首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Most studies on Arctic food webs have neglected microphytobenthos as a potential food source because we currently lack robust measurements of δ13C values for microphytobenthos from this environment. As a result, the role of microphytobenthos in high latitude marine food webs is not well understood. We combined field measurements of the concentration of aqueous carbon dioxide and the stable carbon isotopic composition of dissolved inorganic carbon (δ13CDIC) from bottom water in the Beaufort and Chukchi seas with a set of stable carbon isotopic fractionation factors reflecting differences in algal taxonomy and physiology to estimate the stable carbon isotope composition of microphytobenthos-derived total organic carbon (δ13Cp). The δ13Cp for Phaeodactylum tricornutum, a pennate diatom likely to be a dominant microphytobenthos taxon, was estimated to be ?23.9 ± 0.4 ‰ as compared to a centric diatom (Porosira glacialis, δ13Cp = ?20.0 ± 1.6 ‰) and a marine haptophyte (Emiliana huxleyi, δ13Cp = ?22.7 ± 0.5 ‰) at a growth rate (µ) of 0.1 divisions per day (d?1). δ13Cp values increased by ~2.5 ‰ when µ increased from 0.1 to a maximum growth rate of 1.4 d?1. We compared our estimates of δ13Cp values for microphytobenthos with published measurements for other carbon sources in the Arctic and sub-Arctic. We found that microphytobenthos values overlapped with pelagic sources, yet differed from riverine and ice-derived carbon sources. These model results provide valuable insight into the range of possible isotopic values for microphytobenthos from this region, but we remain cautious in regard to the conclusiveness of these findings given the paucity of field measurements currently available for model validation.  相似文献   

2.
Nitrogen (N) isotope systematics were investigated at two high-elevation ombrotrophic peat bogs polluted by farming and heavy industry. Our objective was to identify N sources and sinks for isotope mass balance considerations. For the first time, we present a time-series of δ15Ν values of atmospheric input at the same locations as δ15Ν values of living Sphagnum and peat. The mean δ15Ν values systematically increased in the order: input NH4 + (?10.0‰) < input NO3 ? (?7.9‰) < peat porewater (?5.6‰) < Sphagnum (?5.0‰) < shallow peat (?4.2‰) < deep peat (?2.2‰) < runoff (?1.4‰) < porewater N2O (1.4‰). Surprisingly, N of Sphagnum was isotopically heavier than N of the atmospheric input (P < 0.001). If partial incorporation of reactive N from the atmosphere into Sphagnum was isotopically selective, the residual N would have to be isotopically extremely light. Such N, however, was not identified anywhere in the ecosystem. Alternatively, Sphagnum may have contained an admixture of isotopically heavier N. Ambient air contains such N in the form of N215ΝN2 = 0‰). Because high energy is required to break the triple bond, microbial N fixation is likely to proceed only under limited availability of pollutant N. Also for the first time, a δ15Ν comparison is presented between anoxic deeper peat and porewater N2O. Isotopically light N is removed from anoxic substrate by denitrification, whose final product, N2, escapes into the atmosphere. Porewater N2O is an isotopically heavy residuum following partial N2O reduction to N2.  相似文献   

3.
Calcite-rich columnar stromatolites grew in perennially ice-covered Lake Joyce in the McMurdo Dry Valleys, Antarctica, during a period of environmental change associated with rising lake level. Stromatolite calcite contains carbon and oxygen isotope records of changes to microbial activity in response to variable light environments and water chemistry through time. The stromatolites grew synchronously with correlative calcite zones. The innermost (oldest) calcite zone has a wide range of δ13Ccalcite values consistent with variable photosynthetic effects on local DIC 13C/12C. Subsequent calcite zones preserve a progressive enrichment in δ13Ccalcite values of approximately + 2.6‰ through time, with δ13Ccalcite values becoming less variable. This enrichment likely records the removal of 12C by photosynthesis from the DIC reservoir over decades, with photosynthetic effects decreasing as light levels became lower and more consistent through time. Mean δ18Ocalcite values of the innermost calcified zone were at least 1‰ lower than those of the other calcified zones (t test p-level < 0.001). The significant difference in δ18Ocalcite values between the innermost and other calcified zones could be a product of mixing source waters with different isotopic values associated with the initiation of lake stratification associated with rising lake level. Overall, Lake Joyce stromatolites record significant lateral variability in relative photosynthetic rate and long-lived lake water stratification with microbial modification of the DIC pool. Such processes provide criteria for interpreting microbial activity within polar paleolake deposits and may shed light on variability in lake environments associated with changing climate in the McMurdo Dry Valleys.  相似文献   

4.
The variability of modern Cyprideis salebrosa and Cyprideis americana (Ostracoda) from the northern Neotropics were investigated in order to understand site specific influences on the isotopic composition of their valves (δ18O, δ13C) in comparison to their host water and to connect this to morphological features of their valves (valve size, nodosity). C. salebrosa was found in a stream (Shell Creek, Florida) and a slightly brackish lake (Laguna del Rincon, Dominican Republic; salinity <0.7 psu) while C. americana occurred in a coastal lake with polyhaline waters (Parrotee Pond, Jamaica; salinity: >20 psu). Valve size and position of nodes differed between the two species. A reverse temperature dependency have been considered to influence Shell length (seasonally in Shell Creek, summer: 1076 µm; winter: 1092 µm, supposedly permanently in Laguna del Rincon, 1035 µm). But, regarding the small dataset other factors could not be excluded to influence ostracod valve size. A decline of node frequency of C. salebrosa is mainly related to an increase in salinity. Isotopic values of ostracod valves reflect the trend in stable isotopes of their host water. Variations in Cyprideis salebrosa δ18O and δ13C values signify differences in their host water. Offsets of ostracod valves to a theoretical calcite precipitated in their host water with an uncertain time lag (+0.015 to +2.63 ‰) needs to be clarified. This study presents a contribution to the understanding of environmental influences on modern ostracod shell characters as basis for paleontological applications.  相似文献   

5.
Tooth enamel apatite carbonate carbon and oxygen isotope ratios of modern kangaroos (Macropus spp.) collected on a 900-km latitudinal transect spanning a C3–C4 transition zone were analysed to create a reference set for palaeoenvironmental reconstruction in southern Australia. The carbon isotope composition of enamel carbonate reflects the proportional intake of C3 and C4 vegetation, and its oxygen isotope composition reflects that of ingested water. Tooth enamel forms incrementally, recording dietary and environmental changes during mineralisation. Analyses show only weak correlations between climate records and latitudinal changes in δ13C and δ18O. No species achieved the δ13C values (~?1.0 ‰) expected for 100 % C4 grazing diets; kangaroos at low latitudes that are classified as feeding primarily on C4 grasses (grazers) have δ13C of up to ?3.5 ‰. In these areas, δ13C below ?12 ‰ suggests a 100 % C3 grass and/or leafy plant (browse) diet while animals from higher latitude have lower δ13C. Animals from semi-arid areas have δ18O of 34–40 ‰, while grazers from temperate areas have lower values (~28–30 ‰). Three patterns with implications for palaeoenvironmental reconstruction emerge: (1) all species in semi-arid areas regularly browse to supplement limited grass resources; (2) all species within an environmental zone have similar carbon and oxygen isotope compositions, meaning data from different kangaroo species can be pooled for palaeoenvironmental investigations; (3) relatively small regional environmental differences can be distinguished when δ13C and δ18O data are used together. These data demonstrate that diet–isotope and climate–isotope relationships should be evaluated in modern ecosystems before application to the regional fossil record.  相似文献   

6.
Atmospheric nitrogen deposition poses a major threat to global biodiversity. Tropical epiphytic plants are especially at risk given their reliance on atmospheric sources of nutrients. The leaf, pseudobulb, and root carbon and nitrogen content, C:N ratio, as well as the nitrogen isotopic composition were studied for individuals of Laelia speciosa from a city and from an oak forest in Mexico. The nitrogen content of leaves was similar between the city and the oak forest, reaching 1.3 ± 0.2 % (dry mass). The δ15N of leaves, pseudobulbs, and roots reached 5.6 ± 0.2 ‰ in the city, values found in sites exposed to industrial and vehicular activities. The δ15N for plant from the oak forest amounted to –3.1 ± 0.3 ‰, which is similar to values measured from sites with low industrial activities. Some orchids such as Laelia speciosa produce a single pseudobulb per year, i.e., a water and nutrient storage organ, so the interannual nitrogen deposition was studied by considering the ten most recent pseudobulbs for plants from either site formed between 2003 and 2012. The C:N ratio of the ten most recent pseudobulbs from the oak forest, as well as that of the pseudobulbs formed before 2010 for plants in the city were indistinguishable from each other, averaging 132.4 ± 6.5, while it was lower for the two most recent pseudobulbs in the city. The δ15N values of pseudobulbs from the oak forest averaged ?4.4 ± 0.1 ‰ for the entire series. The δ15N ranged from 0.1 ± 1.6 ‰ for the oldest pseudobulb to 4.7 ± 0.2 ‰ for the pseudobulb formed in the city from 2008 onwards. Isotopic analysis and the C:N ratio for L. speciosa revealed that rates of nitrogen deposition were higher in the city than in the forest. The δ15N values of series of pseudobulbs showed that it is possible to track nitrogen deposition over multiple years.  相似文献   

7.

Key message

Compared with annual tree-ring cellulose δ 18 O, intra-annual cellulose δ 18 O has potential to reconstruct precipitation with higher resolution and stronger signal intensity.

Abstract

Annual tree-ring cellulose oxygen isotope values (δ18O) of Fokienia hodginsii provide a promising proxy of monsoon-season precipitation in Southeast China. Measuring intra-annual cellulose δ18O values may reveal the seasonal variability of precipitation and the associated climate influences. Here, we examine intra-annual variation of cellulose δ18O values in Fokienia hodginsii and Cryptomeria fortune from Fujian Province, Southeast China. Both species exhibited considerable intra-annual variations in cellulose δ18O (range ~6 ‰) with a consistent pattern of enriched values near the annual ring boundary and depleted values in the central portion of the ring. Seasonal patterns in the tree-ring δ18O values generally followed changes in precipitation δ18O values. Compared with annual tree-ring cellulose δ18O, intra-annual cellulose δ18O has potential to reconstruct precipitation with higher resolution and stronger signal intensity. July tree-ring cellulose δ18O is significantly correlated (r = ?0.58, p < 0.05) with July precipitation, and June–August tree-ring cellulose δ18O and annual tree-ring cellulose δ18O, respectively, explain 52 and 41 % of the actual variance of April–August precipitation. In addition, May–October cellulose δ18O values during El Niño years are higher than in La Niña years, and April to October rainfall is lower in El Niño years than in La Niña years. Combining the significant correlations between inter-annual cellulose δ18O values and sea surface temperatures in the central tropical Pacific, our results support the hypothesis that El Niño–Southern Oscillation affects tree-ring cellulose δ18O in Southeast China by modulating seasonal precipitation.
  相似文献   

8.
In this study, components of the food-web in Macao wetlands were quantified using stable isotope ratio techniques based on carbon and nitrogen values. The δ13C and δ15N values of particulate organic matter (δ13CPOM and δ15NPOM, respectively) ranged from ?30.64 ± 1.0 to ?28.1 ± 0.7 ‰, and from ?1.11 ± 0.8 to 3.98 ± 0.7 ‰, respectively. The δ13C values of consumer species ranged from ?33.94 to ?16.92 ‰, showing a wide range from lower values in a freshwater lake and inner bay to higher values in a mangrove forest. The distinct dietary habits of consumer species and the location-specific food source composition were the main factors affecting the δ13C values. The consumer 15N-isotope enrichment values suggested that there were three trophic levels; primary, secondary, and tertiary. The primary consumer trophic level was represented by freshwater herbivorous gastropods, filter-feeding bivalves, and plankton-feeding fish, with a mean δ15N value of 5.052 ‰. The secondary consumer level included four deposit-feeding fish species distributed in Fai Chi Kei Bay and deposit-feeding gastropods in the Lotus Flower Bridge flat, with a mean δ15N value of 6.794 ‰. The tertiary consumers group consisted of four crab species, one shrimp species, and four fish species in the Lotus Flower Bridge Flat, with a mean δ15N value of 13.473 ‰. Their diet mainly comprised organic debris, bottom fauna, and rotten animal tissues. This study confirms the applicability of the isotopic approach in food web studies.  相似文献   

9.
Biogenic calcretes associated with a regional Cretaceous to Paleogene subaerial unconformity and an intraformational composite (polygenic) surface in Upper Cretaceous intra-platform peritidal successions in central Dalmatia and eastern Istria, Croatia (Adriatic-Dinaridic Carbonate Platform), were analyzed for their δ13C and δ18O signatures in order to provide insight into the conditions of subaerial exposure and calcrete development. The distinctly negative δ13C signatures of biogenic calcretes marking the regional subaerial unconformity differ considerably from the δ13C values of the host marine limestones. This indicates carbon isotope exchange of primary marine CaCO3 with CO2 released by root and rhizomicrobial respiration and subsequent precipitation of pedogenic calcrete. The range of δ13C (from ?13.1 to ?8.2 ‰ Vienna PeeDee Belemnite standard, VPDB) and δ18O (from ?10.1 to ?6.1 ‰ VPDB) values of calcretes are similar to those reported from calcretes elsewhere, and the δ13C values of biogenic calcretes with typical Microcodium aggregates (?13.1 to ?12.3 ‰ VPDB) at the ?ibenik locality are very close to, or at the lower limit of, values for soil carbonates formed in isotopic equilibrium with soil CO2. These values are expected for authigenic pedogenic carbonates formed under the influence of C3 plant communities, without influence from heavier carbon from pre-existing carbonate and lack of input of atmospheric CO2. Such low δ13C values support the interpretation of Microcodium aggregates as being precipitated under a direct biological control within the soil, although the relationship between formation mechanisms and stable isotope signatures of Microcodium needs further investigation. The δ13C values (?4.4 to ?3.6 ‰ VPDB) of rhizogenic calcretes formed inside firmground Thalassinoides burrows of the composite surface at the ?ibenik locality are more negative than the δ13C values of the host marine limestones, which confirms that the composite surface went through a phase of meteoric pedo(dia)genesis. However, the overall δ13C values of calcretes are less negative than expected, which might reflect contamination from associated primary marine carbonate. This study represents the first detailed stable isotope investigation of calcretes from carbonate successions of the External Dinarides, and the results may be applied to discontinuities present in other shallow-water carbonate rock successions.  相似文献   

10.
We determined the magnitude of isotopic fractionation of carbon and nitrogen stable isotope ratios (as enrichment factors, Δδ13C and Δδ15N, respectively) between the tissues and diets of captive Japanese macaques (Macaca fuscata) using a controlled feeding experiment, to provide basic data for reconstructing their feeding habits. The Δδ13C and Δδ15N values, respectively, were 0.9 ± 0.2 ‰ (mean ± standard deviation, SD) and 3.0 ± 0.3 ‰ for whole blood, 1.3 ± 0.2 ‰ and 4.3 ± 0.3 ‰ for plasma, and 0.8 ± 0.2 ‰ and 3.0 ± 0.2 ‰ for red blood cells. However, the Δδ13C and Δδ15N values for hair were 2.8 ± 0.3 ‰ and 3.4 ± 0.2 ‰, respectively. No difference was detected in the δ13C and δ15N values of hair sampled from different parts of the body. We investigated the effects of diet on δ13C in growing hair by alternating the diet of the macaques each month between two diets that differed markedly in δ13C. Hair regrown after shaving repeatedly recorded the δ13C of the diet consumed during the time of hair growth. On the other hand, hair naturally grown during the diet-change experiment did not show a clear pattern. One possible reason is that the hair had grown abnormally under unnatural indoor conditions and showed complicated isotope signatures. To reconstruct the long-term feeding history of Japanese macaques, we need to further clarify the relationships between the stable isotope signature of diet and various body tissues.  相似文献   

11.
In some environments, species may exhibit trophic plasticity, which allows them to extend beyond their assigned functional group. For Gammarus minus, a freshwater amphipod classified as a shredder or detritivore, cave populations have been observed consuming heterotrophs as well as shredding leaves, and therefore may be exhibiting trophic plasticity. To test this possibility, we examined the C and N stable isotope and C/N ratios for cave and spring populations of G. minus. A 15-day feeding experiment using leaves and G. minus from a spring population established that the diet-tissue discrimination factor was 3.2 ‰ for δ15N. Cave G. minus were 8 ‰ higher in δ15N relative to cave leaves, indicating they did not derive nitrogen from leaves, whereas field collected spring populations were 2–3 ‰ higher than spring leaves, indicating that they did. Cave G. minus were 2.6 ‰ higher in δ15N than the cave isopod, Caecidotea holsingeri. Relative to spring populations, Organ Cave G. minus were 15N enriched by 6 ‰, suggesting they occupied a different trophic level, or incorporated an isotopically distinct N source. While stable isotopes cannot tell what the cave G. minus are eating, the isotopes certainly show that G. minus are not eating leaves and are trophically distinct form the surface populations. Differences in C/N ratios were observed, but reflect the size of the G. minus examined and not feeding group or habitat. The isotope data strongly support the hypothesis that cave populations of G. minus have become generalist or omnivorous by including animal protein in their diet.  相似文献   

12.
The isotope composition of fruits and seeds of Hordeum vulgare L. (barley), Triticum aestivum/durum (wheat) and Vicia faba var. minor (faba bean) from three chronological phases between 2200 and 1321 cal bc of the settlement Cerro del Castillo de Alange (SW Iberian Peninsula) have been studied. The δ13C values for cereals were between ?24.40 and ?20.39‰ (V-PDB), with a mean of ?22.01‰, the discrimination (Δ) being 15.96‰. The legumes registered similar values, between ?26.25 and ?20.49‰ (mean = ?22.59‰), with a differential for the period of 16.51‰. In both cases, a change was noted from the first phase, where water availability is clearly a limiting factor for plant development. In subsequent phases the growing conditions appear be wetter. By comparison, we measured samples of Quercus ilex-coccifera (oak) charcoal, which shows similar values throughout the series. This suggests that there was no significant climate shift to moister conditions that could explain the above results, but rather they were the consequence of a change in crop management. In addition, we measured samples of a current rainfed Triticum sp. (year 2014), which averaged Δ13C 15.56‰. The changes between the three phases could indicate the development of mixed models of exploitation that combine strategies based on the use of rainfed and potentially irrigated areas during the 2nd millennium bc. The implementation of such a cropping technique, taking advantage of the river banks, could be a response to the processes of climatic degradation that begin in the Middle Holocene. The situation of the Cerro del Castillo reservoir between the rivers of the Guadiana and Matachel rivers is consistent with the development of this type of practice indicated by the isotopic and archaeobotanical data.  相似文献   

13.
Methane-derived carbon (MDC) can subsidize lake food webs. However, the trophic transfer of MDC to consumers within macrophyte vegetation is largely unknown. We investigated the seasonality of δ13C in larval chironomids within Nelumbo nucifera (Gaertn.) and Trapa natans var. Japonica (Nakai) vegetation in the shallow, eutrophic Lake Izunuma in Japan. Over the past several years, N. nucifera has rapidly expanded across more than 80% of the lake surface. Prior to the expansion of N. nucifera (2007–2008), a previous study reported extremely low larval δ13C levels with peak sediment methane concentrations in August or September. After the expansion of N. nucifera (2014–2015), we observed extreme hypoxia as low as or lower than 1 mg l?1 among the macrophyte coverage during June and August. During August and September, no larvae could be found among N. nucifera, and larvae in T. natans showed relatively high δ13C levels (>???40‰). In contrast, larvae were markedly 13C–depleted (down to ??60‰) during October and November. The renewed supply of oxygen to the lake bottom may stimulate MOB activity, leading to an increase in larval assimilation of MDC. Our results suggest that macrophyte vegetation can affect the seasonality of MDC transfer to benthic consumers under hypoxic conditions in summer.  相似文献   

14.
Sub-fossil wood is often affected by the decaying process that introduces uncertainties in the measurement of oxygen and carbon stable isotope composition in cellulose. Although the cellulose stable isotopes are widely used as climatic proxies, our understanding of processes controlling their behavior is very limited. We present here a comparative study of stable oxygen and carbon isotope ratios in tree ring cellulose in decayed and non-decayed wood samples of Swiss stone pine (Pinus cembra) trees. The intra-ring stable isotope variability (around the circumference of a single ring) was between 0.1 and 0.5‰ for δ18O values and between 0.5 and 1.6‰ for δ13C values for both decayed and non-decayed wood. Observed intra-tree δ18O variability is less than that reported in the literature (0.5–1.5‰), however, for δ13C it is larger than the reported values (0.7–1.2‰). The inter-tree variability for non-decayed wood ranges between 1.1 and 2.3‰ for δ18O values, and between 2 and 4.7‰ for δ13C values. The inter-tree differences for δ18O values are similar to those reported in the literature (1–2‰ for oxygen and 1–3‰ for carbon) but are larger for δ13C values. We have found that the differences for δ18O and δ13C values between decayed and non-decayed wood are smaller than the variation among different trees from the same site, suggesting that the decayed wood can be used for isotopic paleoclimate research.  相似文献   

15.
The Ludfordian (Upper Silurian) succession in Podolia, western Ukraine, represents a Silurian carbonate platform developed in an epicontinental sea on the shelf of the paleocontinent of Baltica. Coeval deposits throughout this basin record a positive stable carbon isotope excursion known as the Lau excursion. The record of this excursion in Podolia exhibits an unusual amplitude from highly positive (+6.9 ‰) to highly negative (?5.0 ‰) δ13Ccarb values. In order to link δ13Ccarb development with facies, five sections in the Zbruch River Valley were examined, providing microfacies characterization and revised definitions of the Isakivtsy, Prygorodok, and Varnytsya Formations. The Isakivtsy Fm. is developed as dolosparite replacing originally bioclastic limestone. The Prygorodok Fm., recording strongly depleted (down to ?10.53 ‰) to near zero (0.12 ‰) δ13Ccarb values is developed as laminated, organic-rich dolomicrite with metabentonite and quartz siltstone beds. The Varnytsya Fm. is characterized by peritidal deposition with consistent, slightly negative δ13Ccarb values (?0.57 to ?3.20 ‰). It is proposed that dolomitization of the Isakivtsy Fm. is associated with a sequence boundary and erosional surface. The overlying Prygorodok Fm. represents the proximal part of a TST deposited in restricted and laterally extremely variable environments dominated by microbial carbonate production. The transition to the overlying Varnytsya Fm. facies is marked by a maximum flooding surface. The SB and MFS are potentially correlative within the basin and support a global rapid sea-level fall previously proposed for this interval. The interpretation of the Prygorodok Fm. as coastal lake deposits may explain the unusual δ13Ccarb values and constitute one of the few records of this type of environment identified in the early Paleozoic.  相似文献   

16.
Teeth of odontocetes accumulate annual dentinal growth layer groups (GLGs) that record isotope ratios, which reflect the time of their synthesis. Collectively, they provide lifetime records of individual feeding patterns from which life history traits can be inferred. We subsampled the prenatal dentin and postnatal GLGs in Risso's dolphins (Grampus griseus) (n = 65) that stranded or were collected as bycatch in Taiwan (1994–2014) and analyzed them for δ15N and δ13C. Age‐specific δ15N and δ13C values were corrected for effects of calendar year, stranding site, C/N, and sex. δ15N values were higher in prenatal layers (14.94‰ ± 0.74‰) than in adult female GLGs (12.58‰ ± 0.20‰), suggesting fetal enrichment during gestation. Decreasing δ15N values in early GLGs suggested changes in dietary protein sources during transition to complete weaning. Weaning age was earlier in males (1.09 yr) than in females (1.81 yr). Significant differences in δ15N values between weaned males and females suggest potential sexual segregation in feeding habits. δ13C values increased from the prenatal to the 4th GLG by ~1.0‰, indicative of a diet shift from 13C‐depleted milk to prey items. Our results provide novel insights into the sex‐specific ontogenetic changes in feeding patterns and some life history traits of Risso's dolphins.  相似文献   

17.
Ikaite (CaCO3·6H2O) forms at near-freezing temperatures and its precipitation is favored by high alkalinity and high concentrations of dissolved phosphate. With increasing temperatures during early burial, ikaite transforms into its calcite pseudomorph referred to as glendonite. To further constrain the biogeochemical processes that impact the transformation of ikaite to glendonite, glendonites from Cenozoic strata of western Washington State, USA, were analyzed for their petrographic characteristics, stable isotope (C, O, S) patterns, and lipid biomarker inventories. Glendonites from the Humptulips, Pysht, Lincoln Creek, and Astoria Formations occur in strata that enclose abundant methane-seep deposits. Despite robust evidence for the anaerobic oxidation of methane (AOM) at these ancient seep sites, molecular signatures of this biogeochemical process were not found within glendonite. Glendonite was found to contain abundant, moderately 13C-depleted iso- and anteiso-fatty acids, compounds interpreted as biomarkers of sulfate-reducing bacteria in marine settings. The 34S-enrichment in carbonate-associated sulfate (δ34SCAS = 54.1 ‰) and the 34S-depletion of pyrite (δ34SCRS = 6.8–12.5 ‰) in glendonite samples confirm that bacterial sulfate reduction was a prominent process in the sedimentary environment during the transformation of ikaite to glendonite. Low δ13Cglendonite values, such as those of the Washington State glendonites (as low as ?21‰), have previously been interpreted as signatures of methane-derived carbon; however, the admittedly small data set obtained from the Washington State glendonites is best explained with organoclastic sulfate reduction as the alkalinity engine driving carbonate precipitation. This surprising finding reveals that more comprehensive work is needed to decipher the biogeochemical processes that governed the transformation of ikaite to glendonite in ancient marine settings, including the relative contribution of organoclastic sulfate reduction and AOM.  相似文献   

18.

Objective

To produce δ-decalactone from linoleic acid by one-pot reaction using linoleate 13-hydratase with supplementation with whole Yarrowia lipolytica cells.

Results

Whole Y. lipolytica cells at 25 g l?1 produced1.9 g l?1 δ-decalactone from 7.5 g 13-hydroxy-9(Z)-octadecenoic acid l?1 at pH 7.5 and 30 °C for 21 h. Linoleate 13-hydratase from Lactobacillus acidophilus at 3.5 g l?1 with supplementation with 25 g Y. lipolytica cells l?1 in one pot at 3 h produced 1.9 g l?1 δ-decalactone from 10 g linoleic acid l?1 via 13-hydroxy-9(Z)-octadecenoic acid intermediate at pH 7.5 and 30°C after 18 h, with a molar conversion yield of 31 % and productivity of 106 mg l?1 h?1.

Conclusion

To the best of our knowledge, this is the first production of δ-decalactone using unsaturated fatty acid.
  相似文献   

19.
Carbon and nitrogen stable isotope ratios (δ13C and δ15N) in three sympatric species of larval chironomids were analyzed in a temperate eutrophic shallow lake in Japan. Markedly lower δ13C values were reported in Chironomus plumosus (?51.2 ‰) and Tanypus sp. (?43.5 ‰) than those in photoautotrophic carbon sources [particulate organic matter (POM) and sediment]. There were positive correlations between δ13C and δ15N in the two chironomid species. These results indicated that they assimilated carbon derived from biogenic methane by exploiting methane-oxidizing bacteria (MOB). In contrast, Propsilocerus akamusi exhibited similar δ13C values to those of POM or sediment. A δ13C-based isotope mixing model was used to estimate the dietary contributions of MOB to each chironomid species. The mean contributions ranged from 11 to 15 % in C. plumosus, 13 to 19 % in Tanypus sp., but only up to 5 % in P. akamusi. In an aquarium, we observed that individuals of C. plumosus and Tanypus sp., which exhibited low δ13C values, built U-shaped larval tubes in the sediment, and an oxidized layer developed around these tubes. Propsilocerus akamusi did not exhibit this behavior. These results suggest that tube building may provide larval chironomids with greater access to methane-derived carbon through increased opportunities to feed on MOB.  相似文献   

20.
Large magnitude (>10‰) carbon‐isotope (δ13C) excursions recorded in carbonate‐bearing sediments are increasingly used to monitor environmental change and constrain the chronology of the critical interval in the Neoproterozoic stratigraphic record that is timed with the first appearance and radiation of metazoan life. The ~10‰ Bitter Springs Anomaly preserved in Tonian‐aged (1000–720 Ma) carbonate rocks in the Amadeus Basin of central Australia has been offered as one of the best preserved examples of a primary marine δ13C excursion because it is regionally reproducible and δ13C values covary in organic and carbonate carbon arguing against diagenetic exchange. However, here we show that δ13C values defining the excursion coincide with abrupt lithofacies changes between regularly cyclic grainstone and microbial carbonates, and desiccated red bed mudstones with interbedded evaporite and dolomite deposits, recording local environmental shifts from restricted marine conditions to alkaline lacustrine and playa settings that preserve negative (?4‰) and positive (+6‰) δ13C values, respectively. The stratigraphic δ13C pattern in both organic and carbonate carbon recurs within the basin in a similar way to associated sedimentary facies, reflecting the linkage of local paleoenvironmental conditions and δ13C values. These local excursions may be time transgressive or record a relative sea‐level influence manifest through exposure of sub‐basins isolated by sea‐level fall below shallow sills, but are independent of secular seawater variation. As the shallow intracratonic setting of the Bitter Springs Formation is typical of other Neoproterozoic carbonate successions used to construct the present δ13C seawater record, it identifies the potential for local influences on δ13C excursions that are neither diagenetic nor representative of the global exogenic cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号