首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zeng XH  Lou XL  Qu AL  Wu HX  Zhou Z 《生理学报》2000,52(2):98-102
实验以单个Wistar大鼠胰腺β细胞为对象,用穿孔膜片箝和细胞贴附式记录技术研究ATP敏感K^+通道(KATP)、延迟整流型K^+通道(KDR)、Ca^2+通道和Na^+通道的有关特性。结果表明:⑴KATP通道的内流电导约65pS,外流电导约31pS,反转电位在-60mV左右;⑵KDR通道在延迟20ms后达到最大激活,KDR电流约为KATP的1/3;⑶钙电流在0mV左右达到40-60pA的峰值,L  相似文献   

2.
3.
4.
5.
6.
Glucagon-like peptide 1 (GLP-1) potentiates glucose-stimulated insulin secretion from pancreatic β cells, yet does not directly stimulate secretion. The mechanisms underlying this phenomenon are incompletely understood. Here, we report that GLP-1 augments glucose-dependent rises in NAD(P)H autofluorescence in both βTC3 insulinoma cells and islets in a manner consistent with post-translational activation of glucokinase (GCK). GLP-1 treatment increased GCK activity and enhanced GCK S-nitrosylation in βTC3 cells. A 2-fold increase in S-nitrosylated GCK was also observed in mouse islets. Furthermore, GLP-1 activated a FRET-based GCK reporter in living cells. Activation of this reporter was sensitive to inhibition of nitric-oxide synthase (NOS), and incorporating the S-nitrosylation-blocking V367M mutation into this sensor prevented activation by GLP-1. GLP-1 potentiation of the glucose-dependent increase in islet NAD(P)H autofluorescence was also sensitive to a NOS inhibitor, whereas NOS inhibition did not affect the response to glucose alone. Expression of the GCK(V367M) mutant also blocked GLP-1 potentiation of the NAD(P)H response to glucose in βTC3 cells, but did not significantly affect metabolism of glucose in the absence of GLP-1. Co-expression of WT or mutant GCK proteins with a sensor for insulin secretory granule fusion also revealed that blockade of post-translational GCK S-nitrosylation diminished the effects of GLP-1 on granule exocytosis by ~40% in βTC3 cells. These results suggest that post-translational activation of GCK is an important mechanism for mediating the insulinotropic effects of GLP-1.  相似文献   

7.
Estradiol stimulates cadherin expression in rat granulosa cells   总被引:4,自引:0,他引:4  
We have investigated the ability of hormones to modulate cadherin expression by differentiating cells. Immunocytochemical and immunoblot techniques were employed to analyze the effects of estradiol and follicle-stimulating hormone on cadherin expression in rat granulosa cells. Estradiol was shown to stimulate the expression of cadherin by these cells. This is the first report of a hormone regulating the levels of cadherin in differentiating cells.  相似文献   

8.
9.
10.
The present study investigated the role of selenium in the regulation of pancreatic beta-cell function. Utilising the mouse beta-cell line Min6, we have shown that selenium specifically upregulates Ipf1 (insulin promoter factor 1) gene expression, activating the -2715 to -1960 section of the Ipf1 gene promoter. Selenium increased both Ipf1 and insulin mRNA levels in Min6 cells and stimulated increases in insulin content and insulin secretion in isolated primary rat islets of Langerhans. These data are the first to implicate selenium in the regulation of specific beta-cell target genes and suggest that selenium potentially promotes an overall improvement in islet function.  相似文献   

11.
Three different methods, membrane capacitance (C(m)) measurement, amperometry and FM dye labeling were used to investigate the role of extracellular ATP in insulin secretion from rat pancreatic beta cells. We found that extracellular application of ATP mobilized intracellular Ca(2+) stores and synchronously triggered vigorous exocytosis. No influence of ATP on the readily releasable pool of vesicles was observed, which argues against a direct modulation of the secretory machinery at a level downstream of Ca(2+) elevation. The stimulatory effects of ATP were greatly reduced by intracellular perfusion of BAPTA but not EGTA, suggesting a close spatial association of fusion sites with intracellular Ca(2+) releasing sites. ATP-induced Ca(2+) transients and exocytosis were not blocked by thapsigargin (TG), by a ryanodine receptor antagonist or by dissipation of pH in acidic stores by monensin alone, but they were greatly attenuated by IP(3) receptor inhibition as well as ionomycin plus monensin, suggesting involvement of IP(3)-sensitive acidic Ca(2+) stores. Taken together, our data suggest that extracellular ATP triggers exocytosis by mobilizing spatially limited acidic Ca(2+) stores through IP(3) receptors. This mechanism may explain how insulin secretion from the pancreas is coordinated through diffusible ATP that is co-released with insulin.  相似文献   

12.
Phosphoinositide 3-kinases (PI3Ks) are key enzymes that activate intracellular signaling molecules when a number of different growth factors bind to cell surface receptors. PI3Ks are divided into three classes (I, II, III), and enzymes of each class have different tissue specificities and physiological functions. The α-isoform (PI3K-C2α) of class II PI3Ks is considered ubiquitous and preferentially activated by insulin. Our previous study showed that suppression of PI3K-C2α leads to apoptotic cell death. The aim of this study is to determine whether depletion of PI3K-C2α affects ERK or PKB/Akt activity following stimulation with serum and insulin growth factors in Chinese hamster ovary cells expressing human insulin receptors (CHO-IR) and human HepG2 liver cells. Different antisense oligonucleotides (ODNs), which were designed based on the sequence of the C2 domain of the human PI3K-C2α gene, were transfected into cells to inhibit PI3K-C2α expression. Insulin- or serum-induced stimulation of ERK was significantly suppressed by depletion of PI3K-C2α, whereas phosphorylation of IRS-1 and the stimulation of PKB/Akt by insulin were not affected. The number of apoptotic cells was also increased by depletion of PI3K-C2α protein levels. Taken together, our data indicate that PI3K-C2α may be a crucial factor in the stimulation of ERK activity in response to serum or insulin, whereas it is less important for the stimulation of PKB/Akt activity in response to insulin.  相似文献   

13.
14.
The effect of interleukin 1 (IL-1) on glucose transport activity in isolated rat adipose cells was examined. IL-1 beta stimulated 3-O-methylglucose (3OMG) transport in a time and dose dependent manner. This effect appears to be due to increased maximal transport velocity (Vmax) of the carrier. Addition of insulin and IL-1 beta resulted in an additive stimulation of transport, suggesting different mechanisms. IL-1 alpha had no effect on glucose transport. Glu-4, a relatively inactive IL-1 beta analogue in most cells, stimulated glucose uptake in a time and dose dependent manner with kinetics indistinguishable from those of IL-1 beta.  相似文献   

15.
Thrombin stimulates c-sis gene expression in microvascular endothelial cells   总被引:27,自引:0,他引:27  
We have determined whether expression of the c-sis gene product, platelet-derived growth factor (PDGF), is regulated in cultured renal microvascular endothelial cells by factors to which vascular endothelial cells may be exposed at sites of perivascular cellular proliferation. Thrombin exposure increased endothelial cell levels of c-sis message by 3-5-fold over a time course that peaked at 4 h after exposure. Similarly, thrombin-exposed microvascular endothelial cells released increased amounts of PDGF activity into their media. The thrombin effect was not mediated through the proteolytic activity of thrombin, as proteolytically inactive thrombin stimulated the c-sis expression as well as native thrombin. This stimulation was mimicked by exposure of cells to biologically active phorbol esters, suggesting that thrombin action may be mediated through activation of kinase C (Ca2+/phospholipid-dependent enzyme). Thus, thrombin regulates the expression and release of PDGF activity from endothelial cells in culture and may act in vivo to stimulate mitogen release from endothelial cells, thereby inducing proliferation of perivascular cells.  相似文献   

16.
17.
Cannabinoid 1 receptors (CB1Rs) are expressed in peripheral tissues, including islets of Langerhans, where their function(s) is under scrutiny. Using mouse β‐cell lines, human islets and CB1R‐null (CB1R?/?) mice, we have now investigated the role of CB1Rs in modulating β‐cell function and glucose responsiveness. Synthetic CB1R agonists diminished GLP‐1‐mediated cAMP accumulation and insulin secretion as well as glucose‐stimulated insulin secretion in mouse β‐cell lines and human islets. In addition, silencing CB1R in mouse β cells resulted in an increased expression of pro‐insulin, glucokinase (GCK) and glucose transporter 2 (GLUT2), but this increase was lost in β cells lacking insulin receptor. Furthermore, CB1R?/? mice had increased pro‐insulin, GCK and GLUT2 expression in β cells. Our results suggest that CB1R signalling in pancreatic islets may be harnessed to improve β‐cell glucose responsiveness and preserve their function. Thus, our findings further support that blocking peripheral CB1Rs would be beneficial to β‐cell function in type 2 diabetes.  相似文献   

18.
Nitric oxide (NO) may contribute to pancreatic beta cell damage during the development of type 1 diabetes. Its formation can be triggered by cytokines which induce the expression of the inducible form of nitric oxide synthase (iNOS) in pancreatic islets. In the iNOS-catalyzed reaction, arginine is converted into citrulline and NO. Cellular NO formation may be regulated by the availability of arginine. Arginine can be provided extracellularly, entering the cell mainly through the cationic amino acid transporter system y+CAT, and intracellularly, by protein degradation or synthesis from citrulline (the citrulline-NO cycle). This study demonstrates for the first time that the citrulline-NO cycle is induced in FACS-purified rat beta cells exposed to interleukin-1beta(IL-1beta) and that extracellular arginine or citrulline is required for NO production by beta cells. Moreover, the accumulation of arginine was higher in IL-1beta-treated beta cells than in control cells.beta cells expressed mRNAs for the two y+CAT transporters CAT-2A and CAT-2B with no change in transporter expression after exposure to IL-1beta. It is concluded that the activation of the citrulline-NO cycle and an increase in arginine accumulation may be adaptive responses in cytokine-exposed beta-cells to assure an adequate arginine supply for continuous NO production in the presence of low extracellular arginine levels which may prevail during insulitis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号