首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A Bradyrhizobium japonicum USDA 110-derived strain able to produce wider halos in soft-agar medium than its parental strain was obtained by recurrent selection. It was more chemotactic than the wild type towards mannitol and three amino acids. When cultured in minimal medium with mannitol as a single carbon-source, it had one thick subpolar flagellum as the wild type, plus several other flagella that were thinner and sinusoidal. Root adsorption and infectivity in liquid media were 50-100% higher for the selected strain, but root colonization in water-unsaturated vermiculite was similar to the wild type. A field experiment was then carried out in a soil with a naturalized population of 1.8 x 10(5) soybean-nodulating rhizobia g of soil(-1). Bradyrhizobium japonicum strains were inoculated either on the soybean seeds or in the sowing furrows. Nodule occupation was doubled when the strains were inoculated in the sowing furrows with respect to seed inoculation (significant with P<0.05). On comparing strains, nodule occupation with seed inoculation was 6% or 10% for the wild type or selected strains, respectively, without a statistically significant difference, while when inoculated in the sowing furrows, nodule occupation increased to 12% and 22%, respectively (differences significant with P<0.05).  相似文献   

3.
4.
B. H. Ng 《Plant and Soil》1987,103(1):123-125
The growth, nodulation and nitrogen fixation ofCasuarina equisetifolia were compared at six levels (0–500mM NaCl) of salinity in sand culture. Dry weight of nodules, shoots and roots and N content of shoots increased at intermediate levels of salinity (50–100 mM) but decreased at 500 mM NaCl. Nodulation occurred at all NaCl levels, but at 500mM NaCl level, the nodule dry weight declined by 50% from the control. Increasing NaCl concentration of up to 200mM had little effect on the N2-fixation rate, but at 500mM NaCl level the rate decreased to 40% of the control value.  相似文献   

5.
6.
Pan  B.  Smith  D.L. 《Plant and Soil》2000,223(1-2):237-244
Genistein is the major root produced isoflavonoid inducer of nod genes in the symbiosis between B. japonicum and soybean plants. Reduction in the isoflavonoid content of the host plants has recently been suggested as a possible explanation for the inhibition of mineral nitrogen (N) on the establishment of the symbiosis. In order to determine whether genistein addition could overcome this inhibition, we incubated B. japonicum cells (strain 532C) with genistein. Mineral N (in the form of NH4NO3) was applied at 0, 20 and 100 kg ha-1. The experiments were conducted on both a sandy-loam soil and a clay-loam soil. Preincubation of B. japonicum cells with genistein increased soybean nodule number and nodule weight, especially in the low-N-containing sandy-loam soil and the low N fertilizer treatment. Plant growth and yield were less affected by genistein preincubation treatments than nitrogen assimilation. Total plant nitrogen content was increased by the two genistein preincubation treatments at the early flowering stage. At maturity, shoot and total plant nitrogen contents were increased by the 40 μM genistein preincubation treatment at the sandy-loam soil site. Total nitrogen contents were increased by the 20 μM genistein preincubation treatment only at the 0 and 20 kg ha-1 nitrate levels in clay-loam soil. Forty μM genistein preincubation treatment increased soybean yield on the sandy-loam soil. There was no difference among treatments for 100-seed weight. The results suggest that preincubation of B. japonicum cells with genistein could improve soybean nodulation and nitrogen fixation, and at least partially overcome the inhibition of mineral nitrogen on soybean nodulation and nitrogen fixation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Since competition with indigenous strains limits nodule occupancy by bacteria applied to seeds, the ecology of Bradyrhizobium inoculum strains used for soybean is of concern. A genetically marked strain,B. japonicum I-110 ARS, was directly enumerated from soil on selective medium. A clear long-term positive influence of even limitedGlycine max nodulation was shown by comparisons of population densities obtained with or without plant removal prior to nodule senescence in the first year and with an incompatible as well as a compatible soybean variety after 5 years.  相似文献   

8.
Pan  B.  Smith  D.L. 《Plant and Soil》2000,223(1-2):231-236
In the soybean-B. japonicum symbiosis, genistein has been identified as one of the major compounds in soybean seed and root exudates responsible for inducing expression of the B. japonicum nodYABC operon. In this study, we have tested the possibility that genistein treatment prior to inoculation can increase the competitiveness of the treated B. japonicum strain under both greenhouse and field conditions. Two mutants of the two B. japonicum strains each with a different antibiotic resistant marker were selected. They were tested with one or the other treated with genistein. The results showed genistein treated mutants had higher levels of nodule occupancy than the untreated mutant or parent strain under greenhouse conditions. Mutants from 532C had higher nodule occupancies than mutants from USDA110, especially at 15 °C. In the more complex field environment, genistein treated mutants formed fewer nodules than the untreated mutants. The contradictory results of strain competitiveness for greenhouse and field experiments are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Soybean plants cv. Corsoy were grown in greenhouse conditions on sterilized quartz sand. They were inoculated with Bradyrhizobium japonicum, strain 542. The plants were treated with different concentrations of quercetin (ranging from 10 nM to 1M) at regular intervals during the experiment. The experiment was terminated at flower development. The following parameters, important for symbiosis efficiency were determined: shoot, root and nodule weights, nodule number, total leghemoglobin in the nodules,total nitrogen and soluble protein concentrations in shoots and roots, as well as chlorophyll concentration in the leaves.The results obtained partly confirmed the earlier findings that quercetin inhibits nodulation since increasing quercetin concentration decreased the number of nodules. However, at very low concentrations, quercetin stimulated the number of nodules. Quercetin also exerted a stimulating influence on other characteristics of the plant and nodules which did not correlate with nodule number and quantity of N fixed. These are: nodule weight, leghemoglobin concentration, total soluble protein content in shoots and roots as well as shoot and root weight.  相似文献   

10.
In order to investigate the effects of Al on nodule formation and function in the Casuarina-Frankia symbiosis, inoculated plants were grown in sand culture at five nominal Al concentrations (0-880 M Al) at pH 4.0. There was an Al-free control at pH 6.0 to assess the effects of pH 4.0 treatments. Mean N concentration of nodules was significantly less at pH 4.0 (1.83%) than at pH 6.0 (2.01%). There were nodulated plants at all Al levels, though there were fewer nodulated plants at 440 and 880 M Al. Dry weights of nodules, shoots and roots were not reduced by Al concentrations at or below 220 M Al, but were decreased by Al concentrations at or above 440 M Al. Nodule weight expressed as a percentage of total weight did not differ significantly with respect to an Al-free control at pH 4. N concentrations of shoots and whole plants were significantly reduced at 440 M Al. Nodular specific acetylene reduction activity (ARA) did not differ significantly among Al treatments. However, N2-fixation efficiency was decreased from 0.20 to 0.10 mg N fixed mg nodule dry weight–1 at 880 M Al.  相似文献   

11.
This work studied the effects of P fertilization on nodulation of field-grown soybean by two Bradyrhizobium strains (SMGS1 and THA7), and checked if differences between strains were consistent with bacterial growth and growth pouch nodulation ability in response to P availability. In the field, nodule dry weight and nitrogen fixation activity of inoculated soybean were studied on typical acid soils of Thaïland at the flowering (R1) stage and at the end of grain filling. Grain yield, growth and phosphorus content were recorded. The bradyrhizobial strains were cultivated in culture medium, and growth parameters recorded. Nodulation patterns were observed during growth pouch experiments: infective root cells were inoculated with strains cultivated at two P concentrations in their culture media, namely 1 M and 1 mM. Ten days after inoculation, the position of each nodule was measured relative to the root tip (RT) mark, expressed relative to the smallest emerging root hairs-RT distance in the nodulation frequency profile, and the consistency of responses was tested. In the field, on P deficient soils, dry weight of nodules was higher with Bradyrhizobium japonicum strain SMGS1 than with strain THA7. P supply increased the number and dry weight of nodules for both strains, with a higher dry weight response for THA7 than for SMGS1. It also had a positive effect on tissue phosphorus status and grain yield at R8 stage. In growth media, significant differences were recorded between strains under P-limiting conditions: The growth rate was higher for strain SMGS1, as well as the maximal number of bacterial cells supported. With growth pouch, inoculating plants with bacteria grown in P-deficient medium resulted in a less intense nodulation of roots by THA7, and with nodules appearing earlier on roots than in the case of SMGS1. At 1 mM P, there was no significant difference between strains. Thus, strain THA7 is more affected by P deficiency than strain SMGS1. Although P was not supplied in the same way in the soil and in the growth pouch experiments, this consistency of behaviour between work scales indicates that phosphorus availability is a key component for a successful inoculation. Furthermore, the study of bacterial growth rates and nodulation profile represents an interesting step for bacterial screening for low P soils. [-11pt]  相似文献   

12.
马桑结瘤固氮与光合作用的关系   总被引:7,自引:0,他引:7  
杨忠  罗辑  王道杰 《生态学报》2001,21(2):244-248
马桑(Coriaria sinica)植株的结瘤量、根瘤固氮活性和固氮能力均与植株叶面积和光合能力呈显著的直线相关关系,叶面积大、光合能力强的植株结瘤量大,根瘤固氮活性高,固氮能力强。马桑根瘤固氮活性呈白天升高夜间降低的昼夜变化特点,昼夜变幅为10~20μmol C2H2/g.h,光合作用是引起固氮活性昼夜变化的主要因素,同时受土壤温湿度的影响,遮阴或光照不足将引起马桑结瘤固氮能力的大幅度降低。  相似文献   

13.
G. Duc  A. Messager   《Plant science》1989,60(2):207-213
Pea mutants for nodulation have been obtained by treating seeds with ethyl methane sulfonate (EMS) followed by 2 screening procedures. In one, mutants resistant to nodulation (nod), or with ineffective nodules (nod+, fix) were obtained, whilst in the other 4 hypernodulated mutants (nod++) with 5–10 times more nodules than cv. Frisson and expressing a character of nitrate tolerant symbiosis (nts) were discovered. All mutations are under the control of single recessive genes. (nod), (nod+, fix) and (nod++, nts) mutations result from mutation events at 6, 7 and 1 different loci respectively.

Grafting experiments showed the (nod) and (nod+, fix) phenotypes are associated with the root genotypes and that (nod++, nts) phenotype is associated with the shoot genotype.  相似文献   


14.
Eighty soybean cultivars were assessed for their potential for nodulation and nitrogen fixation with indigenous rhizobia in a Nigerian soil. Seventy-six days after planting (DAP) 87%, 3% and 10% of the soybean cultivars had from 0 to 30, 31 to 60 and over 61 nodules/plant, respectively. Only 8% had a nodule dry weight of 600 to 1100 mg/plant. At 84 DAP the proportion of nitrogen derived from the atmosphere (Ndfa) ranged from 0 to 65% 16% of the cultivars derived 51 to 65% of their N2 from the atmosphere. The diversity of soybean germplasm and the variation in nodulation and N2 fixation permitted the selection of the five best cultivars in terms of their compatibility with indigenous rhizobia, % Ndfa and the amount of N2 which they fixed.  相似文献   

15.
The complete nucleotide sequence of the genome of a symbiotic bacterium Bradyrhizobium japonicum USDA110 was determined. The genome of B. japonicum was a single circular chromosome 9,105,828 bp in length with an average GC content of 64.1%. No plasmid was detected. The chromosome comprises 8317 potential protein-coding genes, one set of rRNA genes and 50 tRNA genes. Fifty-two percent of the potential protein genes showed sequence similarity to genes of known function and 30% to hypothetical genes. The remaining 18% had no apparent similarity to reported genes. Thirty-four percent of the B. japonicum genes showed significant sequence similarity to those of both Mesorhizobium loti and Sinorhizobium meliloti, while 23% were unique to this species. A presumptive symbiosis island 681 kb in length, which includes a 410-kb symbiotic region previously reported by G?ttfert et al., was identified. Six hundred fifty-five putative protein-coding genes were assigned in this region, and the functions of 301 genes, including those related to symbiotic nitrogen fixation and DNA transmission, were deduced. A total of 167 genes for transposases/104 copies of insertion sequences were identified in the genome. It was remarkable that 100 out of 167 transposase genes are located in the presumptive symbiotic island. DNA segments of 4 to 97 kb inserted into tRNA genes were found at 14 locations in the genome, which generates partial duplication of the target tRNA genes. These observations suggest plasticity of the B. japonicum genome, which is probably due to complex genome rearrangements such as horizontal transfer and insertion of various DNA elements, and to homologous recombination.  相似文献   

16.
Bradyrhizobium japonicum 532C nodulates soybean effectively under cool Canadian spring conditions and is used in Canadian commercial inoculants. The major lipo-chitooligosaccharide (LCO), bacteria-to-plant signal was characterized by HPLC, FAB-mass spectroscopy MALDI-TOF mass spectroscopy and revealed to be LCO Nod Bj-V (C18:1, MeFuc). This LCO is produced by type I strains of B. japonicum and is therefore unlikely to account for this strains superior ability to nodulate soybean under Canadian conditions. We also found that use of yeast extract mannitol medium gave similar results to that of Bergerson minimal medium.  相似文献   

17.
Zhang  Feng  Smith  Donald L. 《Plant and Soil》1997,192(1):141-151
In the soybean (Glycine max. (L.) Merr)– Bradyrhizobium japonicum symbiosis, suboptimal root zone temperatures (RZTs) slow nodule development by disruption of the interorganismal signal exchange between the host plant and bradyrhizobia. Two field experiments were conducted on two adjacent sites in 1994 to determine whether the incubation of B. japonicum with genistein prior to application as an inoculant, or genistein, without B. japonicum, applied onto seeds in the furrow at the time of planting, increased soybean nodulation, N fixation, and total N yield. The results of these experiments indicated that genistein application increased nodule number and nodule dry matter per plant and hastened the onset of N fixation during the early portion of the soybean growing season, when the soils were still cool. Because these variables were improved, total fixed. N, fixed N as a percentage of total plant N, and N yield increased due to genistein application. The interaction between genistein application and soybean cultivars indicated that genistein application was more effective on N-stressed plants.  相似文献   

18.
Competitive abilities of 3 strains ofBradyrhizobium japonicum (E104, E109, E110) for nodulation of soybean (Glycine max) at increasing nitrogen fertilizer levels were studied. Dry weight of plants nodulated by strain E110 were depressed at 10 g N·m–2, the highest fertilizer level, even when mixed with strain E109. Strain E104 alone or mixed with E109 increased dry matter production. Strain E110 formed many dually infected nodules with strain E104 present but not with strain E109. However, strain E104 formed nodules containing strain E109. Neither strain E110 or E109 produced bacteriocin, so the incompatibility of these two strains had to be due to another reason. Strain E104 successfully competes with strain E109 but not with E110 at 10 g N·m–2. It is concluded that strain E110 dominates the symbiotic relationships even if other strains are also present in the nodules. However, at a high N-fertilizer level strain E110 decreases the plant yield in contrast to E104, which could be recommended as inoculant at increased levels of soluble soil-N.  相似文献   

19.
The (Brady)rhizobium nodulation gene products synthesize lipo-chitin oligosaccharide (LCO) signal molecules that induce nodule primordia on legume roots. In spot inoculation assays with roots of Vigna umbellata, Bradyrhizobium elkanii LCO and chemically synthesized LCO induced aberrant nodule structures, similar to the activity of these LCOs on Glycine soja (soybean). LCOs containing a pentameric chitin backbone and a reducing-end 2-O-methyl fucosyl moiety were active on V. umbellata. In contrast, the synthetic LCO-IV(C16:0), which has previously been shown to be active on G. soja, was inactive on V. umbellata. A B. japonicum NodZ mutant, which produces LCO without 2-O-methyl fucose at the reducing end, was able to induce nodule structures on both plants. Surprisingly, the individual, purified, LCO molecules produced by this mutant were incapable of inducing nodule formation on V. umbellata roots. However, when applied in combination, the LCOs produced by the NodZ mutant acted cooperatively to produce nodulelike structures on V. umbellata roots.  相似文献   

20.
The genome of the slow-growing Bradyrhizobium japonicum (strain 110) was mutagenized with transposon Tn5. A total of 1623 kanamycin/streptomycin resistant derivatives were screened in soybean infection tests for nodulation (Nod) and symbiotic nitrogen fixation (Fix). In this report we describe 14 strains possessing a stable, reproducible Nod+Fix- phenotype. These strains were also grown under microaerobic culture conditions to test them for free-living nitrogen fixation activity (Nif). In addition to strains having reduced Fix and Nif activities, there were also strains that had reduced symbiotic Fix activity but were Nif+ ex planta.Analysis of the genomic structure revealed that the majority of the strains had a single Tn5 insertion without any further apparent physical alteration. A few strains had additional insertions (by Tn5 or IS50), or a deletion, or had cointegrated part of the vector used for Tn5 mutagenesis. One of the insertions was found in a known nif gene (nifD) whereas all other mutations seem to affect different, hitherto unknown genes or operons.Several mutant strains had an altered nodulation phenotype, inducing numerous, small, widely distributed nodules. Light and electron microscopy revealed that most of these mutants were defective in different stages of bacteroid development and/or bacteroid persistence. The protein patterns of the mutants were inspected by two-dimensional gel electrophoresis after labelling microaerobic cultures with l-(35S)methionine. Of particular interest were mutants lacking a group of proteins the synthesis of which was known to be under oxygen control. Such strains can be regarded as potential regulatory mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号