首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seasonal changes in freshwater phytoplankton communities have been extensively studied, but key drivers of phytoplankton in saline lakes are currently not well understood. Comparative lake studies of 19 prairie saline lakes in the northern Great Plains (USA) were conducted in spring and summer of 2004, with data gathered for a suite of limnological parameters. Nutrient enrichment assays for natural phytoplankton assemblages were also performed in spring and summer of 2006. Canonical correspondence analysis of 2004 data showed salinity (logCl), nitrogen, and phosphorus (N:P ratios) to be the main drivers of phytoplankton distribution in the spring, and phosphorus (C:P ratios), iron (logTFe), and nitrogen (logTN) as important factors in the summer. Despite major differences in nutrient limitation patterns (P-limitation in freshwater systems, N-limitation in saline systems), seasonal patterns of phytoplankton phyla changes in these saline lakes were similar to those of freshwater systems. Dominance shifted from diatoms in the spring to cyanobacteria in the summer. Nutrient enrichment assays (control, +Fe, +N, +P, +N+P) in 2006 indicated that nutrient limitation is generally more consistent within lakes than for individual taxa across systems, with widespread nitrogen and secondary phosphorus limitation. Understanding phytoplankton community structure provides insight into the overall ecology of saline lakes, and will assist in the future conservation and management of these valuable and climatically-sensitive systems.  相似文献   

2.
Jan Köhler 《Hydrobiologia》1994,289(1-3):73-83
The River Spree (Germany) flows through an impoundment and several shallow lakes in its middle and lower course. In this river-lake system, the seasonal and longitudinal dynamics of dominant phytoplankton populations were studied in relation to retention time of water, mixing conditions and nutrient supply from 1988–92. Some phytoplankton species populated the same river section for weeks or months each year at their season. Such stable populations have to origin from river zones functioning like mixed reactors. In the Spree system, centric diatoms originated from an impoundment and filamentous cyanobacteria from a flushed lake with longer retention time of water. Downstream, biomass and composition of phytoplankton altered nearly simultaneously along the system.The fate of planktonic organisms washed from mixed reactors into the flow depended on the conditions at the zones of origin. During spring, populations dominating phytoplankton communities of the well-mixed lakes grew further under river conditions. However the biomass of summer species, adapted to intermittent stratification, was halved along the river course. These seasonal differences were probably caused by lower maximum growth rates of summer species and enhanced losses (photorespiration, sedimentation or grazing of benthic filter feeders, but not of zooplankton) of algal populations under river conditions in summer.Phytoplankton assimilation, settlement of diatoms, or denitrification caused declining (probably growth limiting) concentrations of dissolved inorganic phosphorus (spring), silicon (early summer) or nitrogen (summer) along the river course, respectively. The minimum content of DRP was often followed by a clear-water phase. Reduced DSi supply selected against diatoms and additional DIN shortage favoured N2-fixing cyanobacteria in the last lake of the system.R-strategists (sensu Reynolds) were selected in both the flushed, shallow lakes and the lowland river. In general, the biomass of cyanobacteria increased within the lakes and declined along the river course. Some diatom populations grew in the river, but were grazed or settled down in the lakes. Beside this general picture, different populations from the same phylogenetic group did not necessarily perform in similar ways.  相似文献   

3.
The rates of temporal and spatial species turnover have been compared in different organisms and scales, revealing that both are not independent but, rather, associated. However, the knowledge is limited for the association between spatial turnover and temporal turnover. Here, we performed two investigations of the phytoplankton composition in the lakes of the Yangtze River catchment in China in the spring and summer of 2012, which covered regional spatial scale and two‐season temporal scale. We analysed the association between temporal and spatial species turnover in phytoplankton. The results showed that 1) the two‐season temporal turnover of phytoplankton varied based on the mean values and the coefficient of variance of environmental variables, and pH was the most important variable negatively affecting the temporal turnover; 2) the spatial beta diversity of phytoplankton in summer was higher than that in spring, and the distance decay pattern was significant in summer, but not in spring; 3) the variation in spatial turnover in spring and summer was attributed to the primary environmental variables (nitrogen, phosphorus and underwater available light) and broader‐scale spatial variables; 4) the proportion of jointly explained variation of spatial Bray–Curtis dissimilarity by the environment and space increased from ~38% (spring) to ~55% (summer), which was mainly due to the variation in spatially structured environmental variables during the two‐season temporal turnover, such as pH and ion concentrations; 5) the community compositions in summer were more similar between the lakes with similar two‐season temporal turnover. These results indicate that the spatial turnover of phytoplankton composition in summer was partially predetermined by the variation in environmental variables and phytoplankton composition during the process of two‐season temporal turnover, and highlight the understanding of temporal variations in spatial beta diversity as well as the underlying assembly mechanisms in phytoplankton.  相似文献   

4.
Summary The structure and seasonal dynamics of phytoplankton communities in the littoral zone were compared between oligotrophic and eutrophic lakes in the southeastern United States. Differences in diversity and species composition between lakes could be ascribed to long-term variation in nutrients corresponding to trophic status. However, significant within-lake variation could not be accounted for by microstratification of nutrients or other abiotic variables. Local biotic factors, perhaps dominated by the spawning activities of centrarchid fishes, resuspend periphyton and generate tychoplankton which becomes a persistent and integral part of the phytoplankton community in eutrophic systems. The patchy distribution of these biotic factors and resultant tychoplankton may lead to the observed variation. Grazing by herbivorous zooplankton was considered to be the major factor affecting the relative abundance of phytoplankton in the littoral zone, completely overriding the effects of nutrient concentration and biotic interactions between phytoplankton species during spring and summer.The relative importance of tychoplankton and grazing as regulatory factors operates independently of the trophic status or geographical location of a lake, making comparisons of different studies difficult and perhaps meaningless if traditional analyses based only on nutrients and interactions between species of phytoplankton are used. Limnetic as well as littoral components must be considered in future studies of phytoplankton communities in the littoral zone.  相似文献   

5.
The epilimnetic phytoplankton and its relations to nutrient content in Lake Verevi through the whole vegetation period in 2000 were studied. Lake Verevi (surface 12.6 ha, mean depth 3.6 m, maximum depth 11 m) is a hypertrophic hard-water lake, where the so-called spring meromixis occurs due to an extremely warm spring. Most dissolved nutrients in the epilimnion were low already in spring, and their concentrations were quite stable during the study period. The concentration of total silicon was very low in spring but increased rapidly in summer. Total phosphorus followed the pattern for stratified eutrophic lakes, and total nitrogen was quite high. The stoichiometric N:P ratio fluctuated between 25 and 81. The dynamics of phytoplankton biomass with a spring peak from April to May and a late summer peak from July to August is typical of Estonian eutrophic lakes. Green algae and chrysophytes occurred in the phytoplankton throughout the vegetation period. The spring peak was dominated by diatoms (Synedra ulna and Synedra acus var. angustissima) and the summer peak was caused by Aphanizomenon klebahnii and Ceratium hirundinella. The study showed that in physically stratified systems, the total concentration of limiting resources and plain physical factors (light and temperature) may be more important in the determination of phytoplankton dominants than different resource ratios. A combination of light and temperature optimum, along with nutrient utilization and transport capacity, effectively segregates phytoplankton species and can be used for the explanation of seasonal succession pattern.  相似文献   

6.
Organic matter fluxes and food web interactions in lakes depend on the abilities of heterotrophic microbial communities to access and degrade organic matter, a process that begins with extracellular hydrolysis of high molecular weight substrates. In order to determine whether patterns of enzymatic hydrolysis vary among shallow lakes of different trophic status, we investigated the hydrolysis of six specific organic macromolecules (polysaccharides) in the spring and late summer in four adjacent shallow lakes of eutrophic, oligotrophic, and dystrophic status in coastal North Carolina, USA. The spectrum of enzyme activities detected differed strongly between lakes, with all six polysaccharides hydrolyzed in West Mattamuskeet in May, while only two substrates were hydrolyzed in Lake Phelps in August/September. Differences in the spectrum of enzyme activities, and therefore the capabilities of heterotrophic microbial communities, were likely driven by variations among lakes in primary productivity patterns, sediment–water interactions, and/or water chemistry. Our data represent a first step towards a better understanding of carbon substrate availability and differences in carbon cycling pathways in shallow lakes of different trophic status.  相似文献   

7.
1. It is well accepted that fish, if abundant, can have a major impact on the zooplankton community structure during summer, which, particularly in eutrophic lakes, may cascade to phytoplankton and ultimately influence water clarity. Fish predation affects mean size of cladocerans and the zooplankton grazing pressure on phytoplankton. Little is, however, known about the role of fish during winter. 2. We analysed data from 34 lakes studied for 8–9 years divided into three seasons: summer, autumn/spring and winter, and four lake classes: all lakes, shallow lakes without submerged plants, shallow lakes with submerged plants and deep lakes. We recorded how body weight of Daphnia and then cladocerans varied among the three seasons. For all lake types there was a significant positive correlation in the mean body weight of Daphnia and all cladocerans between the different seasons, and only in lakes with macrophytes did the slope differ significantly from one (winter versus summer for Daphnia). 3. These results suggest that the fish predation pressure during autumn/spring and winter is as high as during summer, and maybe even higher during winter in macrophyte‐rich lakes. It could be argued that the winter zooplankton community structure resembles that of the summer community because of low specimen turnover during winter mediated by low fecundity, which, in turn, reflects food shortage, low temperatures and low winter hatching from resting eggs. However, we found frequent major changes in mean body weight of Daphnia and cladocerans in three fish‐biomanipulated lakes during the winter season. 4. The seasonal pattern of zooplankton : phytoplankton biomass ratio showed no correlation between summer and winter for shallow lakes with abundant vegetation or for deep lakes. For the shallow lakes, the ratio was substantially higher during summer than in winter and autumn/spring, suggesting a higher zooplankton grazing potential during summer, while the ratio was often higher in winter in deep lakes. Direct and indirect effects of macrophytes, and internal P loading and mixing, all varying over the season, might weaken the fish signal on this ratio. 5. Overall, our data indicate that release of fish predation may have strong cascading effects on zooplankton grazing on phytoplankton and water clarity in temperate, coastal situated eutrophic lakes, not only during summer but also during winter.  相似文献   

8.
Spring phytoplankton of 54 small lakes in southern Finland   总被引:4,自引:4,他引:0  
Lauri Arvola 《Hydrobiologia》1986,137(2):125-134
The abundance and species composition of phytoplankton communities were studied rapidly following the spring ice-melt in 54 small Finnish lakes that form a unique mosaic of water bodies. Phytoplankton biomass and cell density varied among the study lakes with a factor 100 between the lowest and highest values. Highest biomass and densities of phytoplankton characterized small ( < 0.05 km2) lakes with moderate or high water colour (> 80 mg Pt l–1). In contrast, biomass was low in clear-water lakes and lakes where water throughflow was strong. Typically one species dominated most phytoplankton communities, and usually comprised up to about 45% of the total phytoplankton biomass. Two-thirds of the 103 taxa observed were Chrysophyceans and Chlorophyceans. The most common taxa wereChlamydomonas spp. (Chlorophyceae) andCryptomonas ovata (Cryptophyceae).  相似文献   

9.
We hypothesised that increasing winter affluence and summer temperatures, anticipated in southern Europe with climate change, will deteriorate the ecological status of lakes, especially in those with shorter retention time. We tested these hypotheses analysing weekly phytoplankton and chemistry data collected over 2 years of contrasting weather from two adjacent stratified lakes in North Italy, differing from each other by trophic state and water retention time. Dissolved oxygen concentrations were higher in colder hypolimnia of both lakes in the second year following the cold winter, despite the second summer was warmer and the lakes more strongly stratified. Higher loading during the rainy winter and spring increased nutrient (N, P, Si) concentrations, and a phytoplankton based trophic state index, whilst the N/P ratio decreased in both lakes. The weakened Si limitation in the second year enabled an increase of diatom biovolumes in spring in both lakes. Chlorophyll a concentration increased in the oligo-mesotrophic lake, but dropped markedly in the eutrophic lake where the series of commonly occurring cyanobacteria blooms was interrupted. The projected increase of winter precipitation in southern Europe is likely to increase the nutrient loadings to lakes and contribute to their eutrophication. The impact is proportional to the runoff/in-lake concentration ratio of nutrients rather than to the retention time, and is more pronounced in lakes with lower trophy.  相似文献   

10.
Experiments were performed in situ in shallow, subtropical LakeOkeechobee (Florida. USA) to quantify and compare the responsesof phytoplanklon (in 20 I clear polycarbonate carboys) and periphyton(on nutrient-diffusing clay substrates) to additions of nitrogenand/or phosphorus. During early and late summer. 1994, bothassemblages were nitrogen limited or co-limited by nitrogenand phosphorus, indicating the potential for competition betweenbenthic and planktonic communities. During late summer, therewas evidence that high phytoplankton biomass reduced light penetrationthrough the water column and may have suppressed periphytongrowth. The similar phytoplankton and periphyton taxonomic structures,both dominated by Lyngbya sp. and pennate diatoms, suggestedthat in shallow regions of this lake, resuspended meroplanktonmight account for a large portion of phytoplankton biomass.This phenomenon has been observed in other shallow, wind-drivenFlorida lakes.  相似文献   

11.
In shallow hypertrophic lakes where light availability restricts the growth of macrophytes and benthic phytoplankton, pelagic phytoplankton modulates importantly ecosystem production and the energy transfer to heterotrophic bacteria. Diel and seasonal variations in primary production (PP) were studied in the hypertrophic Albufera de Valencia (Spain). Additionally, the relationship between PP and heterotrophic bacterial production (BP) was assessed. PP was extremely high, exceeding most values reported for hypertrophic lakes to date. PP displayed marked diurnal variations defined by the solar radiation curve. Likewise, PP changed importantly across seasons. Minimum PP coincided with maximum water transparency and short water residence times in winter, whereas maximum PP was observed in late spring associated with high chlorophyll a. The spring PP maximum contrasted with the summer maximum often observed in hypertrophic lakes. When compared to spring PP values, summer PP values were lower as a result of strong nitrogen limitation. In contrast to PP, BP remained fairly constant across seasons. Nonetheless, there was a joint diminution during increased water transparency followed by an increase in early spring. Phytoplankton was always the most relevant input to particulate carbon production, but the BP/PP ratio showed clear seasonal variations. The BP/PP ratio was minimum in spring, low in summer and highest in winter. The extracellular dissolved organic carbon released by phytoplankton was sufficient to meet bacterial carbon demand in all experimental dates, suggesting that allochthonous carbon sources play a minor role in sustaining BP, though they cannot be excluded. However, we hypothesize that high availability of dissolved organic carbon might explain the lack of coupling observed between BP and PP.  相似文献   

12.
We characterized the bacterioplankton community and its seasonal dynamics in two neighbouring hypertrophic lakes by denaturing gradient gel electrophoresis (DGGE) analysis of short (193 bp) 16S ribosomal DNA polymerase chain reaction (PCR) products obtained with primers specific for the domain Bacteria. Lake Blankaart is turbid and has a high phytoplankton biomass and episodic cyanobacterial blooms, whereas biomanipulated Lake Visvijver is characterized by clearwater conditions and the establishment of a dense charophyte vegetation. Both lakes were dominated by bacterial groups commonly found in freshwater habitats (e.g. ACK4 cluster of Actinomycetes; ACK stands for clones isolated from the Adirondack mountain lakes) . Yet, cluster analysis and principal components analysis (PCA) revealed that taxon composition of the bacterioplankton community of the two lakes differs substantially and consistently throughout the season. During the study year (1998), the bacterioplankton community of both lakes showed a distinct seasonal pattern. Lake Blankaart showed a clear differentiation between winter, spring, summer and autumn. In Lake Visvijver, summer samples differed greatly from spring, autumn and winter samples. We hypothesize that the contrasting bacterioplankton in the two neighbouring shallow lakes is determined largely by the presence or absence of macrophytes.  相似文献   

13.
钦州湾春、夏季浮游植物群落特征及其与环境因子的关系   总被引:2,自引:0,他引:2  
骆鑫  蓝文陆  李天深  黎明民 《生态学报》2019,39(7):2603-2613
为了探究人类活动对钦州湾浮游植物群落的影响,分别于2013年3月和7月进行了两航次综合调查。采用聚类和典型对应分析法,分别对浮游植物群落及其与环境因子的关系进行了研究。结果表明春夏两季浮游植物共有3门45属115种,其中硅藻100种、甲藻14种、蓝藻1种。两季浮游植物生态类群分别以暖温带广布种和暖温带近岸种为主,季节性差异明显。典型对应分析表明,影响浮游植物分布的主要环境因子是悬浮物、pH、盐度和营养盐。受入海径流和外来水团等因子影响,钦州湾浮游植物群落在夏季更易聚为相似性群落,春季则呈斑块化分布。  相似文献   

14.
Phylogenetic classifications of plants often do not reflect their ecological functions. In fact, the functional mechanisms of biological communities may be better understood if species are pooled into groups having similar characteristics. The objective of this work is to evaluate, with the use of multivariate methods, classifications based on the morphological and functional characteristics (size and form, mobility, potential mixotrophy, nutrient requirements, presence of gelatinous envelopes) of cyanobacteria and eukaryotic algae to explain the seasonal dynamic of the phytoplankton community. The analyses involve data from two deep lakes: Lake Garda, southern Alps, z max = 350 m; biennium 2002–2003) and Lake Stechlin (north-east Germany, z max = 67 m; 1995, 1998 and 2001). In both lakes, the temporal evolution of the phytoplankton communities within individual years followed a regular annual cycle, with the exception of Lake Stechlin in 1998, when an irregular phytoplankton pattern was caused by a sudden mass appearance of Planktothrix rubescens in the spring and summer months, resulting in a collapse of the whole community in autumn. Overall, the temporal developments of the phytoplankton communities obtained on the basis of patterns of the morpho-functional groups appeared highly comparable with those obtained, in the single years, on the basis of the original phytoplankton species matrices. The comparison of the morpho-functional groups of the lakes Garda and Stechlin showed important differences in the abundance and seasonality of the dominant phytoplankton types. The results obtained in this study underline that the use of classifications based on the adaptive strategies of the single species may represent a useful tool to investigate the community evolution and to compare phytoplankton assemblages of different lakes, overcoming problems related to possible differences of taxonomic accuracy and identification.  相似文献   

15.
The seasonal abundance and composition of photosynthetic picoplankton (0.2-2 μm) was compared among five oligotrophic to mesotrophic lakes in Ontario. Epilimnetic picocyanobacteria abundance followed a similar pattern in all lakes; maximum abundance (2-4 × 105 cells · ml−1) occurred in late summer following a period of rapid, often exponential increase after epilimnetic temperatures reached 20 °C. In half of the lakes picocyanobacteria abundance was significantly correlated with temperature, while in other lakes the presence of a small spring peak resulted in a poor correlation with temperature. In all lakes there was a significant correlation between epilimnetic abundance and day of the year. Correlations with water chemistry parameters (soluble reactive phosphorus, total phosphorus, particulate C: P and C: N) were generally weaker or insignificant. However, in the three lakes with the highest spring nitrate concentrations, a significant negative correlation with nitrate was observed. During summer stratification, picocyanobacteria abundance reached a maximum within the metalimnion and at or above the euphotic zone (1% of incident light) in all lakes. These peaks were not related to nutrient gradients. The average total phytoplankton biomass ranged from 0.5 g m−3 (wet weight) in the most oligotrophic lake to 1.4 g m−3 for the most mesotrophic with picoplankton biomass ranging from 0.01 g m−3 to 0.3 g m−3. Picocyanobacteria biomass comprised 1 to 9 % of total phytoplankton biomass in late summer, but in one year for one lake represented a maximum of 56%. Other photosynthetic picoplankton (unidentified eukaryotes, Chlorella spp. Nannochloris spp.), although less abundant (103 cells · ml−1) than picocyanobacteria, represented biomass equal or greater than that of the picocyanobacteria in spring and early summer. On average, half of the photosynthetic picoplankton biomass was eukaryotic in the more coloured lakes, while in the clear lakes less than 20% was eukaryotic. Among the lakes there was a significant positive correlation between the average light extinction coefficient and the proportion of eukaryotic biomass of the picoplankton. In mesotrophic Jack's Lake, the contribution of picoplankton to the maximum photosynthetic rate ranged from 10 to 47% with the highest values in the spring (47%) and late summer (33%), as a result of eukaryotic picoplankton and picocyanobacteria respectively. Picocyanobacteria cell specific growth rates were high during July (0.6-0.8 day−1) and losses were close to 80% of the growth rate. Thus, despite low biomass, photosynthetic picoplankton populations appeared to turn over rapidly and potentially contributed significantly to planktonic food webs in early spring and late summer.  相似文献   

16.
Species composition and interactions, biomass dominance, geographic distribution and driving variables were investigated for two key elements of the pelagic food web of Alpine lakes, the phytoplankton and the zooplankton, based on a single sampling campaign during summer 2000. Altogether, 70 lakes were surveyed, 49 of which located in three different lake districts of the west and eastern Italian Alps and 21 in the central Austrian Alps (within the uppermost Danube catchment). In addition to the analysis of environmental variables affecting distribution and species structure of the two planktonic compartments, a brief review of the main research lines and hypotheses adopted in the past for the study of phytoplankton and zooplankton in high Alpine lakes is given. The lakes, investigated partly within the European project EMERGE (EVK1-CT-1999-00032) and partly within a regional project in the eastern Alps, comprise a wide range of morphological, chemical and trophic conditions. The phytoplankton communities were found to be diverse and mostly dominated by flagellates (chrysophytes, cryptophytes and dinoflagellates), and only to a lesser extent by non-motile green algae, desmids and centric diatoms. The zooplankton communities were mainly dominated by Alpine cladocerans and copepod species, while rotifers were abundant within one group of Italian lakes (sampled in early summer). The multivariate statistical analyses (CCA) showed that catchment features (i.e. percentage of vegetation cover and geochemical composition) and nitrate concentration are essential drivers for the phytoplankton, whereas for zooplankton also trophic status of the lakes and phytoplankton structure are important. The combined variance analysis of the lake clusters outlined by the multivariate analyses on phytoplankton and zooplankton data, respectively, allowed the identification of four principal lake types (three located on siliceous and one on carbonaceous bedrock), each one characterised by a certain combination of habitat features, which in their turn influence trophic state, and phytoplankton and zooplankton species composition and functionality.  相似文献   

17.
Cell viabilities of phytoplankton in the Oyashio and Kuroshio-Oyashio transition regions of the northwest Pacific Ocean were examined in September 2003 (late summer) and May 2005 (spring) using a membrane permeability test. Specific lysis rates of the phytoplankton during late summer were also assessed by an esterase activity assay. In late summer, cyanobacteria Synechococcus spp. were > 2 × 104 cells ml− 1 and numerically dominated the phytoplankton communities. The cell viabilities of Synechococcus spp. and eukaryotic ultraphytoplankton (< 10 μm in size) were 60-79% and 26-41% in surface waters, respectively. The specific lysis rates of the phytoplankton were 0.12-0.67 d− 1 in late summer. By contrast, in spring, eukaryotic cells were predominant in the phytoplankton communities. The cell viabilities of surface eukaryotic ultraphytoplankton in spring were > 70% and significantly higher than those in late summer. During spring, Synechococcus spp. only occurred with < 1 × 104 cells ml− 1 in the Kuroshio-Oyashio transition region, and their viabilities were 80%. In the Oyashio region where a spring diatom bloom developed, the viability of fucoxanthin-containing algae (mainly diatoms and prymnesiophytes) was ca. 90%. These results suggested that the cell viability of phytoplankton could vary seasonally with their community structure in the study area. The phytoplankton cell death in late summer was particularly significant for their loss process and could support the microbial food webs by supplying dissolved organic carbon (DOC) derived from the dead cells.  相似文献   

18.
Autotrophic picoplankton communities were examined in eleven oligotrophic lakes from a broad geographic region of western Canada, representing a variety of physico-chemical and biological conditions. During our study, several of the lakes were treated with additions of inorganic nitrogen and phosphorus fertilizers. Picoplankton communities in most lakes were dominated (>70%) by unicellular or colonial coccoid cyanobacteria, provisionally identified by morphological and autofluorescence properties as Synechococcus. Also common in some lakes were red-fluorescing cyanobacteria and Chlorella-like eucaryotes. Autotrophic picoplankters contributed from 36-63% to total chlorophyll, from >2-26% to total phytoplankton carbon, and from 29–53% to total photosynthesis. Average populations ranged from >5-10,000 cells·ml−1 in winter and early spring to 65-75,000 cells · ml−1 in summer and fall. Peak densities in most lakes occurred in August-September and most populations were within the epilimnion or metalimnion/hypolimnion boundary. Subsurface peaks were prevalent only in untreated, strongly stratified lakes. Eucaryotic picoplankters became dominant in acidic (pH < 6.2), humic lakes. Colonial picoplankters were more common in more productive interior lakes in August, and though present, were uncommon in coastal systems. Picoplankton populations exhibited large increases under ice in a Yukon lake, and their abundance and seasonal distribution showed little relation to temperature or to light. Fertilization of lakes resulted in picoplankton population increases (>2x) and the elimination of subsurface peaks. Nutrients were considered to be one of the major factors controlling population abundance in these oligotrophic lakes with average pH < 6.5.  相似文献   

19.
The trophic transfer efficiency (TTE) is an important indicator of ecosystem functioning. However, TTE data from freshwater food webs are ambiguous due to differences in time scales and methods. We investigated the transfer of essential substances (carbon, nutrients, and polyunsaturated fatty acids) through plankton communities in 30 Polish lakes with different trophic status in the middle of summer. The results of our study revealed that different essential substances were transferred from phytoplankton to zooplankton with varying efficiencies. The average TTE of C, N, P, and the sum of ω‐3 PUFA were 6.55%, 9.82%, 15.82%, and 20.90%, respectively. Our results also show a large mismatch between the elemental and biochemical compositions of zooplankton and their food during the peak of the summer stagnation, which may further promote the accumulation of essential substances. There were also large differences in TTEs between trophic conditions, with the highest efficiencies in oligotrophic lakes and the lowest in dystrophic and eutrophic lakes. Therefore, our study indicates that disturbances like eutrophication and dystrophication similarly decrease the TTE of essential substances between phytoplankton and zooplankton in freshwater food webs.  相似文献   

20.
Summary 1. Species compositions of zooplankton and phytoplankton were followed in Tuesday Lake before and after experimental manipulation of its fish populations (addition of piscivorous largemouth bass, removal of planktivorous minnows). Plankton dynamics were compared to those of adjacent, unmanipulated Paul Lake, where piscivorous fish have been dominant historically. 2. Indices of similarity for the zooplankton communities in the two lakes in 1984 prior to the manipulation were low; however, following the manipulation in spring, 1985, similarity of the zooplankton in the two lakes rose considerably and remained high throughout 1986. This was the result of an increase in Tuesday Lake of previously rare large-bodied cladocerans (Daphnia pulex, Holopedium gibberum) which were the dominants in Paul Lake, and the disappearance in Tuesday Lake of the dominant small-bodied copepod Tropocyclops prasinus, a minor component of the Paul Lake zooplankton. These observations are consistent with prior observations of the effects of size-selective predation on zooplankton communities. 3. Phytoplankton communities also responded strongly to the manipulation, with similarity indices for the two lakes rising from low levels in 1984 to high levels of similarity in 1985 and 1986, reflecting the decrease of formerly dominant Tuesday Lake taxa which were unimportant in Paul Lake and the appearance or increase in Tuesday Lake of several taxa characteristic of the Paul Lake phytoplankton assemblage. these results clearly show that food web structure can have pronounced effects on community composition at all levels of the food web, and that, just as zooplankton communities are structured by sizeselective predation, phytoplankton communities are structured by herbivory. These observations may provide some insight into factors governing the complex distributions of phytoplankton species among various lakes.A contribution from the University of Notre Dame Environmental Research Center, funded by NSF grants BSR-83-08918 and BSR-86-06271  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号