共查询到20条相似文献,搜索用时 8 毫秒
1.
Characterization of salt-tolerant mutant for enhancement of l-threonine production in Escherichia coli 总被引:1,自引:0,他引:1
Escherichia coli strain HS3, metabolically engineered to have Met–, AHVr, IleL and AECr characteristics, produced 58.0 g/l of l-threonine, but it was neither salt-tolerant nor osmotolerant; and the growth and threonine production of the strain were
severely inhibited both by the addition of NaCl with a concentration higher than 2% and by the presence of glucose with a
concentration higher than 10%. Therefore, salt-tolerant mutants were isolated. The salt-tolerant mutants, HS454 and HS528
which were derived from strain HS3, were both tolerant to salt (2%) and hyperproductive. The growth and l-threonine production by the mutant strain HS454 were almost unaffected by a glucose concentration lower than 10%, but gradually
reduced with increasing glucose concentration, up to 15%. However, the mutant strain HS528 showed slightly enhanced growth
and l-threonine production with increasing glucose concentration, up to 10–12.5%. Strains HS454 and HS528 produced 69.8 g/l and
74.0 g/l of l-threonine, respectively in a 5-l jar fermentor.
Received: 21 January 2000 / Received revision: 31 March 2000 / Accepted: 5 May 2000 相似文献
2.
Wang Jianli Ma Wenjian Fang Yu Yang Jun Zhan Jie Chen Shangwei Wang Xiaoyuan 《Journal of industrial microbiology & biotechnology》2019,46(11):1557-1568
Journal of Industrial Microbiology & Biotechnology - l-Threonine is an important branched-chain amino acid and could be applied in feed, drugs, and food. In this study, l-threonine production... 相似文献
3.
Jiaheng Liu Huiling Li Hui Xiong Xixian Xie Ning Chen Guangrong Zhao Qinggele Caiyin Hongji Zhu Jianjun Qiao 《Biotechnology and bioengineering》2019,116(1):110-120
L -Threonine, a kind of essential amino acid, has numerous applications in food, pharmaceutical, and aquaculture industries. Fermentative l -threonine production from glucose has been achieved in Escherichia coli. However, there are still several limiting factors hindering further improvement of l -threonine productivity, such as the conflict between cell growth and production, byproduct accumulation, and insufficient availability of cofactors (adenosine triphosphate, NADH, and NADPH). Here, a metabolic modification strategy of two-stage carbon distribution and cofactor generation was proposed to address the above challenges in E. coli THRD, an l -threonine producing strain. The glycolytic fluxes towards tricarboxylic acid cycle were increased in growth stage through heterologous expression of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and citrate synthase, leading to improved glucose utilization and growth performance. In the production stage, the carbon flux was redirected into l -threonine synthetic pathway via a synthetic genetic circuit. Meanwhile, to sustain the transaminase reaction for l -threonine production, we developed an l -glutamate and NADPH generation system through overexpression of glutamate dehydrogenase, formate dehydrogenase, and pyridine nucleotide transhydrogenase. This strategy not only exhibited 2.02- and 1.21-fold increase in l -threonine production in shake flask and bioreactor fermentation, respectively, but had potential to be applied in the production of many other desired oxaloacetate derivatives, especially those involving cofactor reactions. 相似文献
4.
Xixian Xie Yuan Liang Hongliang Liu Yuan Liu Qingyang Xu Chenglin Zhang Ning Chen 《Journal of industrial microbiology & biotechnology》2014,41(6):1007-1015
High concentrations of acetate, the main by-product of Escherichia coli (E. coli) high cell density culture, inhibit bacterial growth and l-threonine production. Since metabolic overflux causes acetate accumulation, we attempted to reduce acetate production by redirecting glycolysis flux to the pentose phosphate pathway by deleting the genes encoding phosphofructokinase (pfk) and/or pyruvate kinase (pyk) in an l-threonine-producing strain of E. coli, THRD. pykF, pykA, pfkA, and pfkB deletion mutants produced less acetate (9.44 ± 0.83, 3.86 ± 0.88, 0.30 ± 0.25, and 6.99 ± 0.85 g/l, respectively) than wild-type THRD cultures (19.75 ± 0.93 g/l). THRDΔpykF and THRDΔpykA produced 11.05 and 5.35 % more l-threonine, and achieved a 10.91 and 5.60 % higher yield on glucose, respectively. While THRDΔpfkA grew more slowly and produced less l-threonine than THRD, THRDΔpfkB produced levels of l-threonine (102.28 ± 2.80 g/l) and a yield on glucose (0.34 g/g) similar to that of THRD. The dual deletion mutant THRDΔpfkBΔpykF also achieved low acetate (7.42 ± 0.81 g/l) and high l-threonine yields (111.37 ± 2.71 g/l). The level of NADPH in THRDΔpfkA cultures was depressed, whereas all other mutants produced more NADPH than THRD did. These results demonstrated that modification of glycolysis in E. coli THRD reduced acetate production and increased accumulation of l-threonine. 相似文献
5.
Su Yuewen Guo Qun-qun Wang Sen Zhang Xin Wang Jian 《Bioprocess and biosystems engineering》2018,41(10):1509-1518
Bioprocess and Biosystems Engineering - Betaine can act as a stress protectant, methyl donor, or enzyme stabilizer in vitro for the biosynthesis of structurally complex compounds. The performances... 相似文献
6.
Summary Phenylalanine synthesis from glucose and ammonia was studied using a hyperproducing mutant of Escherichia coli. Kinetic parameters (typical values : 8.7 g phenylalanine/l, yield on glucose 0.19 g/g, productivity 0.44 g/l/h) were similar to batch culture values. 相似文献
7.
《Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology》1988,952(2):222-229
Homogeneous preparations of l-threonine dehydrogenase (l-threonine: NAD+ oxidoreductase, EC 1.1.1.103) from Escherichia coli K-12, after having been dialyzed against buffers containing Chelex-100 resin, have a basal level of activity of 10–20 units/mg. Added Cd2+ stimulates dehydrogenase activity approx. 10-fold; this activation is concentration-dependent and is saturable with an activation Kd = 0.9 μM. Full activation by Cd2+ is obtained in the absence of added thiols. The pH-activity profile of the Cd2+-activated enzyme conforms to a theoretical curve for one-proton ionization with a pKa = 7.85. Mn2+, the only other activating metal ion, competes with Cd2+ for the same binding site. Km values forl-threonine and NAD+ as well as the Vmax for ‘demetallized’, Cd2+-activated, and Mn2+-activated threonine dehydrogenase were determined and compared. 相似文献
8.
Y Denizot E Dassa J Benveniste Y Thomas 《Biochemical and biophysical research communications》1989,161(2):939-943
Paf is a potent mediator of inflammatory diseases and septic shock. In previous studies we showed that paf can be released by prokaryotic cells such as E. coli. In this report we define the production and release of paf by E. coli cultured under different experimental conditions. When cultures were supplemented with lyso paf, a dramatic increase in paf production was observed. Most of the paf synthesized by bacteria was released in the supernatant. Of interest C16 lyso paf was 4-fold more efficient than its C18 counterpart. Using normal and reverse phase HPLC bacterial paf exhibited physico-chemical characteristics identical to those of synthetic paf. These results may indicate that the putative E. coli acetyltransferase recognizes differently C16 and C18 lyso paf. They also could be of importance considering the pathogenetic role of enterobacteria. 相似文献
9.
《生物加工过程》2015,(6)
利用大肠杆菌厌氧制备丁二酸过程中,采用氨水作为p H调节剂不仅可以中和酸性产物还可提供无机氮,被菌体利用,然而高浓度NH_4~+的积累会抑制菌体生长及代谢产酸的能力。为增强大肠杆菌对高浓度NH_4~+的耐受性,以(NH4)2HPO4为NH_4~+供体,通过在连续培养装置中不断提高(NH_4)_2HPO4浓度,以获得可耐受0.53 mol/L NH_4~+的产丁二酸大肠杆菌。结果表明:突变株在0.53 mol/L NH_4~+胁迫下,摇瓶厌氧发酵72 h,细胞干质量浓度(DCW)可达1.82 g/L,丁二酸产量为11.72 g/L,分别比出发菌株提高了1.6和4.6倍。进一步地,在5 L发酵罐上考察其利用氨水调节p H生产丁二酸的能力,厌氧发酵90 h,丁二酸质量浓度达到27.32 g/L,生产强度为0.30g/(L·h),比出发菌株分别提高88.1%和87.5%。 相似文献
10.
A number of methionine, methionine+lysine-, and (methionine+lysine+isoleucine)-auxotrophic mutants producing threonine have been isolated from a glutamate-producing strain ofArthrobacter globiformis by a three-step mutagenesis with N-methyl-N′-nitro-N-nitrosoguanidine. The best double mutant ML24 requiring methionine and lysine for growth produced 3.2 gl-threonine per L in the synthetic Alföldi medium (200 mmol/L) glucose, 80 mmol/L ammonium nitrate) supplemented with 5 μg biotin per L and optimum (0.5 mmol/L) methionine and lysine concentrations. 相似文献
11.
C. Cinia V. Busiello R. Coccia M. Di Girolamo C. de Marco 《Molecular and cellular biochemistry》1984,59(1-2):149-154
Summary Thialysine cannot completely substitute lysine as growth factor for a lysine-requiring E. coli mutant. However it can be utilized for growth in the presence of limiting amounts of lysine, in substitution of, and in competition with this latter. The effects of thialysine on growth rate, protein synthesis rate and cell viability, and its incorporation into proteins were studied in function of lysine and thialysine concentration in the culture media. Up to 60% of protein lysine substitution by thialysine is observed, without appreciable effects on cell viability. 相似文献
12.
E. coli is one of the most commonly used host strains for recombinant protein production. However, recombinant proteins are usually found intracellularly, in either cytoplasm or periplasmic space. Inadequate secretion to the extracellular environment is one of its limitations. This study addresses the outer membrane barrier for the translocation of recombinant protein directed to the periplasmic space. Specifically, using recombinant maltose binding protein (MalE), xylanase, and cellulase as model proteins, we investigated whether the lpp deletion could render the outer membrane permeable enough to allow extracellular protein production. In each case, significantly higher excretion of recombinant protein was observed with the lpp deletion mutant. Up to 90% of the recombinant xylanase activity and 70% of recombinant cellulase activity were found in the culture medium with the deletion mutant, whereas only 40-50% of the xylanase and cellulase activities were extracellular for the control strain. Despite the weakened outer membrane in the mutant strain, cell lysis did not occur, and increased excretion of periplasmic protein was not due to cell lysis. The lpp deletion is a simple method to generate an E. coli strain to effect significant extracellular protein production. The phenotype of extracellular protein production without cell lysis is useful in many biotechnological applications, such as bioremediation and plant biomass conversion. 相似文献
13.
Shuwen Liu Yong Liang Qian Liu Tongtong Tao Shujuan Lai Ning Chen Tingyi Wen 《Applied microbiology and biotechnology》2013,97(2):573-583
Fed-batch fermentation is the predominant method for industrial production of amino acids. In this study, we comprehensively investigated the effects of four kinds of feeding nutrients and developed an accurate optimization strategy for fed-batch production of l-threonine. The production of l-threonine was severely inhibited when cell growth ceased in the bath culture. Similarly, l-threonine production was also associated with cell growth in the carbon-, phosphate-, and sulfate-limited fed-batch cultures, but the accumulation of l-threonine was markedly increased because of the extended production time in the growth stage. Interestingly, auxotrophic amino acid (l-isoleucine)-limited feeding promoted l-threonine production over the non-growth phase. Metabolite analysis indicates that substantial production of acetate and glutamate and the resulting accumulation of ammonium may lead to the inhibition of l-threonine production. During the growth phase, the levels of l-isoleucine were accurately optimized by balancing cell growth and production with Pontryagin’s maximum principle, basing on the relationship between the specific growth rate μ and specific production rate ρ. Furthermore, the depletion of l-isoleucine and phosphate at the end of the growth phase favored the synthesis of l-threonine in the subsequent non-growth phase. Combining the two-stage feeding profiles, the final l-threonine concentration and conversion rate were increased by 5.9- and 2.1-fold, respectively, compared to batch processes without feeding control. The identification of efficient feeding nutrient and the development of accurate feeding strategies provide potential guidelines for microbial production of amino acids. 相似文献
14.
Jing-Jing Liu Jae Won Lee Eun Ju Yun Sang-Min Jung Jin-Ho Seo Yong-Su Jin 《Biotechnology and bioengineering》2019,116(4):904-911
L -Fucose (6-deoxy-L -galactose) is a major constituent of glycans and glycolipids in mammals. Fucosylation of glycans can confer unique functional properties and may be an economical way to manufacture L -fucose. Research can extract L -fucose directly from brown algae, or by enzymatic hydrolysis of L -fucose-rich microbial exopolysaccharides. However, these L -fucose production methods are not economical or scalable for various applications. We engineered an Escherichia coli strain to produce L -fucose. Specifically, we modified the strain genome to eliminate endogenous L -fucose and lactose metabolism, produce 2′-fucosyllactose (2′-FL), and to liberate L -fucose from 2′-FL. This E. coli strain produced 16.7 g/L of L -fucose with productivity of 0.1 g·L−1·h−1 in a fed-batch fermentation. This study presents an efficient one-pot biosynthesis strategy to produce a monomeric form of L -fucose by microbial fermentation, making large-scale industrial production of L -fucose feasible. 相似文献
15.
Ribosomal protein synthesis by a mutant of Escherichia coli 总被引:1,自引:0,他引:1
The mutant strain of Escherichia coli, TP28, synthesises ribosomes by an abnormal pathway and accumulates large quantities of 47S ribonucleoprotein particles. The protein complement of mutant 70S ribosomes is normal but 47S particles contain only traces of proteins L28 and L33 and have a significantly reduced content of four other proteins. The mutation reduces the rates of synthesis of L28 and L33 by about half but other widespread alterations ensue. In particular, ribosomal protein synthesis in the mutant strain becomes less well balanced than in its parent: some proteins, particularly those from promoter-proximal genes, are oversynthesized and their excess then degraded. 相似文献
16.
17.
Ribonucleic acid-permeable mutant of Escherichia coli 总被引:4,自引:0,他引:4
An RNA-permeable mutant was isolated from a tryptophan amber auxotrophic strain of Escherichia coli after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. The rationale of the isolation was based on the suppression of an amber mutation. A strain was selected, which could grow in minimal medium supplemented with transfer RNA prepared from an suI-carrying strain but not from an su− strain. This mutant incorporated3H-labeled bulk RNA into the cells at a rate 40 times higher than did the parent strain. The level of tryptophan requirement, susceptibility to the lytic action of lysozyme and RNase activity in the culture medium of the mutant strain did not differ from those of the parent strain. The mutant strain incorporated 3H-labeled ribosomal RNA equally as well as it incorporated 3H-labeled transfer RNA and the incorporation was competitively inhibited by any species of cold RNA. However, the fate of 3H-labeled rRNA after incorporation resulted in degradation to yield acid-soluble fragments whereas tRNA after incorporation remained intact in the cell. 相似文献
18.
Dan Wang Qiang Li Yu Mao Jianmin Xing Zhiguo Su 《Applied microbiology and biotechnology》2010,87(6):2025-2035
Escherichia coli strains with foreign genes under the isopropyl-β-d-thiogalactopyranoside-inducible promoters such as lac, tac, and trc were engineered and considered as the promising succinic acid-producing bacteria in many reports. The promoters mentioned
above could also be induced by lactose, which had not been attempted for succinic acid production before. Here, the efficient
utilization of lactose as inducer was demonstrated in cultures of the ptsG, ldhA, and pflB mutant strain DC1515 with ppc overexpression. A fermentative process for succinic acid production at high level by this strain was developed. In flask
anaerobic culture, 14.86 g l−1 succinic acid was produced from 15 g l−1 glucose with a yield of 1.51 mol mol−1 glucose. In two-stage culture carried out in a 3-l bioreactor, the overall yield and concentration of succinic acid reached
to 1.67 mol mol−1 glucose and 99.7 g l−1, respectively, with a productivity of 1.7 g l−1 h−1 in the anaerobic stage. The efficient utilization of lactose as inducer made recombinant E. coli a more capable strain for succinic acid production at large scale. 相似文献
19.
Escherichia coli strains (KJ060 and KJ073) that were previously developed for succinate production have now been modified for malate production. Many unexpected changes were observed during this investigation. The initial strategy of deleting fumarase isoenzymes was ineffective, and succinate continued to accumulate. Surprisingly, a mutation in fumarate reductase alone was sufficient to redirect carbon flow into malate even in the presence of fumarase. Further deletions were needed to inactivate malic enzymes (typically gluconeogenic) and prevent conversion to pyruvate. However, deletion of these genes (sfcA and maeB) resulted in the unexpected accumulation of D-lactate despite the prior deletion of mgsA and ldhA and the absence of apparent lactate dehydrogenase activity. Although the metabolic source of this D-lactate was not identified, lactate accumulation was increased by supplementation with pyruvate and decreased by the deletion of either pyruvate kinase gene (pykA or pykF) to reduce the supply of pyruvate. Many of the gene deletions adversely affected growth and cell yield in minimal medium under anaerobic conditions, and volumetric rates of malate production remained low. The final strain (XZ658) produced 163 mM malate, with a yield of 1.0 mol (mol glucose(-1)), half of the theoretical maximum. Using a two-stage process (aerobic cell growth and anaerobic malate production), this engineered strain produced 253 mM malate (34 g liter(-1)) within 72 h, with a higher yield (1.42 mol mol(-1)) and productivity (0.47 g liter(-1) h(-1)). This malate yield and productivity are equal to or better than those of other known biocatalysts. 相似文献