all newly-opened surfaces above the occluding junctions or slit membranes. No labeling was found below the latter. Podocalyxin was also detected intracellularly throughout the entire exocytotic pathway--i.e., in the rough endoplasmic reticulum and perinuclear cisternae, in Golgi cisternae and associated vesicles, and in carrier vesicles presumably en route to the cell surface. It is concluded that 1) podocalyxin is synthesized at a high rate in the differentiating podocyte; 2) its distribution is restricted to the apical plus lateral plasmalemmal domain facing the urinary spaces above the migrating junctions; 3) its time of appearance and distribution during glomerular development are identical to that reported earlier for epithelial polyanion; and 4) its synthesis and insertion into the podocyte plasmalemma is closely coupled to the development of the foot processes and filtration slits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号