首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Essential factors required for growing oocytes derived from bovine early antral follicles and their mechanisms of action are poorly understood. Fibroblast growth factor 7 (FGF7) is a member of the heparin-binding FGF family with a distinctive pattern of target-cell specificity. The effect of FGF7 on the stimulation of oocyte growth in a culture of cumulus-oocyte complexes with granulosa cells (COCGs, oocyte diameter; 90-100 microm) was investigated. The oocyte diameter of COCGs was increased significantly in the FGF7-containing medium (10 ng/ml; 117.2 +/- 3.2 microm, 50 ng/ml; 116.5 +/- 3.5 microm) compared to the control (0 ng/ml; 110.5 +/- 2.8 microm) after 16 days. However, there was no stimulatory effect of FGF7 on the proliferation of cumulus-granulosa cells. The FGF7 receptor, fibroblast growth factor receptor 2IIIb (FGFR2IIIb), was detected in cumulus-granulosa cells from COCGs. Messenger RNA expression of FGFR2IIIb was induced to cumulus-granulosa cells by FGF7. The mRNA expression levels of KIT ligand (KITLG), KIT (KIT), growth differentiation factor 9 (GDF9), and bone morphogenetic protein 15 (BMP15) in the cultured COCGs were determined in FGF7-treated (10 ng/ml) cultures using real time RT-PCR analysis. The levels of KITLG and KIT, but not GDF9 and BMP15 mRNA expression were stimulated by FGF7. Furthermore, neutralizing antibody for KIT attenuated the stimulatory action of FGF7 on the oocyte growth. These results strongly suggest that FGF7 may be an important regulator for oocyte growth and its action is mediated via the KIT/KITLG signaling pathway.  相似文献   

2.
The sensitivity of the target cells responsible for the gastrointestinal syndrome in mice was deduced from the steepness of the dose-survival curve for mice assessed on Day 7 after irradiation. The D0 value was 1.25 +/- 0.22 Gy, virtually identical to the value of 1.23 +/- 0.08 measured for microcolony-forming cells (clonogens) over about the same range of dose in concurrent experiments. The survival of clonogens was similar when assayed in mice surviving to Days 3, 4, or 5, but clonogenic sensitivity was lower when assessed on Day 7. This was shown at one dose to be due largely to a selection of mice with high colony counts with only a small contribution from crypt budding. The LD50 for mice corresponded to a surviving fraction of crypts of about 0.35. An injection of 5 mg streptomycin sulphate ip daily for 5 days after irradiation increased the latent period by about 1 day, increased the LD50 by about 1.4 Gy, but did not significantly change the survival of clonogens. These studies are the first to test and satisfy the interpretation of a dose-response curve for animal survival in terms of "target cell" survival, where measurements of both are made over a similar range of dose in concurrent experiments.  相似文献   

3.
A short-term colony assay for renal tubule epithelium has been developed. Uranyl nitrate (UN) is a heavy metal nephrotoxin that induces acute tubule necrosis followed by a large compensatory increase in the rate of cell proliferation in the nephron. UN was used to precipitate latent damage following renal irradiation. Using a subcapsular colony count at 14 days after unilateral irradiation, a single-dose cell survival curve was obtained with a D0 of 4.2 +/- 0.3 Gy. High-dose irradiation of an exteriorized kidney resulted in a survival curve which was biphasic, with a plateau in survival between 18 and 40 Gy. Subtraction of this plateau level from all the survival data gave D0 values of 2.5 +/- 0.2 Gy (data analyzed between 7.5 and 16 Gy) or 2.0 +/- 0.2 Gy (over range 12-16 Gy). The D0 value obtained at 20 months after bilateral (or unilateral) kidney irradiation, without the use of UN, was 2.9 +/- 1.1 Gy (over range 10-14 Gy).  相似文献   

4.
5.
Survival and oncogenic transformation were studied in C3H10T1/2 cells exposed to 31 MeV protons. Total doses of 0.5, 1 and 7 Gy were delivered as single and two equal fractions with various time intervals up to 10 h between doses. With split doses as compared with single doses to a total dose of 7 Gy, survival increased by a factor of 2.5 +/- 0.2, whereas the frequency of transformation per surviving cell declined by a factor of 3.1 +/- 0.5. Maximal split-dose recovery occurred within the first 5 h for both endpoints. Further, the transformation frequency decreased by factors of 3.1 +/- 0.6 and 1.5 +/- 0.3 respectively for total doses of 0.5 and 1.0 Gy split into two equal fractions. The data for 1 and 7 Gy are compatible with data in the literature for other low LET radiations.  相似文献   

6.
7.
Exposure of unirradiated human keratinocytes to irradiated cell conditioned medium (ICCM) is known to cause a cascade of events that leads to reproductive death and apoptosis. This study investigates the effect of ICCM on clonogenic survival, mitochondrial mass and BCL2 expression in unirradiated keratinocytes. Exposure to 5 mGy, 0.5 Gy and 5 Gy ICCM resulted in a significant decrease in clonogenic survival. Human keratinocytes incubated with ICCM containing an antioxidant, N-acetylcysteine, showed no significant decrease in clonogenic survival. HPV-G cells incubated with ICCM containing a caspase 9 inhibitor showed no significant decrease in clonogenic survival when the ICCM dose was < or =0.5 Gy. A significant increase in mitochondrial mass per cell was observed after exposure to 5 mGy and 0.5 Gy ICCM. A change in the distribution of the mitochondria from a diffuse cytoplasmic distribution to a more densely concentrated perinuclear distribution was also observed at these doses. No significant increase in mitochondrial mass or change in distribution of the mitochondria was found for 5 Gy ICCM. Low BCL2 expression was observed in HPV-G cells exposed to 5 mGy or 0.5 Gy ICCM, whereas a large significant increase in BCL2 expression was observed in cells exposed to 5 Gy ICCM. This study has shown that low-dose irradiation can cause cells to produce medium-borne signals that can cause mitochondrial changes and the induction of BCL2 expression in unirradiated HPV-G cells. The dose dependence of the mitochondrial changes and BCL2 expression suggests that the mechanisms may be aimed at control of response to radiation at the population level through signaling pathways.  相似文献   

8.
Intracellular calcium concentration ([Ca2+]i) governs the contractile status of arteriolar smooth muscle cells (SMC). Although studied in vitro, little is known of SMC [Ca2+]i dynamics during the local control of blood flow. We tested the hypothesis that the rise and fall of SMC [Ca2+]i underlies arteriolar constriction and dilation in vivo. Aparenchymal segments of second-order arterioles (diameter 35 +/- 2 microm) were prepared in the superfused cheek pouch of anesthetized hamsters (n = 18) and perifused with the ratiometric dye fura PE-3 (AM) to load SMC (1 microM, 20 min). Resting SMC [Ca2+]i was 406 +/- 37 nM. Elevating superfusate O2 from 0 to 21% produced constriction (11 +/- 2 microm) that was unaffected by dye loading; [Ca2+]i increased by 108 +/- 53 nM (n = 6, P < 0.05). Cycling of [Ca2+]i during vasomotion (amplitude, 150 +/- 53 nM; n = 4) preceded corresponding diameter changes (7 +/- 1 microm) by approximately 2 s. Microiontophoresis (1 microm pipette tip; 1 microA, 1 s) of phenylephrine (PE) transiently increased [Ca2+]i by 479 +/- 64 nM (n = 8, P < 0.05) with constriction (26 +/- 3 microm). Flushing blood from the lumen with saline increased fluorescence at 510 nm by approximately 45% during excitation at both 340 and 380 nm with no difference in resting [Ca2+]i, diameter or respective responses to PE (n = 7). Acetylcholine microiontophoresis (1 microA, 1 s) transiently reduced resting SMC [Ca2+]i by 131 +/- 21 nM (n = 6, P < 0.05) with vasodilation (17 +/- 1 microm). Superfusion of sodium nitroprusside (10 microM) transiently reduced SMC [Ca2+]i by 124 +/- 18 nM (n = 6, P < 0.05), whereas dilation (23 +/- 5 microm) was sustained. Resolution of arteriolar SMC [Ca2+]i in vivo discriminates key signaling events that govern the local control of tissue blood flow.  相似文献   

9.
Variation in length, disaccharide composition, and sulfation of heparan sulfate (HS) affects fibroblast growth factor (FGF) signaling. However, it is unclear whether the specific distribution of groups within oligosaccharides or random variations in charge density underlies the effects. Recently we showed that a mixture of undersulfated octasaccharides exhibiting 7 and 8 sulfates (7,8-S-OctaF7) generated from heparin had the highest affinity for FGF7 monitored by salt resistance (>0.60 M salt) of octasaccharide-FGF7 complexes. 7,8-S-OctaF7 also had the highest specific activity for formation of a complex with dimeric FGFR2IIIb competent to bind FGF7. Here we show that when endogenous HS was inhibited by chlorate treatment, 7,8-S-OctaF7 specifically supported FGF7-stimulated DNA synthesis and downstream signaling in FGFR2IIIb-expressing mouse keratinocytes. It failed to support FGF1 signaling in both HS-deficient mouse keratinocytes and 3T3 fibroblasts. In contrast, abundant, more highly sulfated and heterogenous mixtures of octasaccharides with lower affinity (0.30-0.60 M salt) for FGF7 supported FGF1-induced signaling in both cell types. In contrast to the two-component 7,8-S-OctaF7 mixture from FGF7, the high affinity octasaccharide fraction from FGF1 was a heterogeneous mixture with components ranging from 8 to 12 sulfates with 11-S-octasaccharides the most abundant. The high affinity fraction exhibited similar properties to the lower affinity fractions from both FGF1 and FGF7. Octasaccharide mixtures eluting from FGF1 between 0.30 and 0.60 M and above 0.60 M salt were nearly equal in support of FGF1 signaling in fibroblasts and keratinocytes. Both were deficient in support of FGF7-induced signaling in keratinocytes. The results show that both variations in overall charge density and specific distribution of charged groups within HS motifs exhibit FGF-specific control over formation of FGF-HS-FGFR complexes and downstream signaling.  相似文献   

10.
Study of the radiation biology of human bone marrow hematopoietic cells has been difficult since unseparated bone marrow cell preparations also contain other nonhematopoietic stromal cells. We tested the clonogenic survival after 0.05 or 2 Gy/min X irradiation using as target cells either fresh human bone marrow or nonadherent hematopoietic cells separated from stromal cells by the method of long-term bone marrow culture (LTBMC). Sequential nonadherent cell populations removed from LTBMC were enriched for hematopoietic progenitors forming granulocyte-macrophage colony-forming unit culture (GM-CFUc) that form colonies at Day 7, termed GM-CFUc7, or Day 14 termed GM-CFUc14. The results demonstrated no effect of dose rate on the D0 or n of fresh marrow GM-CFUc (colonies greater than or equal to 50 cells) after plating in a source of their obligatory growth factor, colony-stimulating factor (CSF) (GM-CFUc7 irradiated at 2 Gy/min, D0 = 1.02 +/- 0.05, n = 1.59 +/- 0.21; at 0.05 Gy/min, D0 = 1.07 +/- 0.03, n = 1.50 +/- 0.04; GM-CFUc14 at 2 Gy/min, D0 = 1.13 +/- 0.03, n = 1.43 +/- 0.03; at 0.05 Gy/min, D0 = 1.16 +/- 0.04, n = 1.34 +/- 0.05). There was a decrease in the radiosensitivity of GM-CFUc7 and GM-CFUc14 derived from nonadherent cells of long-term bone marrow cultures compared to fresh marrow that was observed at both dose rates. In contrast, adherent stromal cells irradiated at low compared to high dose rate showed a significantly greater radioresistance (Day 19 colonies of greater than or equal to 50 cells; at 2 Gy/min, D0 = 0.99 Gy, n = 1.03; at 0.05 Gy/min D0 = 1.46 Gy, n = 2.00). These data provide strong evidence for a difference in the radiosensitivity of human marrow hematopoietic progenitor compared to adherent stromal cells.  相似文献   

11.
To assess the lethal doses of gamma radiation and corresponding apoptotic response in new established human melanoma cell lines we exposed exponentially growing cultures to 8-100 Gy gamma radiation. The apoptosis and cell survival were determined by trypan blue exclusion, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) reaction, agarose gel electrophoresis, colony forming assay, and long-term survival assay. The maximal DNA fragmentation 3 days after irradiation was observed in cultures irradiated with 20 Gy (36.9% TUNEL positive cells). The cultures irradiated with 50 and 100 Gy contained 18.7% and 16.4% TUNEL positive cells, respectively. Cultures exposed to 8 and 20 Gy gamma radiation recovered by week 3-4. Lethally irradiated (50 and 100 Gy) cultures which contained less apoptotic cells by day 3 died by week 5. A detectable increase in melanoma cell pigmentation after irradiation was also observed. The survival of human melanoma cell cultures after exposure to gamma radiation does not correlate with the level of apoptotic cells by day 3. At high radiation doses (> 50 Gy) when the radiation induced cell pigmentation is not inhibited the processes of apoptotic DNA fragmentation might be preferentially inactivated.  相似文献   

12.
To systematically study the selection of radioresistant cells in clinically advanced breast cancer, a model system was generated by treating MDA-MB231 breast cancer cells with fractionated gamma radiation. A clonogenic assay of the surviving cell populations showed that 2-6 Gy per fraction resulted in a rapid selection of radioresistant populations, within three to five fractions. Irradiation with additional fractions after this initial increase did not increase the radioresistance of the surviving population significantly. Doses of 0.5 and 8 Gy per fraction were not effective in selecting radioresistant cells. To further determine the cause of the changes in radiosensitivity, 15 clones were isolated from the cell populations treated with 40 or 60 Gy with 2 or 4 Gy per fraction, respectively, and were analyzed for radiosensitivity. The average D(10) for these clones was 6.75 +/- 0.36 Gy, which was higher than that for the parental cell population (D(10) = 6.0 +/- 0.2 Gy). The operation of cell cycle checkpoints and the doubling time were similar for both the nonirradiated parental population and the isolated radioresistant subclones. In contrast, a decrease in the apoptotic potential was correlated (r = 0.7, P < 0.01) with increased survival after irradiation, suggesting that apoptosis is an important factor in determining radioresistance under our experimental conditions. We also isolated several subclones from the nonirradiated parental cell population and analyzed them to determine their radiosensitivity after fractionated irradiation. Ten fractions of 4 Gy (40 Gy in total) did not result in a significant increase in the radioresistance of these subclones compared to the irradiated cell populations. The possible mechanisms of the increased radioresistance after fractionated irradiation are discussed.  相似文献   

13.
The effects of fibroblast growth factor (FGF) on hamster dermal fibroblasts and chondrogenic cells, both of mesodermal origin, were compared with special reference to growth stimulation and morphological changes in monolayer cultures, and colony formation in semisolid medium. FGF (10 to 200 ng/ml) caused appreciable cell proliferation of dermal fibroblasts but not of chondrogenic cells, while FGF (50-200 ng/ml) caused very marked dose-dependent morphological changes in monolayer cultures and colony formation in semisolid medium of both fibroblasts and chondrogenic cells. It is suggested that FGF is the same type of growth factor as the transforming growth factor(s) because, like the latter, it induces drastic morphological changes of normal mesodermal cells in monolayer cultures and their colony formation in semisolid medium.  相似文献   

14.
The objective of this study was to determine whether connexin 32-type gap junctions contribute to the "contact effect" in follicular thyrocytes and whether the response is influenced by radiation quality. Our previous studies demonstrated that early-passage follicular cultures of Fischer rat thyroid cells express functional connexin 32 gap junctions, with later-passage cultures expressing a truncated nonfunctional form of the protein. This model allowed us to assess the role of connexin 32 in radiation responsiveness without relying solely on chemical manipulation of gap junctions. The survival curves generated after gamma irradiation revealed that early-passage follicular cultures had significantly lower values of alpha (0.04 Gy(-1)) than later-passage cultures (0.11 Gy(-1)) (P < 0.0001, n = 12). As an additional way to determine whether connexin 32 was contributing to the difference in survival, cultures were treated with heptanol, resulting in higher alpha values, with early-passage cultures (0.10 Gy(-1)) nearly equivalent to untreated late-passage cultures (0.11 Gy(-1)) (P > 0.1, n = 9). This strongly suggests that the presence of functional connexin 32-type gap junctions was contributing to radiation resistance in gamma-irradiated thyroid follicles. Survival curves from proton-irradiated cultures had alpha values that were not significantly different whether cells expressed functional connexin 32 (0.10 Gy(-1)), did not express connexin 32 (0.09 Gy(-1)), or were down-regulated (early-passage plus heptanol, 0.09 Gy(-1); late-passage plus heptanol, 0.12 Gy(-1)) (P > 0.1, n = 19). Thus, for proton irradiation, the presence of connexin 32-type gap junctional channels did not influence their radiosensitivity. Collectively, the data support the following conclusions. (1) The lower alpha values from the gamma-ray survival curves of the early-passage cultures suggest greater repair efficiency and/or enhanced resistance to radiation-induced damage, coincident with the expression of connexin 32-type gap junctions. (2) The increased sensitivity of FRTL-5 cells to proton irradiation was independent of their ability to communicate through connexin 32 gap junctions. (3) The fact that the beta components of the survival curves from both gamma rays and proton beams were similar (average 0.022 +/- 0.008 Gy(-2), P > 0.1, n = 39) suggests that at higher doses the loss of viability occurs at a relatively constant rate and is independent of radiation quality and the presence of functional gap junctions.  相似文献   

15.
The effect of X-irradiation upon murine antibody-forming cell precursors (B cells) was established in cultures of spleen cells stimulated with the B cell mitogen lipopolysaccharide (LPS). At day 5 and 7 the numbers of IgM- and IgG2-secreting cells were determined in cultures of irradiated and nonirradiated spleen cells. From these numbers a Do of 0.6-1.2 Gy for the IgM, and of 0.9-2.1 Gy for the IgG2 response was calculated. Similar Do values were obtained under limiting dilution culture conditions. In the limiting dilution assay the effect of irradiation upon the size of the IgM-producing clones could also be determined. It was found that irradiation reduced the number of LPS-reactive B cells without affecting the size of the clones produced by the surviving cells.  相似文献   

16.
Cell survival, mutations and chromosomal effects were studied in primary human lymphocytes exposed in G0 phase to a proton beam with an incident energy of 0.88 MeV (incident LET of 28 keV/microm) in the dose range 0.125-2 Gy. The curves for survival and mutations at the hypoxanthine-guanine phosphoribosyl transferase locus were obtained by fitting the experimental data to linear and linear-quadratic equations, respectively. In the dose interval 0-1.5 Gy, the alpha parameters of the curves were 0.42/Gy and 3.6 x 10(-6) mutants/Gy, respectively. The mutation types at the HPRT locus were analyzed by multiplex-PCR in 94 irradiated and 41 nonirradiated clones derived from T lymphocytes from five healthy donors. All clones showed a normal multiplex-PCR pattern and were classified as point mutations. Chromosome aberration data were fitted as a linear function of dose (alpha = 0.62 aberrations per cell Gy(-1)). By irradiating G0 lymphocytes from a single subject with 28 keV/microm protons and gamma rays, an RBE of 6.07 was obtained for chromosome aberrations. An overinvolvement of chromosome 9 relative to chromosome 7 was found in chromosome breaks after chromosome painting analysis.  相似文献   

17.
Induction and rejoining of DNA double-strand breaks in bladder tumor cells   总被引:8,自引:0,他引:8  
The induction and rejoining of radiation-induced double-strand breaks (DSBs) in cells of six bladder tumor cell lines (T24, UM-UC-3, TCC-SUP, RT112, J82, HT1376) were measured using the neutral comet assay. Radiation dose-response curves (0-60 Gy) showed damage (measured as mean tail moment) for five of the cell lines in the same rank order as cell survival (measured over 0-10 Gy), with the least damage in the most radioresistant cell line. Damage induction correlated well with clonogenic survival at high doses (SF10) for all six cell lines. At the clinically relevant dose of 2 Gy, correlation was good for four cell lines but poor for two (TCC-SUP and T24). The rejoining process had a fast and slow component for all cell lines. The rate of these two components of DNA repair did not correlate with cell survival. However, the time taken to reduce the amount of DNA damage to preirradiated control levels correlated positively with cell survival at 10 Gy but not 2 Gy; radioresistant cells rejoined the induced DSBs to preirradiation control levels more quickly than the radiosensitive cells. Although the results show good correlation between SF10 and DSBs for all six cell lines, the lack of correlation with SF2 for TCC-SUP and T24 cells would suggest that a predictive test should be carried out at the clinically relevant dose. At present the neutral comet assay cannot achieve this.  相似文献   

18.
The recent development of an in vitro lymphocyte colony assay makes it possible to examine variations in the radiosensitivity of humans using peripheral blood lymphocytes (PBL) instead of the skin fibroblast assay. Our recent study (M. Hakoda et al., Mutat. Res. 197, 161-169, 1988) showed that most of the colonies consisted of lymphocytes bearing CD4 or CD8 antigens. Since the fraction of CD4+ and CD8+ cells in PBL differs among individuals, we suspected that individual radiosensitivity might be biased by the different subset frequencies if the dose-survival curves of the CD4+ and CD8+ cells were different from each other. In the present study, CD4+ (helper/inducer T) and CD8+ (suppressor/cytotoxic T) lymphocytes were isolated from PBL and their dose-survival curves were determined. The results showed that the D10 (dose required to reduce the surviving fraction to 10%) was similar for these two types of cells [3.13 +/- 0.10 Gy (mean +/- SD) for CD4+, 3.34 +/- 0.50 Gy for CD8+ and 3.14 +/- 0.17 Gy for the unsorted cells], supporting the use of the whole PBL population for the screening of individuals with altered radiosensitivity.  相似文献   

19.
He JL  Chen WL  Jin LF  Jin HY 《Mutation research》2000,469(2):223-231
The genotoxic effects of X-ray radiation on human lymphocytes were measured using the single cell gel electrophoresis (SCGE) assay (comet assay) and the cytokinesis-blocked micronucleus (CBMN) test; both were carried out in vitro on isolated human lymphocytes in order to compare the relationship and sensitivity of these two detecting methods. The radiation-doses were 0.00, 0.02, 0.05, 0.10, 0.25, 0.50, 1.00 and 2.00 Gy. In the comet assay, the average comet length (38.6+/-0.8 microm) of 0.05 Gy was significantly longer than that (29.4+/-1.1 microm) of 0 Gy (P<0.01), moreover, the average comet length increased with the dose of X-ray radiation. In the CBMN, both the average micronucleus rate (MN) and micronucleated cell rate (MNC) of 0.05 Gy were 11.5+/-4.5 per thousand, which showed no difference with that (7.5+/-0.5 per thousand) of 0 Gy (P>0.05). The lowest dose, which induced significant increase of average MN and MNC, was 0.25 Gy. The average MN and MNC rates increased with radiation-dose. The results showed that there was correlation between SCGE and CBMN, and the sensitivity of SCGE was significantly higher than that of CBMN.  相似文献   

20.
T M Koval 《Radiation research》1988,115(3):413-420
TN-368 lepidopteran insect cells display a pronounced resistance to the lethal effects of ionizing radiation and exhibit superior DNA repair capabilities. When a TN-368 cell population entering stationary growth phase is irradiated with 137Cs gamma rays and then incubated for several hours before cell dilution and plating for colony formation, the surviving fraction is increased several-fold over cells diluted and plated immediately after irradiation. Similarly, the survival of cells plated immediately following the second of two equivalent doses separated by several hours is greater than the survival of cells plated immediately following a single dose equal to the sum of the split doses. Both processes exhibit similar biphasic repair kinetics and reach maximal levels by 6 h. The phenomena appear initially to be analogous to confluent-holding and split-dose recovery as described for mammalian cells. However, the survival levels obtained for doses of 61-306 Gy after allowing for these recovery processes to occur are quite high and greatly exceed survival levels for all but relatively low doses less than 50 Gy. For example, while the survival of cells irradiated with 150 Gy is near 0.15, the survival of cells receiving 306 Gy in two equivalent split doses is approximately 0.77. Even if damage induced by the first of the split doses was completely repaired, it might be expected that the survival would be near the level of the second dose alone, or near 0.15. Instead the survival is approximately five times greater, suggesting that the first split dose stimulated a repair system not present in unirradiated cells. The situation for confluent-holding recovery is similar to that for split-dose recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号