首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yeasts degrade glucose through different metabolic pathways, where the choice of the pathway is dependent on the nature of the limitation in the various substrates. When oxygen is limiting in addition to glucose, yeasts often grow according to a mixture of oxidative and reductive metabolism. Oxygen may be limiting either by supply or by inherent biological restrictions such as the respiratory bottleneck in Saccharomyces cerevisiae or by both. A unified model incorporating both supply and biological limitations is proposed for the quantitative prediction of growth rates, consumption and production rates, as well as key metabolite concentrations during mixed oxidoreductive metabolism occuring as a result of such oxygen limitations. This simple unstructured model can be applied to different yeast strains while at the same time requiring a minimum number of measured parameters. "Estimators" are utilized in order to predict the presence of supply-side or biological limitations. The values of these estimators also characterize the relative importance of oxidative to total metabolism. Results from the aerobic and oxygen-limited chemostat cultures were used to corroborate the model predictions. During these experiments, the heat released by the yeast cultures was also monitored on-line. The model correctly predicted the overall stoichiometry, steady-state concentrations, and rates including heat dissipation rates measured in the various situations of oxygen limitations. Direct continuous measurements such as heat can be used in conjunction with the unified model for on-line proces control. (c) 1992 John Wiley & Sons, Inc.  相似文献   

2.
We studied the physiological response to glucose limitation in batch and steady-state (chemostat) cultures of Saccharomyces cerevisiae by following global patterns of gene expression. Glucose-limited batch cultures of yeast go through two sequential exponential growth phases, beginning with a largely fermentative phase, followed by an essentially completely aerobic use of residual glucose and evolved ethanol. Judging from the patterns of gene expression, the state of the cells growing at steady state in glucose-limited chemostats corresponds most closely with the state of cells in batch cultures just before they undergo this "diauxic shift." Essentially the same pattern was found between chemostats having a fivefold difference in steady-state growth rate (the lower rate approximating that of the second phase respiratory growth rate in batch cultures). Although in both cases the cells in the chemostat consumed most of the glucose, in neither case did they seem to be metabolizing it primarily through respiration. Although there was some indication of a modest oxidative stress response, the chemostat cultures did not exhibit the massive environmental stress response associated with starvation that also is observed, at least in part, during the diauxic shift in batch cultures. We conclude that despite the theoretical possibility of a switch to fully aerobic metabolism of glucose in the chemostat under conditions of glucose scarcity, homeostatic mechanisms are able to carry out metabolic adjustment as if fermentation of the glucose is the preferred option until the glucose is entirely depleted. These results suggest that some aspect of actual starvation, possibly a component of the stress response, may be required for triggering the metabolic remodeling associated with the diauxic shift.  相似文献   

3.
Mucor genevensis was grown in both glucose-limited and glucose-excess continuous cultures over a range of dissolved oxygen concentrations (<0.1 to 25 muM) to determine the effects of glucose and the influence of metabolic mode (fermentative versus oxidative) on dimorphic transformations in this organism. The extent of differentiation between yeast and mycelial phases has been correlated with physiological and biochemical parameters of the cultures. Under glucose limitation, oxidative metabolism increased as the dissolved oxygen concentration increased, and this paralleled the increase in the proportion of the mycelial phase in the cultures. Filamentous growth and oxidative metabolism were both inhibited by glucose even though mitochondrial development was only slightly repressed. However, the presence of chloramphenicol in glucose-limited aerobic cultures inhibited mitochondrial respiratory development but did not induce yeast-like growth, indicating that oxidative metabolism is not essential for mycelial development. Once mycelial cultures had been established under aerobic, glucose-limited conditions, subsequent reversal to anaerobic conditions or treatment with chloramphenicol caused only a limited reversal (<35%) to the yeast-like form. Glucose, however, induced a complete reversion to yeast-like form. It is concluded that glucose is the most important single culture factor determining the morphological status of M. genevensis; mitochondrial development and the functional oxidative capacities of the cell appear to be less important factors in the differentiation process.  相似文献   

4.
Dual nutrient limited growth, the control of the cell growth rate (kinetic aspect) or the restriction of the amount of biomass (stoichiometric aspect) by two nutrients at the same time, is a relatively unknown ability of the microorganisms and consequently, still not mentioned in textbooks to date. Nevertheless, multiple nutrient limited or controlled growth has been reported for different systems; e.g. ecosystems, batch, fed-batch, and chemostat cultures. Generally, dual nutrient limited growth has been observed when the microorganism of interest: (a) showed a variation of the cellular composition, (b) was able to accumulate a storage compound, (c) changed the cell metabolism, or (d) excreted metabolic intermediates. Consequently, stoichiometric models have been developed to estimate the growth conditions leading to dual nutrient limited growth. A general problem of the kinetic aspect is the accurate measurement of the growth controlling nutrients in the culture broth (microg l(-1) range), as the cells may consume residual nutrients during sampling. Nevertheless, most models of dual limited growth deal with the kinetic aspect although the control experiments are difficult to carry out. The aim of this survey is to introduce this special growth feature with respect to basic models, experimental data, and potential applications in bioprocesses.  相似文献   

5.
Two divergent modelling methodologies have been adopted to increase our understanding of metabolism and its regulation. Constraint-based modelling highlights the optimal path through a stoichiometric network within certain physicochemical constraints. Such an approach requires minimal biological data to make quantitative inferences about network behaviour; however, constraint-based modelling is unable to give an insight into cellular substrate concentrations. In contrast, kinetic modelling aims to characterize fully the mechanics of each enzymatic reaction. This approach suffers because parameterizing mechanistic models is both costly and time-consuming. In this paper, we outline a method for developing a kinetic model for a metabolic network, based solely on the knowledge of reaction stoichiometries. Fluxes through the system, estimated by flux balance analysis, are allowed to vary dynamically according to linlog kinetics. Elasticities are estimated from stoichiometric considerations. When compared to a popular branched model of yeast glycolysis, we observe an excellent agreement between the real and approximate models, despite the absence of (and indeed the requirement for) experimental data for kinetic constants. Moreover, using this particular methodology affords us analytical forms for steady state determination, stability analyses and studies of dynamical behaviour.  相似文献   

6.
An astaxanthin-producing yeast Xanthophyllomyces dendrorhous ENM5 was cultivated in a liquid medium containing 50 g/L glucose as the major carbon source in stirred fermentors (1.5-L working volume) in fully aerobic conditions. Ethanol was produced during the exponential growth phase as a result of overflow metabolism or fermentative catabolism of glucose by yeast cells. After accumulating to a peak of 3.5 g/L, the ethanol was consumed by yeast cells as a carbon source when glucose in the culture was nearly exhausted. High initial glucose concentrations and ethanol accumulation in the culture had inhibitory effects on cell growth. Astaxanthin production was partially associated with cell growth. Based on these culture characteristics, we constructed a modified Monod kinetic model incorporating substrate (glucose) and product (ethanol) inhibition to describe the relationship of cell growth rate with glucose and ethanol concentrations. This kinetic model, coupled with the Luedeking-Piret equation for the astaxanthin production, gave satisfactory prediction of the biomass production, glucose consumption, ethanol formation and consumption, and astaxanthin production in batch cultures over 25-75 g/L glucose concentration ranges. The model was also applied to fed-batch cultures to predict the optimum feeding scheme (feeding glucose and corn steep liquor) for astaxanthin production, leading to a high volumetric yield (28.6 mg/L) and a high productivity (5.36 mg/L/day).  相似文献   

7.
8.
9.
We studied the relationship between growth rate and genome-wide gene expression, cell cycle progression, and glucose metabolism in 36 steady-state continuous cultures limited by one of six different nutrients (glucose, ammonium, sulfate, phosphate, uracil, or leucine). The expression of more than one quarter of all yeast genes is linearly correlated with growth rate, independent of the limiting nutrient. The subset of negatively growth-correlated genes is most enriched for peroxisomal functions, whereas positively correlated genes mainly encode ribosomal functions. Many (not all) genes associated with stress response are strongly correlated with growth rate, as are genes that are periodically expressed under conditions of metabolic cycling. We confirmed a linear relationship between growth rate and the fraction of the cell population in the G0/G1 cell cycle phase, independent of limiting nutrient. Cultures limited by auxotrophic requirements wasted excess glucose, whereas those limited on phosphate, sulfate, or ammonia did not; this phenomenon (reminiscent of the "Warburg effect" in cancer cells) was confirmed in batch cultures. Using an aggregate of gene expression values, we predict (in both continuous and batch cultures) an "instantaneous growth rate." This concept is useful in interpreting the system-level connections among growth rate, metabolism, stress, and the cell cycle.  相似文献   

10.
The large size of metabolic networks entails an overwhelming multiplicity in the possible steady-state flux distributions that are compatible with stoichiometric constraints. This space of possibilities is largest in the frequent situation where the nutrients available to the cells are unknown. These two factors: network size and lack of knowledge of nutrient availability, challenge the identification of the actual metabolic state of living cells among the myriad possibilities. Here we address this challenge by developing a method that integrates gene-expression measurements with genome-scale models of metabolism as a means of inferring metabolic states. Our method explores the space of alternative flux distributions that maximize the agreement between gene expression and metabolic fluxes, and thereby identifies reactions that are likely to be active in the culture from which the gene-expression measurements were taken. These active reactions are used to build environment-specific metabolic models and to predict actual metabolic states. We applied our method to model the metabolic states of Saccharomyces cerevisiae growing in rich media supplemented with either glucose or ethanol as the main energy source. The resulting models comprise about 50% of the reactions in the original model, and predict environment-specific essential genes with high sensitivity. By minimizing the sum of fluxes while forcing our predicted active reactions to carry flux, we predicted the metabolic states of these yeast cultures that are in large agreement with what is known about yeast physiology. Most notably, our method predicts the Crabtree effect in yeast cells growing in excess glucose, a long-known phenomenon that could not have been predicted by traditional constraint-based modeling approaches. Our method is of immediate practical relevance for medical and industrial applications, such as the identification of novel drug targets, and the development of biotechnological processes that use complex, largely uncharacterized media, such as biofuel production.  相似文献   

11.
12.
Batch cultures were carried out to study the kinetic, stoichiometry, and regulation of glucose and glutamine metabolism of a murine hybridoma line. Asymmetric logistic equations (ALEs) were used to fit total and viable cell density, and nutrient and metabolite/product concentrations. Since these equations were analytically differentiable, specific rates and yield coefficients were readily calculated. Asymmetric logistic equations described satisfactorily uncontrolled batch cultures, including death phase. Specific growth rate showed a Monod-type dependence on initial glucose and glutamine concentrations. Yield coefficients of cell and lactate from glucose, and cell and ammonium from glutamine were all found to change dramatically at low residual glucose and glutamine concentrations. Under stoichiometric glucose limitation, the glucose-to-cell yield increased and glucose-to-lactate yield decreased, indicating a metabolic shift. Under stoichiometric glutamine limitation the glutamine-to-cell and glutamine-to-ammonium yields increased, but also glucose-to-cell yield increased and the glucose-to-lactate yield decreased. Monoclonal antibody production was mainly non-growth associated, independently of glucose and glutamine levels.  相似文献   

13.
We studied the steady-state responses to changes in growth rate of yeast when ethanol is the sole source of carbon and energy. Analysis of these data, together with data from studies where glucose was the carbon source, allowed us to distinguish a "universal" growth rate response (GRR) common to all media studied from a GRR specific to the carbon source. Genes with positive universal GRR include ribosomal, translation, and mitochondrial genes, and those with negative GRR include autophagy, vacuolar, and stress response genes. The carbon source-specific GRR genes control mitochondrial function, peroxisomes, and synthesis of vitamins and cofactors, suggesting this response may reflect the intensity of oxidative metabolism. All genes with universal GRR, which comprise 25% of the genome, are expressed periodically in the yeast metabolic cycle (YMC). We propose that the universal GRR may be accounted for by changes in the relative durations of the YMC phases. This idea is supported by oxygen consumption data from metabolically synchronized cultures with doubling times ranging from 5 to 14 h. We found that the high oxygen consumption phase of the YMC can coincide exactly with the S phase of the cell division cycle, suggesting that oxidative metabolism and DNA replication are not incompatible.  相似文献   

14.
Kluyveromyces lactis is a yeast widely used in processes related to milk whey use and lactose fermentation. However, contradictory information about some aspects related to the respirofermentative metabolism of this yeast is found in the literature. We have studied ethanol production and oxygen use in discontinuous and continuous cultures of K. lactis under hypoxic and aerobic conditions. Growth in nonfermentable carbon sources reflects a more efficient respiratory capacity of K. lactis in relation to Saccharomyces cerevisiae; however, in both species, similar glucose fermentation levels under aerobic oxygen-limited conditions are found. Continuous K. lactis cultures in fully oxidative conditions show the oxygen and substrate uptake rates typical of a respiration-unlimited Crabtree-negative yeast; however, a small residual fermentation is present even when respiration is not limited. Some aspects of the Crabtree effect in K. lactis are discussed. The impossibility of including K. lactis in any group of the metabolism-based classification from Alexander and Jeffries (1990) has led us to the formulation of a new group which incorporates the peculiarities of this and other related yeasts.  相似文献   

15.
The heat generated by both batch and continuous cultures of the yeast K. fragilis was studied using a modified Bench Scale Calorimeter. Batch cultures were used to measure the heat dissipation rates and the heat yields during fully aerobic and completely anaerobic growth, whereas continuous cultures enabled, in addition, a quantitative study of heat dissipation rates during growth on mixed metabolism. In this case, the extent of fermentation versus respiration could be specified and controlled by varying the degree of oxygen limitation. The heat dissipated per unit biomass formed was highest for fully respirative catabolism and fell continuously to a much lower value typical of anaerobic cultures as the catabolism was shifted increasingly to the fermentative mode. The heat generated per mole of oxygen taken up stayed quite close to the fully aerobic value of 506 kJ mol(-1) even when a sizable fraction of the substrate available to catabolism was fermented. If the fraction of respiration in the metabolism is lowered beyond a certain threshold, the ratio of the heat generation to oxygen consumption starts to increase dramatically and finally tends to infinity for fully anaerobic growth. All experimental results were quantitatively analyzed and explained on the basis of a simple model which formally describes the cultures in terms of two parallel "chemical" reactions. In simple cases such as the one presented here, the model enables calculation of the whole stoichiometry of the culture from a single measured heat yield.  相似文献   

16.
Jouhten P  Wiebe M  Penttilä M 《The FEBS journal》2012,279(18):3338-3354
Dynamic flux balance analysis was utilized to simulate the metabolic behaviour of initially fully respirative and respirofermentative steady-state cultures of Saccharomyces?cerevisiae during sudden oxygen depletion. The hybrid model for the dynamic flux balance analysis included a stoichiometric genome-scale metabolic model as a static part and dynamic equations for the uptake of glucose and the cessation of respirative metabolism. The yeast consensus genome-scale metabolic model [Herrg?rd MJ et?al. (2008) Nat Biotechnol26, 1155-1160; Dobson PD et?al. (2010) BMC Syst Biol4, 145] was refined with respect to oxygen-dependent energy metabolism and further modified to reflect S.?cerevisiae anabolism in the absence of oxygen. Dynamic flux balance analysis captured well the essential features of the dynamic metabolic behaviour of S.?cerevisiae during adaptation to anaerobiosis. Modelling and simulation enabled the identification of short time-scale flux distribution dynamics under the transition to anaerobic metabolism, during which the specific growth rate was reduced, as well as longer time-scale process dynamics when the specific growth rate recovered. Expression of the metabolic genes was set into the context of the identified dynamics. Metabolic gene expression responses associated with the specific growth rate and with the cessation of respirative metabolism were distinguished.  相似文献   

17.
Hexokinase II is an enzyme central to glucose metabolism and glucose repression in the yeast Saccharomyces cerevisiae. Deletion of HXK2, the gene which encodes hexokinase II, dramatically changed the physiology of S. cerevisiae. The hxk2-null mutant strain displayed fully oxidative growth at high glucose concentrations in early exponential batch cultures, resulting in an initial absence of fermentative products such as ethanol, a postponed and shortened diauxic shift, and higher biomass yields. Several intracellular changes were associated with the deletion of hexokinase II. The hxk2 mutant had a higher mitochondrial H(+)-ATPase activity and a lower pyruvate decarboxylase activity, which coincided with an intracellular accumulation of pyruvate in the hxk2 mutant. The concentrations of adenine nucleotides, glucose-6-phosphate, and fructose-6-phosphate are comparable in the wild type and the hxk2 mutant. In contrast, the concentration of fructose-1,6-bisphosphate, an allosteric activator of pyruvate kinase, is clearly lower in the hxk2 mutant than in the wild type. The results suggest a redirection of carbon flux in the hxk2 mutant to the production of biomass as a consequence of reduced glucose repression.  相似文献   

18.
The influence of the oxygen and glucose supply on primary metabolism (fermentation, respiration, and anabolism) and astaxanthin production in the yeast Phaffia rhodozyma was investigated. When P. rhodozyma grew under fermentative conditions with limited oxygen or high concentrations of glucose, the astaxanthin production rate decreased remarkably. On the other hand, when the yeast grew under aerobic conditions, the astaxanthin production rate increased with increasing oxygen uptake. A kinetic analysis showed that the respiration rate correlated positively with the astaxanthin production rate, whereas there was a negative correlation with the ethanol production rate. The influence of glucose concentration at a fixed nitrogen concentration with a high level of oxygen was then investigated. The results showed that astaxanthin production was enhanced by an initial high carbon/nitrogen ratio (C/N ratio) present in the medium, but cell growth was inhibited by a high glucose concentration. A stoichiometric analysis suggested that astaxanthin production was enhanced by decreasing the amount of NADPH required for anabolism, which could be achieved by the repression of protein biosynthesis with a high C/N ratio. Based on these results, we performed a two-stage fed-batch culture, in which cell growth was enhanced by a low C/N ratio in the first stage and astaxanthin production was enhanced by a high C/N ratio in the second stage. In this culture system, the highest astaxanthin production, 16.0 mg per liter, was obtained.  相似文献   

19.
A number of factors have been shown to affect the metabolism of glucose and glutamine in mammalian cells and their mechanisms have been partially elucidated. Despite these efforts, a quantitative knowledge of the significance of these factors, the regulation of glucose and glutamine utilization, and particularly the interactions of these two nutrients is still lacking. Controversies exist in the literature. To clarify some of these controversies, mathematical models are proposed in this work which enable to separate and identify the effects of individual factors. Experimental data from five cell lines obtained in batch, fed-batch, and continuous cultures, both under steady-state and transient conditions, were used to verify the model formulations. The resulting kinetic models successfully describe all these cultures. According to the models, the specific consumption rate of glucose (Q(Glc)) of continuous animal cells under normal culture conditions can be expressed as a sum of three parts: a part owing to cell growth; a part owing to glucose excess; and a part owing to glutamine regulation. The specific consumption rate of glutamine (q(Glc)7) can be expressed as a sum of only two parts: a part owing to cell growth; and a part owing to glutamine excess. Using the kinetic models the interaction and regulation of glucose and glutamine utilizations are quantitatively analyzed. The results indicate that, whereas q(Glc) is affected by glutamine, q(Gln) appears to be not or less significantly affected by glucose. It is also shown that the relative utilizations of glucose and glutamine by anabolism and catabolism are mainly affected by the residual concentrations of the respective compounds and are less sensitive to growth rate and the nature of growth limitation.(c) 1995 John Wiley & Sons, Inc.  相似文献   

20.
We performed a proteomic study to understand how Saccharomyces cerevisiae adapts its metabolism during the exponential growth on three different concentrations of glucose; this information will be necessary to understand yeast carbon metabolism in different environments. We induced a natural diauxic shift by growing yeast cells in glucose restriction thus having a fast and complete glucose exhaustion. We noticed differential expressions of groups of proteins. Cells in high glucose have a decreased growth rate during the initial phase of fermentation; in glucose restriction and in high glucose we found an over-expression of a protein (Peroxiredoxin) involved in protection against oxidative stress insult. The information obtained in our study validates the application of a proteomic approach for the identification of the molecular bases of environmental variations such as fermentation in high glucose and during a naturally induced diauxic shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号